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Abstract

Cognitive diagnosis has emerged as a new generation of testing theory for educational
assessment after the item response theory (IRT). One distinct feature of cognitive diagnostic
models (CDMs) is that they assume the latent trait to be discrete instead of continuous as in
IRT. From this perspective, cognitive diagnosis bears a close resemblance to searching prob-
lems in computer science and, similarly, item selection problem in cognitive diagnostic com-
puterized adaptive testing (CD-CAT) can be considered as a dynamic searching problem.
Previously, item selection algorithms in CD-CAT were developed from information indices in
information science and attempted to achieve a balance among several objectives by assigning
different weights. As a result, they suffered from low efficiency from a tug-of-war competi-
tion among multiple goals in item selection and, at the same time, put an undue responsibility
of assigning the weights for these goals by trial and error on users. Based on the searching
problem perspective on CD-CAT, this article adapts the binary searching algorithm, one of
the most well-known searching algorithms in searching problems, to item selection in CD-
CAT. The two new methods, the stratified dynamic binary searching (SDBS) algorithm for
fixed-length CD-CAT and the dynamic binary searching (DBS) algorithm for variable-length
CD-CAT, can achieve multiple goals without any of the aforementioned issues. The simula-
tion studies indicate their performances are comparable or superior to the previous
methods.
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Introduction

Cognitive diagnosis has emerged as a new generation of testing theory for educational assess-

ment after the item response theory (IRT). It represents a departure from previous testing the-

ories because it has relevance not only to teachers and students but also to cognitive

psychologists who investigate the cognitive process of problem solving (Greeno, 1980) and

psychiatrists who need to identify specific psychological disorders (Templin & Henson, 2006).

Although cognitive diagnosis has made much progress in developing the state-of-the-art tech-

nology (Rupp & Templin, 2008), its application still faces some practical challenges. One of

the major applications of cognitive diagnosis is to implement cognitive diagnosis through

technology-enhanced computerized adaptive testing (CAT). Over about five decades, the tech-

nologies for the IRT-based CAT have matured and the psychometrics behind it have also care-

fully explicated (Chang, 2015). With the popularity of CAT, the cognitive diagnostic CAT

(CD-CAT) has been attracting more and more practitioners’ attention (Wang, Chang, &

Douglas, 2012), which has generated considerable interest in building item selection algorithms

for CD-CAT.

Measurement accuracy has been the major theme for item selection algorithm in CD-CAT

(Zheng, 2015; Zheng & Chang, 2016). Item selection algorithm development, however, has to

take measurement accuracy and other practical considerations into account, among which item

exposure control is the most intensively studied one. The restrictive progressive (RP) method

and the restrictive threshold (RT) method from Wang, Chang, and Huebner (2011) are the two

methods developed specifically to address the item exposure control issue in fixed-length CD-

CAT; for the case of variable-length CD-CAT, Hsu, Wang, and Chen (2013) proposed a method

based on the Sympson–Hetter (SH) method, which comprises test overlap control, variable

length, online update, and restricted maximum information (SHTVOR). It is worth pointing out

that the basic strategy shared by RP, RT, and SHTVOR is to put all the relevant elements (an

information-based index to ensure measurement accuracy and others for item exposure control,

test overlap, etc.) in one single index and then attempt to strike a balance among these compet-

ing objectives. These item exposure control methods are very similar to a tug-of-war and inevi-

tably suffer from low efficiency due to the competition and compromises among the multiple

objectives as the SH in CAT does (Chang & Ying, 1999).

The current study attempts to adapt the binary searching algorithm in searching problems in

computer science to the item exposure control problem in CD-CAT. The new methods can be

considered as an analogy of the b-matching method (Hulin, Drasgow, & Parsons, 1983; Urry,

1971; Weiss, 1974) and they share the same advantage as the a-stratification method (Chang &

Ying, 1999), which is that they do not achieve the multiple purposes through competition and

thus is free from the low efficiency issue.

This adaptation is motivated by one distinct feature of cognitive diagnostic models (CDMs),

which is that they assume the latent trait to be discrete instead of continuous as in IRT, and thus

the target space consists of distinct mutually exclusive elements labeled as cognitive patterns.

From this perspective, cognitive diagnosis bears a close resemblance to searching problems in

computer science, in which the goal is to identify a targeted element (cognitive pattern) among

limited number of ordered ones. Searching problems are a well-studied topic in computer sci-

ence; a myriad of well-established searching algorithms have been developed (Knuth, 1973) and

can be exploited for the CD-CAT. The major goal of the current article is to investigate the pos-

sibility of applying one of the most commonly used searching algorithms, binary searching, to

the CD-CAT.

The remaining sections of the article are laid out as follows: The following section will give

a brief introduction to the item exposure control studies in CD-CAT. In the ‘‘Dynamic Binary
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Searching Algorithm’’ section, the binary search algorithm is presented and how it can be

adapted to CD-CAT is illustrated. In the ‘‘Simulation Studies’’ section, two simulation studies

are conducted to evaluate the new algorithms against the previous methods in the fixed-length

and variable-length CD-CAT. Finally, the ‘‘Discussion’’ section is concluded with a discussion

of the findings of this work and directions for future research.

Item Exposure Control in CD-CAT

In past decades, there have been a number of different exposure control approaches proposed in

the literature. As identified by Georgiadou, Triantafillou, and Economides (2007), there are at

least five different types of exposure control strategies: (a) randomization (Kingsbury & Zara,

1989; McBride & Martin, 1983), (b) conditional selection (Chang & Ansley, 2003; Chen &

Lei, 2005; Stocking, 1993; Sympson & Hetter, 1985; van der Linden & Veldkamp, 2004), (c)

stratification strategies (Chang, Qian, & Ying, 2001; Chang & Ying, 1999; Yi & Chang, 2003),

(d) combined strategies (Eggen, 2001; Leung, Chang, & Hau, 2002; Revuelta & Ponsoda,

1998; van der Linden & Chang, 2003), and (e) multiple-stage adaptive test designs (Luecht &

Nungester, 1998). Existing item control methods in CD-CAT fall into one or two of these

categories.

Item Exposure Control in Fixed-Length CD-CAT

The two restrictive stochastic methods for item selection in CD-CAT, RP and RT, fall into the

first and fourth categories introduced above. As their names indicate, the basic idea of the meth-

ods is to change the original deterministic approach based purely on item information to a sto-

chastic approach. This is accomplished by imposing a random component in item selection or

selecting an item from a candidate set rather than strictly selecting the item with the maximum

information.

RP method consists of two controls, progressive control and restrictive control. The primary

idea of progressive control is to add a stochastic component to the item selection criterion

(Revuelta & Ponsoda, 1998), such that it will not always choose the items with the highest

information. The restrictive control seeks to suppress overexposure by adding a restriction on

the maximum exposure rate. Combining the two ideas leads to the RP item selection index for

the jth item being denoted as

RPj = 1�
expj

r

� �
1� x=Lð ÞRj + PWKLj3bx=L

� �
,

where x is the number of items administered, L is the test length, b is the importance para-

meter, PWKL is the posterior-weighted Kullback–Leibler method (Cheng, 2009), and

Rj;uniform(0, max (PWKL(Xj)). The restriction component is the term (1� expj=r) which

ensures that the maximum of the current item exposure rate expj for the jth item will be kept

under a certain value, r. The progressive component is the changing weight (1� x=L) of the

random component. In so doing, the stochastic component can achieve a decent item exposure

rate at the early stage while the measurement precision can still be maintained or only slightly

decreased due to the increasing importance of the information in the later stage.

RT is also comprised of two parts, a restrictive component and a threshold component. The

threshold component is designed to construct sets of items within an information interval:

max PWKLj

� �
� d, max PWKLj

� �� �
,
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where d is the threshold parameter and is defined as ½max (PWKLj)�min (PWKLj)�3f (x), in

which x is the number of items already administered and f (x) = (1� (x=L))b is a monotone

decreasing function. b is the importance parameter and controls the relative importance of the

exposure balance versus the estimation precision. And the items with exposure rates which

exceed the maximum exposure rate will be excluded from item selection. For some constant d,

and the items whose information lies in this interval form a candidate set, S(c), from which one

item is selected randomly as the next one to be administered in a CD-CAT.

Previous simulation studies show that RP and RT perform well in terms of maintaining mea-

surement accuracy and decent item exposure balance. It is not difficult, however, to notice that

both of them resort to explicit control over these two competing objectives. This issue is specif-

ically reflected in choosing a proper value for the importance parameter b, which is contingent

on many factors such as item parameters, test length, and so on. To make it more difficult for

users, one has to accomplish this by trial and error, although Wang et al. (2011) offered some

recommendations. As a result of an improper importance parameter, RP and RT can suffer from

low efficiency in item use indicated by the simulation study (see Simulation Study I for details).

In addition, because test length has to be predetermined, both of them are only applicable to

fixed-length CD-CAT, but not the variable-length case which is the topic for the following

section.

Item Exposure Control in Variable-Length CD-CAT

Hsu et al. (2013) proposed SHTVOR for variable-length CD-CAT. This procedure is based on

the SH method (Sympson & Hetter, 1985) and is capable of controlling test overlap for

variable-length termination, online updating the exposure control parameters, and using

restricted maximum information to freeze items with an exposure rate greater than the prespeci-

fied maximum until their exposure rate decreases. As the name suggests, SHTVOR falls into

the fourth category (the combined strategy) and it suffers from the inherent problem of low effi-

ciency in the SH method. Its implementation is more complicated than the SH, RP, and RT

methods. SHTVOR consists of the following seven steps (Hsu et al., 2013):

1. Initialize/set the parameters, such as the number of items in the bank J , the target maxi-

mum item exposure rate rmax, target test overlap rate �Tmax, the exposure control para-

meter of item pk , and so on.

2. Administer CAT to an examinee by comparing pk with a randomly generated number

from U (0, 1). If pk is larger, then administer the item; otherwise, select another item

from the item pool and compare again to determine whether the item can be adminis-

tered. Repeat this procedure until an item is administered. Exclude the administered

item for this examinee from the item pool.

3. Update the examinee’s cognitive pattern estimate and select another item as described in

Step 2 until the examinee has reached the prespecified fixed precision or until the maxi-

mum test length is reached.

4. Compute P(A) and P(S) for item j(j = 1, 2, ., J ) as the percentage an item has been

administered and selected, respectively. Update �T and pk as follows:

�T =

N3
PJ
j = 1

P Aj

� �2

�L3 N � 1ð Þ �
1

N � 1ð Þ ,
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where �L is the mean test length across all examinees, and N is the total number of examinees

who have undergone CAT thus far. Update pk as follows:

pk =

0, ifP Að Þ � rmax

rmax

P Sð Þ , ifP Að Þ � rmax and P Sð Þ.rmax

1, ifP Að Þ � rmax and P Sð Þ � rmax:

8><
>:

5. If �T.�Tmax, then

a. Calculate the target variance of the item exposure rate across item S2
0 while

�T = �Tmax.

b. Set P Að Þ0 = S0
P Að Þ��r

S

h i
+�r and P0k =

P Að Þ0
P Sð Þ0 where P(A)0 is the adjusted percentage of

times that an item has been administered based on S0, and P0k is the adjusted expo-

sure control parameter.

c. If P0k.1, then P0k = 1; if Pk.P0k , then Pk = P0k .

6. Set the Lmax largest Pks as 1 to guarantee that all examinees will complete the CAT

before exhausting the entire bank.

7. With the updated Pks, repeat Steps 2 to 6 to administer the CAT again until all of the

examinees have finished the CAT.

It is easy to notice that the SHTVOR involves multiple components which serve different

objectives. These objectives might have to compete among themselves and then result in low

efficiency as in RT and RP. Specifically, a very conservative criterion for the target test overlap

rate cannot necessarily guarantee balanced item bank use evidenced by the number of over- or

underused items in the bank. Furthermore, similar to RT and RP, the SHTVOR also put the bur-

den of assigning a proper value to the target test overlap rate, �Tmax, on users.

To resolve aforementioned issues, the current study proposes some new methods based on

the binary searching to address the item exposure control issue in CD-CAT. They relieve users

of the difficult task of assigning proper values for the importance parameter or the target overall

test overlap, but can produce comparable or better results than the previous methods.

Dynamic Binary Searching Algorithm (DBSA)

The Linear and Binary Searching Algorithms

A brief introduction to the linear and binary searching in computer science is presented as the

background information and the starting point for the development of the new methods. This

brief introduction is heavily borrowed from Rosen (2011) and Knuth (1973), but in a more

accessible manner. The problem of locating an element in an ordered list occurs in many con-

texts. For instance, a program that checks the spelling of words searches for them in a diction-

ary, which is just an ordered list of words. Problems of this kind are called searching problems.

The general setup for searching problems can be described as follows: Locate an element x in a

list of distinct elements a1, a2, ., an, or determine that it is not in the list. The solution to this

search problem is the location of the term in the list that equals x (i.e., i is the solution, if x = ai)

and is 0 if x is not in the list. A searching algorithm is one for finding an item with specified

properties among a collection of items. The linear and binary searching are two fundamental

searching algorithms.

Linear searching or sequential searching is the simplest search algorithm and it is a special

case of brute-force search. It is a method for finding a particular value in a list, which consists
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of checking every one of its elements, one at a time and in sequence, until the desired one is

found. The elements in the list are ordered in a certain way. More specifically, the linear search-

ing algorithm begins by comparing x and a1. When x = a1, the solution is the location of a1,

namely, 1. When x 6¼ a1, compare x with a2. If x = a2, the solution is the location of a2, namely,

2. When x 6¼ a2, compare x with a3. Continue this process, comparing x successively with each

term of the list until a match is found where the solution is the location of that term, unless no

match occurs. If the entire list has been searched without locating x, the solution is 0. There are

two common cases for linear searching. The first one in which all list elements are equally

likely to be searched for (uniformly distributed) is denoted as linear searching with equal prob-

abilities. The second case in which some values are much more likely to be searched than others

is denoted as linear searching with unequal probabilities.

Binary searching, also known as half-interval searching and logarithmic searching, is a

dichotomic divide-and-conquer searching algorithm for an ordered list. The binary searching

algorithm proceeds by comparing the element located in the middle of the list, namely, an=2 if n

is even or a(n + 1)=2 if n is odd. The list is then split into two smaller sublists of the same size, or

where one of these smaller lists has one fewer term than the other. The search continues by

restricting the search to the appropriate sublist based on the previous comparison until the solu-

tion is obtained.

The efficiency of the two searching algorithms is evaluated by three types of complexity

analysis: a worst-case, an average-case, and a best-case analysis. A worst-case analysis refers

to the largest number of operations needed to solve the given problem using this algorithm

on input of specified size. A worst-case analysis tells how many operations an algorithm

requires to guarantee that it will produce a solution. Similar definition can be given to the

best-case analysis and the average-case analysis. Assuming that the key must be in the list of

n objects which is the case for CD-CAT, the worst-case, the average-case, and the best-case

complexity for linear and binary searching are presented in Table 1. The average-case and

worst-case analyses for the linear searching with equal probabilities show that the largest/

expected number of operations required to complete the linear searching is proportional to n

while those for the binary searching is log n. Therefore, if the list has a large number of ele-

ments, the binary searching algorithm is much more efficient than the linear searching

algorithm.

DBSA for CD-CAT

The new methods are built upon the linear or binary searching algorithm, consisting of two

sequential steps: The first is the dynamic searching which determines the optimal vector from a

Q-matrix (denoted as a Q-vector hereafter) for an item bank based on the current cognitive pat-

tern estimate, and the second is to randomly select one item for administration from the group

of items with that optimal Q-vector. The first step ensures measurement accuracy to some

extent, and the second can equalize the item exposure rates. The item exposure control mechan-

ism is randomization (Kingsbury & Zara, 1989; McBride & Martin, 1983), the first category,

Table 1. The Efficiency Analysis of the Linear and Binary Searching for n Objects.

Searching algorithms Average case Best case Worst case

Linear searching n + 2 1 2n
Binary searching 2 log n 1 2 log n
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but the major difference from the original randomization is that it takes place within a prese-

lected group of items that might potentially enhance measurement accuracy. The distinct fea-

ture of the new methods is that there is no competition among the two objectives, and users do

not have the responsibility of striking a balance between them. Below, this paper will focus the

discussion on the first step, the development of the dynamic searching algorithms, because the

second step is simple and well known to researchers and practitioners.

The idea of linear and binary searching can be naturally extended to CD-CAT because the

latent trait is discrete. In the language of searching problems, the ordered objects in CD-CAT

are the elements in the cognitive pattern distribution, namely, cognitive patterns. The ultimate

goal of CD-CAT is to identify the appropriate cognitive pattern of an examinee. The bridge

between cognitive patterns and items is the Q-matrix, so item selection in CD-CAT amounts to

finding the most appropriate Q-vector by matching with the current interim estimate of an

examinee’s cognitive pattern. This makes an obvious analogy to the b-matching method in the

IRT-based CAT (Hulin et al., 1983; Urry, 1971; Weiss, 1974) in which only the difficulty para-

meter and the latent trait estimate are involved. Therefore, one may name this step as pattern-

matching.

In the context of CD-CAT, however, there are some important differences between search-

ing problem in CD-CAT and general searching problems in computer science. First, it is worth

noting that the elements in CD-CAT (cognitive patterns) are not strictly ordered as in general

searching problems, but partially ordered (Tatsuoka, 2002; Tatsuoka & Ferguson, 2003). For

example, four distinct cognitive patterns can be identified for two attributes:

(00), (10), (01), (11). The first and fourth patterns can be properly ordered, representing the

smallest and biggest elements in the list, but there is no strict order in the second and third ones.

This may pose a challenge in general searching problems, but it can be easily handled in CD-

CAT (explanations follow in the sequel). Second, the searching in CD-CAT is dynamic. It is a

common and necessary practice to update the cognitive pattern posterior (the target list) after

an item is administered and the response is received in CD-CAT while the probabilities for the

target list remain constant in general searching problems. Usually, the probability mass tends to

concentrate in a few cognitive patterns or even one after a few items have been administered.

Dynamic linear searching. The linear version of the dynamic searching or the pattern-matching is

extremely simple and straightforward. Assuming the interim estimate for examinee’s cognitive

pattern based on the current posterior is accurate, the optimal Q-vector of ideal candidate items

is exactly the same to the cognitive pattern with the largest posterior probability. It is worth

pointing out that the partial order in cognitive patterns whose probabilities are not largest can

be conveniently ignored because the item selection does not involve them at all. In case of mul-

tiple cognitive patterns with the largest probability, one may consider all of them as the optimal

Q-vectors. All items with such a Q-vector (or Q-vectors) in the item bank are selected to form

a subset from which an item will be chosen randomly to administer in the second step. So, the

item selection algorithm based on the dynamic linear searching can be described as an iterative

process as follows:

Step 1: Identify the optimal Q-vector which is the same to the cognitive pattern with the larg-

est probability;

Step 2: Randomly choose an item from all the items with optimal Q-vector.

Step 3: Update the cognitive pattern posterior.

Repeat Steps 1 to 3 until the CAT satisfies the termination rule.
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Although the linear pattern-matching is simple and straightforward, there are two inherent

defects associated with it. One prominent problem with the linear pattern-matching is its mea-

surement efficiency particularly at the early stage of CD-CAT. As not much information on the

posterior is gained and the posterior is close to the uniform distribution, the linear searching

strategy is essentially a linear searching with equal probabilities. A preliminary simulation study

confirmed these conjectures. The other problem with the linear pattern-matching is that the

items with the corresponding cognitive pattern might not be available in the item bank. This is

not uncommon in CD-CAT. In practice, Q-matrix might not contain all the possible cognitive

patterns; in fact, more commonly, it only involves one, two, or three attributes, so it creates

some practical difficulties to carry out the pattern-matching step. For these two problems, the

dynamic linear searching algorithm will not be included in the ‘‘Simulation Studies’’ section.

Dynamic binary searching (DBS). The DBS is to select the items such that their Q-vector can split

all the possible cognitive patterns into two equal groups, with respect to the posterior probabil-

ities, given the current estimated posterior. Such splitting is called separation in the partially

ordered set theory for CDMs (Tatsuoka, 2002; Tatsuoka & Ferguson, 2003) and can handle the

issue of partial order in cognitive patterns. The splitting rule is very similar to the calculation of

the latent response h in the deterministic input, noisy, and gate (DINA) model (Haertel, 1989;

Junker & Sijtsma, 2001). The separation Sjm for item j and pattern m is defined as

Sjm =
YK
k = 1

I qjk � amk

� 	
=

1 if pattern m possesses all the required skills required for item j

0 if pattern m lacks at least one of the required skills for item j
:




Usually, it is difficult to obtain two groups with exactly equal posterior probabilities, and the

Q-vector closest to the ‘‘middle point’’ is preferred. So, the binary searching index Bj for the tth

administration can be formulated as

Bj
t =

X
Sjm = 1

g amjyt�1ð Þ � 0:5

������
������,

where g(amjyt�1) is the posterior probability for pattern m after t2 1 items have been adminis-

tered, and the smaller the index for an item is, the better the item is. Particularly so in an ideal

case (i.e., the list is just half split by the Q-vector), it is 0. So, the item selection algorithm based

on the DBS can be summarized as an iterative process as follows:

Step 1: Identify the optimal Q-vector by calculating the index Bj which requires the separa-

tion Sjm;

Step 2: Randomly choose an item from all the items with optimal Q-vector;

Step 3: Update the cognitive pattern posterior.

Repeat Steps 1 to 3 until the CAT satisfies the termination rule.

It is necessary to point out that the DBS is a rediscovery from the searching problem perspec-

tive. Tatsuoka and Ferguson (2003) proposed the halving algorithm, which is identical to the

DBS algorithm from the current study. They also gave the mathematical proof on the conver-

gence of the several algorithms to the true value of the cognitive pattern from the partially

ordered set theory, which constitutes the mathematical foundation for the measurement accuracy

of the DBS. Unfortunately, it has gone unnoticed at the early time of CD-CAT in which mea-

surement efficiency was the key due to its relatively low measurement efficiency compared with
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the Shannon entropy (SHE) method (Tatsuoka, 2002; Tatsuoka & Ferguson, 2003). Even in

their own study, Tatsuoka and Ferguson used the SHE method for its high measurement effi-

ciency and only mentioned the halving algorithm in passing, presenting no empirical simula-

tion study or envisioning the possibility of this novel application to item exposure issue. The

rediscovery and its application opens up the possibility of studying CD-CAT in the perspec-

tive of searching problems and is exactly the major contribution of the current study to the

CD-CAT item selection research in general and item exposure control issue in particular.

Compared with the dynamic linear searching, the DBS enjoys several advantages. First, it is

free from the practical constraint that it might not find the pattern in the item bank. Second, it

takes advantage of all the information of the posterior distribution, unlike the dynamic linear

searching which is only concerned with the single element with the largest probability. It can

be expected that it can achieve higher measurement efficiency in selecting items especially at

the early stage of CD-CAT.

A further modification for fixed-length CD-CAT. The DBS algorithm can be applied to both fix-

length and variable-length CD-CAT, but it can be further enhanced by stratifying item bank

by an item discrimination index based on item quality, as in the a-stratification method, in

fix-length CD-CAT. A stratified dynamic binary searching (SDBS) method, thus, can be

proposed for fix-length CD-CAT. The key is to develop counterparts of item discrimination

index and b-matching method in CD-CAT. As stated above, the DBS can fulfill the role of

b-matching.

The natural candidate for CD-CAT item bank stratification is item discrimination indices for

CDMs. Rupp, Templin, and Henson (2010) provided a summary of item discrimination indices

for CDMs. There are two types of indices: the classical testing theory (CTT)–based global

indices and the Kullback–Leibler (KL) information–based indices. The CTT-based global

indices can be regarded as the counterpart of the a parameter in the IRT and thus as the bank

stratification criterion. The CTT-based global indices for DINA and the noncompensatory

reparameterized unified model (NC_RUM; Hartz, 2002) are dj, DINA = (1� sj)� gj in which

sj and gj are the slipping and guessing parameters, and dj, NC�RUM = p�j � p�j
QA

a = 1 r
�qja

ja in

which p�j , r�ja, and qja are the baseline parameter, penalty parameter, and the elements in the

cognitive pattern vector. This index can be derived for the majority of the cognitive diagnosis

models. Thus, the method proposed here can be readily extended to other models. However, in

this study, only the DINA model and NC_RUM will be used.

With item discrimination index and DBS ready, a general framework for the stratification

method for CD-CAT can be set up as follows:

1. Partition the item bank into M levels according to the item discrimination index;

2. Partition the test into M stages;

3. In the kth stage, select nk items from the kth level based on the dynamic searching

method (note that n1 + n2 + � � � + nK equal the test length);

4. Repeat Step 3 for k = 1, 2, ., M .

Simulation Studies

Two simulation studies were conducted to demonstrate the feasibility of the proposed algo-

rithms compared with the existing methods in fixed-length and variable-length CD-CAT,

respectively, because the methods for fixed-length CD-CAT are not applicable for variable-

length CD-CAT. To validate the results in different CDMs, two important models were used in
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two studies: the DINA model (Haertel, 1989; Junker & Sijtsma, 2001) and NC_RUM (Hartz,

2002). The results for the two models in each study were similar, so the results were reported

for only one model in each study and other detailed results were published as online appendix.

Study I

Study I is a simulation for a fixed-length CD-CAT of 40 items that aims to investigate the

SDBS strategy’s performance.

Item bank and examinees generation. The item bank consisting of 480 items for four-attribute

NC_RUM (Hartz, 2002) is generated similar to Cheng (2009). Implementation of cognitive

diagnosis requires the construction of the design matrix named as a Q-matrix (Tatsuoka, 1983).

For an item bank consisting of J items, the Q-matrix is a J3K matrix of 1s and 0s that specifies

the association between items and K attributes. The entry corresponding to the kth attributes for

the jth item, qjk , indicates whether the kth attributes are required to answer item j correctly or

not. The Q-matrix used in this study is generated item by item and attribute by attribute. Each

item has 20% chance of measuring each attribute. This mechanism is employed to make sure

that every attribute is adequately and equally represented in the item pool.

The NC_RUM needs two types of item-level parameters: (a) the baseline parameter p�j repre-

sents the probability of correct response to item j if all measured attributes have been mastered,

and (b) the penalty parameter r�jk represents the probability of correct response to item j for not

having mastered attribute k. The probability of a correct response conditional on the cognitive

pattern and item parameters is defined as

P Yij = 1jai, p�j , r�jk

� �
= p�j

YK
k = 1

r
� 1�aikð Þqjk

jk ,

where ai denotes the examinee’s latent cognitive pattern whose kth element is aik . The item

parameters p�j and r�jk were generated from U(0.75, 0.95) and U(0.2, 0.95), respectively. As the

test length is 40, the item bank was partitioned into five strata with equal number of items by

the item discrimination index described above.

The cognitive patterns for 2,000 examinees were generated assuming that every examinee

has 50% chance of mastering each attribute. For example, in a four-attribute test, there were 16

distinct types of latent classes which were assumed to be equally likely in the population.

Item selection algorithms. Five item selection methods were used in this study, including random,

PWKL, RP, RT, and SDBS algorithm. For RP and RT, the importance parameter was set to be

2, recommended by Wang et al. (2011).

Evaluation criteria. These item selection algorithms were evaluated in three aspects: estimation

accuracy, item exposure balance, and item bank usage. The evaluation criteria for estimation

accuracy include recovery rates of attributes and cognitive patterns. The evaluation criterion for

item exposure balance is the scaled x2 (Chang & Ying, 1999) that quantifies the equalization of

exposure rates. Let m denote the number of examinees, N the size of the item bank, and

erj =
number of times the jth item is used

m
,

which represents the observed exposure rates of the jth item. Therefore, the desirable uniform

exposure rate for all items is erj = L=N , in which L is the test length and the scaled x2 is

designed to measure the similarity between the observed and desired exposure rates:
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x2 =

PN
j = 1

erj � erj

� �2

erj

:

Those for item bank usage are the number of items with less than 2% exposure rate and the

number of items with more than 20% exposure rate.

Results. The estimation accuracy, and the measures of exposure balance and the item bank

usage of each method are reported in Table 2. As expected, we observe a trade-off between

measurement accuracy and item exposure rates. In terms of the estimation accuracy, except the

random method, the cognitive pattern recovery rates for the SDBS and RT are 0.910 and 0.92

while that for RP is 0.964. In terms of exposure balance, the SDBS outperforms RT and RP

with a scaled x2 index of 1.193. In terms of item bank usage, there were no overused items or

underused items for the SDBS and RT while RP underused 65 items which is the price for the

high recovery rate for the cognitive patterns. It is worth pointing out that the same specification

for the importance parameter b in RT and RP produced different results: RT struck a decent

balance between measurement accuracy and item use while RP put too much weight on the

measurement accuracy which needs more fine-tuning.

Study II

Item bank and examinees generation. The item bank consisting of 480 items for the six-attribute

DINA model (Haertel, 1989; Junker & Sijtsma, 2001) was generated in the same manner as

Cheng (2009). The DINA model–predicted probability that examinee i will respond correctly

to item j is defined by

P Yij = 1jai

� �
= 1� sj

� �hij gj
1�hij,

where sj is the slipping parameter and gj is the guessing parameter. hij is the latent response for

examinee i, ai, to item j. The item parameters sj and gj were both generated from U(0.05, 0.25).

The cognitive patterns for 2,000 examinees were generated in the same manner in which 64 dis-

tinct cognitive patterns were assumed to be equally likely in the population.

Item selection algorithms. Three item selection methods were used in this study, including

PWKL (the baseline condition), SHTVOR, and DBS algorithm. For SHTVOR, the target maxi-

mum item exposure rate rmax was set to be 0.2, and the target test overlap rate �Tmax was set to

be 0.03, which is very conservative to ensure a low average test overlap.

Termination rule. Tatsuoka (2002) recommended that a variable-length CD-CAT stops if the pos-

terior probability value associated with any one cognitive pattern exceeds 0.8. A similar rule

was adopted in this study, but the stopping criterion was set on three different levels: 0.7, 0.8,

and 0.9.

Evaluation criteria. These item selection algorithms were evaluated in terms of two aspects: esti-

mation accuracy and item bank usage. The evaluation criteria for estimation accuracy include

attribute recovery rates and pattern correct classification rates (PCCRs), and those for item bank

usage are the number of items with less than 2% exposure rate (underused items) and the num-

ber of items with more than 20% exposure rate (overused items).

Results. The estimation accuracy and test length statistics for all of the algorithms under differ-

ent stopping criteria are presented in Table 3 and item bank use in Table 4. The PCCRs for all
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of the algorithms under each stopping criterion are close to each other, so the results for item

bank use are comparable.

As regards the item exposure control, it is expected that the PWKL without the item expo-

sure control mechanism generates the largest test overlap rate. When item exposure control is

adopted, the test overlap rate for the two algorithms is reduced substantially. It is worth noting

that DBS produces a similar test overlap rate to SHTVOR, even though there is no explicit

mechanism for controlling it as does SHTVOR.

The number of overused and underused items can provide more information about item bank

usage. PWKL has the greatest number of overused and underused items. Item exposure control

mechanism can improve these indices significantly. There are no overused items for any of the

algorithms with item exposure control methods. In terms of underused items, they exhibit differ-

ential performances. The numbers of underused items for SHTVOR are 73, 54, and 25, respec-

tively, for three stopping criteria. Please note that the specifications for the target maximum

item exposure rate rmax and the target test overlap rate �Tmax in this study were very conservative

to enhance item use, and the final realized test overlap rate is almost identical to DBS, but there

is still a few underused items. This is a result of the inability of the SH method to improve the

utilization of underused items, even though there is an explicit control over the test overlap rate.

By contrast, there are no underused or overused items in DBS.

Table 2. Recovery Rates and Exposure Balance Indices for the NC_RUM (Fixed Length).

Item
Attribute

Exposure Number of Number of
selection 1 2 3 4 Pattern balance x2 overused (.0.2) underused (\0.02)

PWKL 0.999 0.999 1.000 0.999 0.998 314.060 57 369
RT 0.994 0.986 0.992 0.991 0.964 43.988 0 65
RP 0.979 0.970 0.981 0.981 0.921 7.801 0 0
SDBS 0.969 0.974 0.971 0.973 0.910 1.193 0 0
Random 0.913 0.905 0.936 0.926 0.735 0.221 0 0

Note. PWKL = posterior-weighted Kullback–Leibler method; RT = restrictive threshold method; RP = restrictive

progressive method; SDBS = stratified dynamic binary searching.

Table 3. The Measurement Accuracy and Test Length for the DINA Model (Variable Length).

Stopping
Attribute Test length

criteria Item selection 1 2 3 4 5 6 Pattern M SD

0.7 PWKL 0.942 0.941 0.961 0.965 0.963 0.948 0.774 8.04 1.804
SHTVOR 0.951 0.951 0.948 0.954 0.953 0.952 0.765 11.76 3.548
DBS 0.957 0.961 0.951 0.953 0.945 0.954 0.776 12.39 3.549

0.8 PWKL 0.963 0.971 0.973 0.979 0.967 0.971 0.843 9.52 2.297
SHTVOR 0.971 0.975 0.961 0.971 0.975 0.971 0.852 13.96 4.150
DBS 0.976 0.973 0.968 0.975 0.970 0.971 0.857 14.45 3.998

0.9 PWKL 0.984 0.988 0.993 0.993 0.984 0.983 0.929 11.72 2.863
SHTVOR 0.990 0.986 0.989 0.986 0.982 0.984 0.921 17.88 5.434
DBS 0.987 0.986 0.990 0.987 0.985 0.982 0.920 17.50 4.816

Note. DINA = deterministic input, noisy, and gate; PWKL = posterior-weighted Kullback–Leibler method; SHTVOR =

Sympson–Hetter method, which comprises test overlap control, variable length, online update, and restricted

maximum information; DBS = dynamic binary searching.
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In summary, the new method can strike a better balance between measurement accuracy and

item bank use than SHTVOR. It is also much simpler to implement, in comparison with

SHTVOR.

Discussion

Inspired by the binary searching algorithm in computer science, the authors proposed two new

methods based on the DBS algorithm for CD-CAT. The halving algorithm, an algorithm pro-

posed from the partially ordered set theory and identical to the DBS, did not win recognition

due to its relatively low measurement efficiency compared with other information-based meth-

ods. But this study rediscovered this algorithm from a searching problem perspective and turned

this disadvantage into a ‘‘less-is-more’’ case. Specifically, this study exploited this fact and pro-

posed two 2-step item selection methods with item exposure control based on the dynamic

searching algorithm to address the low efficiency issue of the previous item exposure methods

in CD-CAT. The results indicate that the new algorithms can achieve multiple goals of mea-

surement accuracy and item exposure control as effectively as the RT and RP in fixed-length

CD-CAT, and more effectively than SHTVOR in variable-length CD-CAT.

On one hand, the DBS can make use of all the information from the posterior distribution. In

a sense, it is similar to the PWKL, the Bayesian variant of the KL algorithm, which improves its

measurement efficiency to a great extent, although it cannot produce as high measurement accu-

racy as other information-based methods. On the other hand, the DBS avoids ‘‘overdoing’’ in

terms of measurement accuracy as most information-based methods do and only determine the

ideal Q-vector for next candidate item instead of the best item itself. Some randomness arises

naturally to eliminate extremely high or low item exposure rates. Thus, the two-step sequential

algorithms based on the dynamic searching conveniently avoid competition of and compromise

among the several goals in RT, RP, and SHTVOR, elegantly striking a decent balance between

the measurement accuracy and item bank use. The other related practical advantage is that the

new methods relieve users of the burden of specifying the importance parameter which can only

be done in a trial-and-error manner for the previous methods.

In addition, the new method is very flexible to handle item exposure control issue in both

fixed-length and variable-length CD-CAT. RT and RP were developed solely for fixed-length

Table 4. Item Exposure and Item Bank Use for the DINA Model (Variable Length).

Stopping criteria Item selection Test overlap Overused (.0.2) Underused (\0.02)

0.7 PWKL 0.671 10 412
SHTVOR 0.033 0 73
DBS 0.029 0 0

0.8 PWKL 0.622 13 395
SHTVOR 0.037 0 54
DBS 0.035 0 0

0.9 PWKL 0.593 15 390
SHTVOR 0.045 0 25
DBS 0.042 0 0

Note. DINA = deterministic input, noisy, and gate; PWKL = posterior-weighted Kullback–Leibler method; SHTVOR =

Sympson–Hetter method, which comprises test overlap control, variable length, online update, and restricted

maximum information; DBS = dynamic binary searching.
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CD-CAT. Some further work is needed to make them feasible in variable-length CD-CAT. The

DBS can easily be used in both scenarios as demonstrated in two simulation studies.

Interesting future directions include identifying more efficient searching algorithms other

than the binary searching algorithm. Searching problems have been thoroughly studied in com-

puter science, and a myriad of algorithms have been developed (Knuth, 1973). It is possible to

find another searching algorithm more efficient than binary searching in CD-CAT.

Another possible future direction is to tap the great potential of the DBS in various applica-

tions. For example, it can be combined with other algorithms to deal with multiple constraints

such as item exposure rates, content constraint, key balancing, and so on, in CD-CAT. There is

also a possibility of applying it in other scenarios such as automated test assembly in a highly

constrained real-world diagnostic testing project as in Wang, Zheng, Zheng, Su, and Li (2016).

One another interesting application is in the dual-purpose CAT, which aims to obtaining gen-

eral overall score and diagnostic information in one single administration (McGlohen & Chang,

2008; Wang et al., 2012; Wang, Zheng, & Chang, 2014). It is a much simpler alternative to the

shadow test which selects a group of candidate items in the first stage of the u- and a-based

method (McGlohen & Chang, 2008). It is also a better option than the IRT-based bank stratifi-

cation method in the weighted approach (Wang et al., 2012).
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