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Abstract

The logistic regression (LR) procedure for testing differential item functioning (DIF) typically
depends on the asymptotic sampling distributions. The likelihood ratio test (LRT) usually relies
on the asymptotic chi-square distribution. Also, the Wald test is typically based on the asymp-
totic normality of the maximum likelihood (ML) estimation, and the Wald statistic is tested
using the asymptotic chi-square distribution. However, in small samples, the asymptotic assump-
tions may not work well. The penalized maximum likelihood (PML) estimation removes the
first-order finite sample bias from the ML estimation, and the bootstrap method constructs the
empirical sampling distribution. This study compares the performances of the LR procedures
based on the LRT, Wald test, penalized likelihood ratio test (PLRT), and bootstrap likelihood
ratio test (BLRT) in terms of the statistical power and type I error for testing uniform and non-
uniform DIF. The result of the simulation study shows that the LRT with the asymptotic chi-
square distribution works well even in small samples.
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The logistic regression (LR) procedure (Swaminathan & Rogers, 1990) is a popular method for

testing differential item functioning (DIF). In the LR procedure, an LR is used to model the

probability of getting an item correct using a conditioning variable (e.g., observed total test

score), a group membership, and an interaction between the conditioning variable and group

membership. An item is said to show DIF if the regression coefficients related to the group

membership or group–conditioning interaction are statistically significantly different from zero.

The regression coefficients are usually estimated using the maximum likelihood (ML) estima-

tion, and the statistical hypotheses about DIF are typically tested based on asymptotic distribu-

tions. However, in small samples, it is well known that the ML estimation may be biased

(Cordeiro & McCullagh, 1991; Firth, 1993) and the asymptotic distributions may not work well

(Davison & Hinkley, 1997; MacKinnon, 2009).
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In the previous studies of DIF, it has been pointed out that the lack of robustness of the ML

estimation and asymptotic assumption may limit the use of the LR procedure in small samples

(Parshall & Miller, 1995; Swaminathan & Rogers, 1990). Therefore, it is important to determine

the extent to which the traditional LR procedure based on the ML estimation and asymptotic

assumption is valid in small samples. Also, it is worthwhile to examine whether other methods,

such as the penalized maximum likelihood (PML) estimation, penalized likelihood ratio test

(PLRT), and bootstrap likelihood ratio test (BLRT), could be considered as alternatives. The

PML estimation is an estimation method developed to address the issue of potential bias of the

ML estimation in small samples (Firth, 1993), and the PLRT compares the likelihoods of two

nested models based on the PML estimation. In the BLRT, the likelihood ratio test (LRT) statis-

tic is tested based on the empirical sampling distribution constructed from bootstrap samples,

rather than the asymptotic sampling distribution derived from the asymptotic theory (Efron,

1979). The goal of this study is to compare the performances of the traditional LR procedure

and the potential alternatives in small samples. More specifically, the traditional LR procedure

based on the ML estimation and asymptotic assumption was compared with the LR procedures

based on the PLRT and BLRT, especially in small samples, in terms of the statistical power and

type I error rate for testing uniform and non-uniform DIF.

For more detailed discussion on the LR procedure, let us consider the following three LR

equations (Fidalgo, Alavi, & Amirian, 2014):

log
Pr½u = 1�

1� Pr½u = 1�

� �
= t0 + t1u, ð1Þ

log
Pr½u = 1�

1� Pr½u = 1�

� �
= t0 + t1u + t2g, ð2Þ

log
Pr½u = 1�

1� Pr½u = 1�

� �
= t0 + t1u + t2g + t3ug, ð3Þ

where u is the binary response to an item, u is the observed ability of an examinee (e.g.,

observed total test score), and g is the group membership. The parameter t2 represents the

group difference in the probability of getting an item correct, and t3 represents the interaction

between the group membership and the observed ability. The LR procedure can be used to

detect both uniform and non-uniform DIF. Several analytical strategies have been proposed in

the literature, and choosing proper analytical strategies is important to maximize the perfor-

mance of the LR procedure (Fidalgo et al., 2014). First, uniform and non-uniform DIF can be

simultaneously tested by comparing the LR models represented by Equations 1 and 3. The null

hypothesis of this test is H0 : t2 = 0 and t3 = 0, indicating there is no DIF. If the null hypothesis

H0 for an item is rejected, then the item is marked for further examination by content experts.

The null hypothesis H0 can be tested using both the LRT and Wald test. In general, under cer-

tain regularity conditions, the test statistics for the LRT asymptotically follow the chi-square

distribution with the degrees of freedom equal to the difference in the number of parameters of

the two nested models (Wilks, 1938). The LRT statistics for testing H0 : t2 = 0 and t3 = 0, there-

fore, asymptotically follow the chi-square distribution with the two degrees of freedom. It was

also shown that the Wald test statistics for testing H0 : t2 = 0 and t3 = 0 asymptotically follow

the chi-square distribution with the two degrees of freedom, under the assumption that the ML

estimators for the parameters t2 and t3 asymptotically follow a multivariate normal distribution

(Swaminathan & Rogers, 1990). Second, uniform and non-uniform DIF can be tested sepa-

rately. The null hypothesis for testing uniform DIF is H0 : t2 = 0 and can be tested by
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comparing the LR models represented by Equations 1 and 2. If t2 6¼ 0 and t3 = 0, then an item

is said to show uniform DIF because the relationship between the item response and group

remains the same over the range of the ability of an examinee. However, the null hypothesis

for testing non-uniform DIF is H0 : t3 = 0 and can be tested by comparing the LR models repre-

sented by Equations 2 and 3. If t3 6¼ 0, then an item is said to show non-uniform DIF because

the relationship between the item response and group depends on the ability of an examinee.

The LRT and Wald test are applicable for testing uniform and non-uniform DIF separately. For

more detailed discussion on the analytical strategies for the LR procedure, readers are referred

to Fidalgo et al. (2014) and Jodoin and Gierl (2001).

As can be seen from the discussion above, the hypothesis testings for the LR procedure typi-

cally depend on asymptotic sampling distributions. The LRT depends on the asymptotic chi-

square distribution of the test statistics. Also, the Wald test is based on the asymptotic normal-

ity of ML estimators. In general, ML estimators have been widely used in many different set-

tings because of the desirable asymptotic properties: The ML estimators are asymptotically

unbiased and normally distributed. However, such nice asymptotic properties may not hold for

small samples. The ML estimators have bias that increases with decreasing sample sizes, and

such bias is usually known as finite or small sample bias. Therefore, in small samples, a bias

correction for the ML estimators (e.g., the PML estimation) may be appreciable (Cordeiro &

McCullagh, 1991; Firth, 1993). Also, the sampling distribution of the ML estimators may devi-

ate from the normal distribution in small samples. In such a case, statistical inferences based on

the non-parametric empirical sampling distribution (e.g., bootstrap) can be more accurate than

statistical inferences based on the asymptotic normal distribution (MacKinnon, 2009).

In the specific context of DIF, previous studies have also concerned potential problems of

testing DIF in small samples. Swaminathan and Rogers (1990) pointed out that the asymptotic

result of an LR may not be a valid indicator of the presence of DIF in small samples. Mazor,

Clauser, and Hambleton (1992) reported that more than 50% of the DIF items were missed

when the Mantel–Haenszel (MH) procedure was used for samples of 500 or fewer examinees.

Rogers and Swaminathan (1993) found that the distributional assumptions for the LR and MH

procedures were less often met in small samples. Parshall and Miller (1995) compared the MH

procedures based on the asymptotic chi-square distribution with the MH procedures based on

the exact test. In their study, the performance of the MH procedures was extremely limited

when the sample sizes of the focal groups were fewer than 100. Roussos and Stout (1996) com-

pared the Simultaneous Item Bias Test (SIBTEST) and the MH procedure in small samples and

found that two methods performed satisfactory in terms of type I error rates under all simulation

conditions. Camilli (2006) also pointed out that the DIF test using the traditional LRT might be

problematic in small samples.

Building on the previous studies, this study was designed to compare the performances of

different statistical inferential methods for the LR procedure, especially in small samples. More

specifically, the null hypothesis, which is H0 : t2 = 0 and t3 = 0, was tested using (a) the test sta-

tistic proposed by Swaminathan and Rogers (1990) under the assumption that the test statistic

follows the asymptotic chi-square distribution with two degrees of freedom, (b) the LRT in

which the LRT statistic comparing two likelihoods from the ML estimation is tested using the

asymptotic chi-square distribution with two degrees of freedom, (c) the PLRT in which the

PLRT statistic comparing two penalized likelihoods from the PML estimation is tested using the

asymptotic chi-square distribution with two degrees of freedom, and (d) the BLRT in which the

LRT statistic comparing two likelihoods from the ML estimation is tested using the bootstrap

empirical sampling distribution. The next section briefly introduces the test statistic proposed by

Swaminathan and Rogers (1990), PLRT, and BLRT, and this is followed by the section
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describing a Monte Carlo simulation study. Then, the results of the simulation study are pre-

sented and also discussed in the last two sections.

Method for Testing DIF

Swaminathan and Rogers (Wald Tests)

Swaminathan and Rogers (1990) assumed that the LR coefficients in Equation 1 follow a multi-

variate normal distribution:

t̂;N t,
X� �

, ð4Þ

where t = ½t0, t1, t2, t3� and t̂ = ½t̂0, t̂1, t̂2, t̂3� are the population regression coefficients in

Equation 1 and their ML estimates, and
P

is the population variance–covariance matrix of t.

The null hypothesis for a DIF test, H0 : t2 = 0 and t3 = 0, was expressed as matrix form:

H0 : Ct = 0, ð5Þ

where the 234 matrix C was defined as follows:

C =
0 0 1 0

0 0 0 1

� �
: ð6Þ

Then, it was shown that the null hypothesis can be tested using the following test statistic:

x2 = t̂0C(CSC)�1Ct̂, ð7Þ

which follows the chi-square distribution with two degrees of freedom.

The LRT

The LRT compares the fit of two competing models to test whether the observed difference in

model fit of the two models is statistically significant. The two competing models are typically

called the augmented model, which is a more complex one, and compact model, which is a less

complex one. If the observed difference in model fit is statistically significant, the augmented

model is preferred, whereas if the difference is not statistically significant, the compact model

is preferred based on the principle of parsimony. The test statistic G2 in the LRT is defined as

the difference in the log-likelihoods of the two competing models:

G2 = �2logLC � �2logLAð Þ, ð8Þ

where LC and LA represent the likelihoods of the compact and augmented models, respectively.

Under the assumption that the two competing models are nested, it can be shown that the test

statistic G2 asymptotically follows the chi-square distribution with degrees of freedom equal to

the difference in free parameters in the two nested models (Wilks, 1938). In our specific case,

the LRT can be used to test DIF by comparing the likelihoods of two nested models, which are

logit( Pr½u = 1�) = t0 + t1u and logit( Pr½u = 1�) = t0 + t1u + t2g + t3ug, using the chi-square distri-

bution with two degrees of freedom.
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The PLRT

The PML estimation was developed to address the issue of the finite sample bias of the ML esti-

mation. The PML estimation removes the first-order bias from the ML estimation by using a

penalized log-likelihood, which is just the traditional log-likelihood with a penalty. In the PML

estimation, the penalty is given to the deviation from a desired outcome, and therefore, it will

pull or shrink the PML estimates from the traditional ML estimates (Cole, Chu, & Greenland,

2014; Firth, 1993). In broad terms, the PML estimation is known as the regularized estimation,

which improves the estimation using some form of additional information. In Bayesian perspec-

tive, penalizing the likelihood corresponds to specifying a prior distribution, and the penalized

log-likelihood can be considered as a posterior distribution of the parameter of interest. For

exponential family models, the PML estimation is equivalent to maximizing a likelihood that is

penalized by the Jeffreys’ invariant prior (Firth, 1993; Heinze, 2006). The PML or Bayesian

approach was used to obtain more stable parameter estimates in the item response theory (IRT;

Mislevy, 1986; Swaminathan & Gifford, 1985). Recently, the PML estimation was used to

obtain parameter estimates for the two-parameter logistic model (2PLM) in the IRT with only

20 examinees, with which the traditional ML estimation for the IRT may not be applicable

(Paolino, 2013). Given the PML estimates, the PLRT compares the penalized likelihoods of

two nested models.

The BLRT

In general, the bootstrap method may be considered as an alternative to the asymptotic

approaches when the validity of the asymptotic approximation is suspect (Davison & Hinkley,

1997; MacKinnon, 2009). In the bootstrap method, bootstrap samples of size n were taken from

the original sample of size n with replacement, and the sampling distribution of a statistic of

interest is empirically constructed using the values of the statistic calculated for the bootstrap

samples.

In the LRT, the p value for testing a null hypothesis is obtained by comparing the observed

value of the statistic of interest with the asymptotic distribution, which is the chi-square distri-

bution in our case, whereas in the BLRT, the p value is obtained by comparing the observed

value of the statistic with the empirical sampling distribution constructed from the bootstrap

samples. In this study, the BLRT was implemented as follows (Davison & Hinkley, 1997;

Nylund, Asparouhov, & Muthén, 2007):

a. Fit a compact model, logit( Pr½u = 1�) = t0 + t1u, and an augmented model,

logit( Pr½u = 1�) = t0 + t1u + t2g + t3ug, to the original data to obtain the test statistic

G2
original = �2logLC � (�2logLA), where LC and LA represent the likelihoods of the

compact and augmented models obtained from the ML estimation.

b. Generate a bootstrap sample from the original data under the null hypothesis, and then

calculate the G2
boot statistic for the generated bootstrap sample. More specifically, gen-

erate a data set using the compact model with the parameters estimated in Step (a), and

then fit both the compact and augmented models to the generated data set to compute

the value of the G2
boot statistic.

c. Repeat Step (b) R times to construct the empirical sampling distribution of the G2
boot

statistic.

d. Calculate the bootstrap p value by comparing the observed value of the G2
original statistic

obtained in Step (a) with the empirical sampling distribution of the G2
boot statistic con-

structed in Step (c). More specifically, the bootstrap p value can be calculated using the
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following equation: p = (1 + #fG2
boot � G2

originalg)=(1 + R), where #fG2
boot � G2

originalg
represents the number of bootstrap samples that produce the G2

boot statistic greater than

or equal to the value of G2
original obtained in Step (a) (Davison & Hinkley, 1997). This

bootstrap p value is then used to determine whether the null compact model should be

rejected in favor of the augmented model.

A Simulation Study

A Monte Carlo simulation in this study was designed to compare the performances of the afore-

mentioned different statistical inferential methods for the LR procedure. The performances in

small samples were particularly of interest because the asymptotic sampling distributions may

not work well in small samples. The factors manipulated in this study were (a) the sample sizes

of the reference and focal groups in DIF tests (50R/50F, 100R/100F, 150R/50F, 250R/250F,

450R/50F, and 500R/500F), (b) the effect sizes of DIF for a studied item based on the area

between item response functions (0, 0.6, and 0.8), (c) the ability distributions of the focal group

(N (0, 1) and N(� 1, 1)), and (d) the types of DIF (uniform and non-uniform). The number of

items was fixed to 40 to represent a short but reliable standardized achievement test (Jodoin &

Gierl, 2001). Among the 40 items, only one item was chosen to be a studied item. For each of

the 72 simulation conditions (6333232 = 72), 1,000 data sets were replicated. For each data

set, DIF for the studied item was tested using the aforementioned four different inferential

approaches. The results of the BLRT could depend on the sizes of the bootstrap samples

(MacKinnon, 2009), and therefore, both 1,000 and 10,000 bootstrap samples were sampled fol-

lowing the previously described procedure. This simulation study was performed using the R

software package1 (R Core Team, 2013). The following is the more detailed description about

the simulation study.

In this simulation study, the sample size was the key factor because the focus of this study

was to compare the performances of different inferential approaches for the LR procedure in

small samples. The definition of smallness varied across different studies. Fidalgo, Ferreres,

and MuÑiz (2004) examined the performance of the MH procedure in small samples with the

sample sizes of 100, 150, 200, and 250. Parshall and Miller (1995) used 500R/25F, 500R/50F,

500R/100F, and 500R/200F to compare the performance of the exact and asymptotic MH pro-

cedures in small samples. The sample size requirements for Educational Testing Service (ETS)

DIF analysis are at least 200 members in the smaller group and at least 500 in total (Zwick,

2012). In this present study, the performances of different inferential approaches were compared

with the sample sizes of 50R/50F (total sample size N = 100), 100R/100F (N = 200), 150R/50F

(N = 200), 250R/250R (N = 500), 450R/50F (N = 500), and 500R/500F (N = 1,000); 50R/50F

(N = 100) and 100R/100F (N = 200) were chosen to represent small samples; 500R/500F (N =

1,000) were chosen to represent large samples in which the asymptotic sampling distributions

are expected to work well. Sample sizes of the focal group are often much smaller than those of

the reference groups (Parshall & Miller, 1995); 100R/100F (N = 200), 150R/50F (N = 200),

250R/250R (N = 500), and 450R/50F (N = 500) were chosen to examine the differences in

balanced and unbalanced sample sizes across the reference and focal groups.

The number of items was fixed to 40. Among the 40 items, only one item was simulated as

a DIF item. The amount of DIF in the studied item was induced following Swaminathan and

Rogers (1990) and Jodoin and Gierl (2001). To induce DIF, the item parameters of the three-

parameter logistic model (3PLM) for the reference and focal groups were chosen such that pre-

specified areas between the item response functions for the two groups were obtained based on

the formula given by Raju (1988). More specifically, to induce uniform DIF, the item discrimi-

nation (a) and guessing (c) parameters in the 3PLM were fixed across the reference and focal
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groups, and the item difficulty parameters (b) for the two groups were chosen such that the

areas between the item response functions for the two groups became 0.4 and 0.6 based on the

following equation:

Area = 1� cð Þ bF � bRj j, ð9Þ

where bR and bF represent the item difficulty parameters for the reference and focal groups,

respectively. To induce non-uniform DIF, the item difficulty (b) and guessing (c) parameters

were fixed across the reference and focal groups, and the item discrimination parameters (a) for

the two groups were chosen such that the areas between the item response functions for the two

groups became 0.4 and 0.6 based on the following equation:

area = 1� cð Þ 2 aF � aRð Þ
1:7aFaR

ln2

����
����, ð10Þ

where aR and aF represent the item discrimination parameters for the reference and focal

groups, respectively. Table 1 presents the specific values of item discrimination, difficulty, and

guessing parameters used to induce uniform and non-uniform DIF for the studied item. For the

non-DIF condition of the studied item to examine type I error rates, the item discrimination,

difficulty, and guessing parameters of the studied item were fixed to 1.0, 0.0, and 0.2 across the

reference and focal groups. For the remaining 39 items, item discrimination parameters were

randomly sampled from 0.5 or 1.0, item difficulty parameters were randomly sampled from

N(0,1), and item guessing parameters were fixed to 0.2.

The ability distributions of the reference and focal groups were also manipulated in this

study. The ability distribution of the reference group was modeled as N (0, 1), and the ability

distribution of the focal group was modeled as either N (0, 1) or N(� 1, 1). These equal and

unequal ability distributions across reference and focal groups were selected to reflect actual

data encountered in practice and have been used in many other studies (Fidalgo et al., 2004;

Zwick, 2012).

Results

The statistical power and type I error rate of the LR procedures based on four different inferen-

tial methods were calculated for each of the 72 simulation conditions. Tables 2 and 3 show the

results for uniform and non-uniform DIF, respectively. In each table, the other simulation con-

ditions, which are the sample size in reference (nR) and focal (nF) groups, effect size of DIF

(effect size), and mean of the focal group (focal mean), are shown in the first four columns of

the tables.

Table 1. Item Parameters of the 3PLM for R and F Groups.

DIF type Area aR bR cR aF bF cF

Uniform 0.40 1.25 20.25 0.20 1.25 0.25 0.20
Uniform 0.60 1.25 20.38 0.20 1.25 0.38 0.20
Non-uniform 0.40 1.65 0.00 0.20 0.80 0.00 0.20
Non-uniform 0.60 0.79 0.00 0.20 0.45 0.00 0.20

Note. 3PLM = three-parameter logistic model; R = reference; F = focal; DIF = differential item functioning; a = discrimination

parameter; b = difficulty parameter; c = guessing parameter.
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The type I error rate was calculated as the proportion of the replications that showed DIF

when the effect size of DIF is zero. Bradley (1978) suggested liberal, moderate, and strict cri-

teria of robustness. In Tables 2 and 3, the value of the type I error marked with *, **, and ***
indicates that the type I error rate is liberally [0.025, 0.075], moderately [0.040, 0.060], and

strictly [0.045, 0.055] robust based on the robustness criteria suggested by Bradley. All the four

methods show strictly robust type I error rate in most of the cases when the sample sizes are

1,000 (nR = 500 and nF = 500). For sample sizes of less than 1,000, there seems to be no clear

pattern in the results of type I error except that the test statistic proposed by Swaminathan and

Table 2. Statistical Power and Type I Error Rate of Different Inferential Methods for Uniform DIF.

nR nF Effect size Focal mean S&R LRT PLRT BLRT1 BLRT2

50 50 0.0 0 0.038* 0.050*** 0.045*** 0.047*** 0.048***
150 50 0.0 0 0.030* 0.041** 0.038* 0.036* 0.041**
100 100 0.0 0 0.038* 0.049*** 0.042** 0.045*** 0.048***
450 50 0.0 0 0.041** 0.056** 0.050*** 0.049*** 0.050***
250 250 0.0 0 0.052*** 0.056** 0.053*** 0.057** 0.056**
500 500 0.0 0 0.048*** 0.048*** 0.048*** 0.049*** 0.051***
50 50 0.4 0 0.119 0.144 0.133 0.134 0.141
150 50 0.4 0 0.182 0.190 0.186 0.179 0.185
100 100 0.4 0 0.228 0.247 0.231 0.233 0.239
250 250 0.4 0 0.552 0.559 0.554 0.552 0.554
450 50 0.4 0 0.219 0.231 0.233 0.217 0.228
500 500 0.4 0 0.841 0.843 0.841 0.840 0.841
50 50 0.6 0 0.252 0.310 0.277 0.282 0.302
150 50 0.6 0 0.413 0.420 0.421 0.401 0.403
100 100 0.6 0 0.535 0.552 0.544 0.537 0.547
450 50 0.6 0 0.529 0.513 0.538 0.492 0.510
250 250 0.6 0 0.930 0.937 0.932 0.935 0.935
500 500 0.6 0 0.999 0.999 0.999 0.999 0.999
50 50 0.0 21 0.039* 0.055*** 0.044** 0.051*** 0.043**
150 50 0.0 21 0.044** 0.053*** 0.049*** 0.051*** 0.052***
100 100 0.0 21 0.041** 0.053*** 0.047*** 0.048*** 0.045***
450 50 0.0 21 0.034* 0.041** 0.037* 0.037* 0.040**
250 250 0.0 21 0.064* 0.067* 0.064* 0.061* 0.058**
500 500 0.0 21 0.055*** 0.059** 0.054*** 0.058** 0.054***
50 50 0.4 21 0.110 0.125 0.117 0.108 0.118
150 50 0.4 21 0.151 0.159 0.158 0.153 0.155
100 100 0.4 21 0.241 0.249 0.240 0.231 0.242
450 50 0.4 21 0.196 0.212 0.211 0.196 0.209
250 250 0.4 21 0.514 0.511 0.514 0.501 0.504
500 500 0.4 21 0.791 0.802 0.800 0.793 0.800
50 50 0.6 21 0.244 0.268 0.257 0.248 0.256
150 50 0.6 21 0.365 0.372 0.372 0.353 0.368
100 100 0.6 21 0.503 0.504 0.504 0.493 0.497
450 50 0.6 21 0.416 0.417 0.422 0.396 0.411
250 250 0.6 21 0.875 0.877 0.875 0.868 0.870
500 500 0.6 21 0.991 0.991 0.991 0.991 0.991

Note. nR and nF represent sample sizes in reference and focal groups, respectively. S&R represents the test statistic

proposed by Swaminathan and Rogers (1990). BLRT1 and BLRT2 used bootstrap samples of size 1,000 and 10,000,

respectively. The *, **, and *** represent liberally [0.025, 0.075], moderately [0.040, 0.060], and strictly [0.045,

0.055] robust type I error (Bradley, 1978). The number highlighted with bold font represents the highest statistical

power within each simulation condition. DIF = differential item functioning; S&R = Swaminathan & Rogers; LRT =

likelihood ratio test; PLRT = penalized likelihood ratio test; BLRT = bootstrap likelihood ratio test.

Lee 37



Rogers (1990; S&R) seems to show less robust type I error rate than other methods. The robust-

ness of the type I error rate seems to be similar in the LRT, PLRT, and BLRT across different

simulation conditions.

The statistical power was calculated as the proportion of the replications that showed DIF

when the effect sizes of DIF are 0.4 and 0.6. In Tables 2 and 3, the numbers highlighted with

bold font represent the highest statistical power within each simulation condition. Similar to the

case of the type I error, all the four methods yield similar statistical power when the sample

sizes are 1,000 (nR = 500 and nF = 500). For sample sizes of less than 1,000, the LRT shows

Table 3. Statistical Power and Type I Error Rate of Different Inferential Methods for Non-Uniform DIF.

nR nF Effect size Focal mean S&R LRT PLRT BLRT1 BLRT2

50 50 0.0 0 0.029* 0.043** 0.033* 0.042** 0.044**
150 50 0.0 0 0.042** 0.053*** 0.047*** 0.045*** 0.048***
100 100 0.0 0 0.057** 0.062* 0.060** 0.061* 0.058**
450 50 0.0 0 0.032* 0.050*** 0.045*** 0.047*** 0.056 **
250 250 0.0 0 0.039* 0.040** 0.040** 0.041** 0.044**
500 500 0.0 0 0.053*** 0.053*** 0.053*** 0.053*** 0.052***
50 50 0.4 0 0.053 0.072 0.062 0.064 0.068
150 50 0.4 0 0.083 0.094 0.089 0.082 0.090
100 100 0.4 0 0.103 0.110 0.108 0.106 0.106
450 50 0.4 0 0.092 0.099 0.104 0.093 0.096
250 250 0.4 0 0.141 0.149 0.144 0.146 0.146
500 500 0.4 0 0.291 0.298 0.293 0.290 0.293
50 50 0.6 0 0.064 0.107 0.079 0.093 0.103
150 50 0.6 0 0.151 0.150 0.156 0.141 0.150
100 100 0.6 0 0.172 0.200 0.189 0.195 0.194
450 50 0.6 0 0.225 0.235 0.211 0.197 0.209
250 250 0.6 0 0.457 0.470 0.463 0.464 0.467
500 500 0.6 0 0.734 0.739 0.736 0.732 0.735
50 50 0.0 21 0.045*** 0.060** 0.052*** 0.053*** 0.054***
150 50 0.0 21 0.046*** 0.053*** 0.051*** 0.049*** 0.052***
100 100 0.0 21 0.047*** 0.054*** 0.052*** 0.051*** 0.052***
450 50 0.0 21 0.041** 0.049*** 0.048*** 0.042** 0.043**
250 250 0.0 21 0.046*** 0.053*** 0.049*** 0.053*** 0.054***
500 500 0.0 21 0.054*** 0.056** 0.054*** 0.052*** 0.053***
50 50 0.4 21 0.062 0.080 0.071 0.072 0.078
150 50 0.4 21 0.112 0.125 0.117 0.117 0.122
100 100 0.4 21 0.099 0.112 0.101 0.108 0.110
450 50 0.4 21 0.119 0.125 0.127 0.120 0.121
250 250 0.4 21 0.164 0.171 0.166 0.169 0.169
500 500 0.4 21 0.326 0.334 0.328 0.321 0.328
50 50 0.6 21 0.098 0.137 0.114 0.120 0.125
150 50 0.6 21 0.192 0.195 0.195 0.184 0.190
100 100 0.6 21 0.198 0.232 0.209 0.213 0.219
450 50 0.6 21 0.274 0.289 0.288 0.259 0.274
250 250 0.6 21 0.514 0.533 0.517 0.527 0.530
500 500 0.6 21 0.805 0.813 0.809 0.806 0.811

Note. nR and nF represent sample sizes in reference and focal groups, respectively. S&R represents the test statistic

proposed by Swaminathan and Rogers (1990). BLRT1 and BLRT2 used bootstrap samples of size 1,000 and 10,000,

respectively. The *, **, and *** represent liberally [0.025, 0.075], moderately [0.040, 0.060], and strictly [0.045,

0.055] robust type I error (Bradley, 1978). The number highlighted with bold font represents the highest statistical

power within each simulation condition. DIF = differential item functioning; S&R = Swaminathan & Rogers; LRT =

likelihood ratio test; PLRT = penalized likelihood ratio test; BLRT = bootstrap likelihood ratio test.
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the highest statistical power in most of the cases. For the BLRT, the BLRT with 10,000 boot-

strap samples show slight higher performance than the BLRT with 1,000 bootstrap samples.

In addition to the comparisons among the four methods, several patterns can be identified

across different simulation conditions in Tables 2 and 3. The statistical power of uniform DIF

tests is higher than that of non-uniform DIF tests. The ability distributions of reference and focal

groups seem to oppositely influence the statistical power in uniform and non-uniform DIF. In

uniform DIF, the statistical power seems to be slightly higher when the ability distributions are

the same, whereas in non-uniform DIF, the statistical power seems to be slightly higher when

the ability distributions are different. Given the same sample size, the cases with the balanced

sample sizes across reference and focal groups (nR = nF = 100 or 250) show higher statistical

power than the unbalanced cases.

In Figure 1, the histograms and chi-square Q-Q plots of the LRT statistics calculated from

the 10,000 bootstrap samples (i.e., empirical sampling distributions) are presented to compare

the empirical and asymptotic sampling distributions for the sample sizes of nR = nF = 50 and

nR = nF = 500. The histograms of the empirical sampling distributions appear to match well with

the theoretical chi-square distribution with two degrees of freedom. However, the chi-square Q-

Q plots reveal that, when the theoretical quantiles are large, sample quantiles are slightly greater

than the theoretical quantiles, which suggests that the empirical sampling distributions have

slightly thicker right tails than the theoretical chi-square distributions.

Discussion

The ML estimates are only asymptotically unbiased and normally distributed. Therefore, there

have been concerns about testing DIF using the LR procedure based on the asymptotic proper-

ties of the ML estimates when sample sizes are small (Rogers & Swaminathan, 1993;

Swaminathan & Rogers, 1990). Because the null hypothesis of the DIF test in the LR procedure

involves the regression coefficients from the LR, the potential finite sample bias of the ML esti-

mates may degrade the performance of the LR procedure in small samples. Moreover, the

potential deviation of the true sampling distribution from the assumed asymptotic chi-square

distribution also may degrade the performance of the LR procedure. This study examined

whether the LR procedure based on the asymptotic properties of the ML estimates still pro-

duces satisfactory statistical power and type I error in small samples, and also whether the LR

procedures based on the PLRT or BLRT may be considered as alternatives.

The simulation results in this study indicate that the LRT, in which the LRT statistic compar-

ing two likelihoods from the ML estimation is tested using the asymptotic chi-square distribu-

tion with two degrees of freedom, show slightly better performance than other methods in terms

of the statistical power although the difference in performance seems not to be so significant for

practical purposes. The robustness of the type I error rate seems to be similar in the LRT,

PLRT, and BLRT. According to the results, it seems that the LR procedure based on the asymp-

totic properties of the ML estimation still works well even in small samples, and therefore, the

LR procedure based on the PLRT and BLRT may not need to be considered as alternative.

At this point, it may be worthwhile to discuss why the LR procedures based on the PLRT

and BLRT show slightly lower performance in spite of the advantages that the PML may reduce

the finite sample bias and the bootstrap method may capture the potential deviation of the true

sampling distribution in small samples. The PML originally was developed to remove the first-

order term from the asymptotic bias of the ML estimates by modifying the scoring function

(Firth, 1993). However, there exists the trade-off between the bias and variance in resulting

PML estimates (Fan & Tang, 2013). Firth (1993) pointed out that the merit of bias reduction in

any particular problem needs to be compared with any sacrifice in precision that might result.
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In our specific problem, it seems that the merit of reducing bias of the PLM estimates is not

appreciable compared with the sacrifice in precision.

However, the bootstrap hypothesis tests are often very reliable in many cases (Davidson &

MacKinnon, 1999; Nylund et al., 2007; Park, 2003). However, this is not true in every case. As

Davidson and MacKinnon (2007) pointed out, when the results from the bootstrap hypothesis

test and asymptotic test are similar, we can be fairly confident that the asymptotic test is reason-

ably accurate. In such a case, it might be more reasonable to use the asymptotic test considering

the computational cost for the bootstrap hypothesis test. Figure 1 shows the similarity in the

Figure 1. Histograms and chi-square Quantile-Quantile (Q-Q) plots.
Note. These histograms and chi-square Q-Q plots for nR = nF = 50 and nR = nF = 500 are presented to demonstrate

the discrepancy between theoretical chi-square distributions with the degrees of freedom of 2 and empirical bootstrap

sampling distributions. The histograms of the LRT statistics calculated from the 10,000 bootstrap samples appear to

match well with the theoretical chi-square distributions represented by solid lines in figures. However, chi-square Q-Q

plots show that, when the theoretical quantiles are large, sample quantiles are slightly greater than the theoretical

quantiles, which suggests that the empirical bootstrap sampling distributions have slightly thicker right tails compared

with the theoretical chi-square distributions. LRT = likelihood ratio test.
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sampling distributions of the asymptotic test and the bootstrap hypothesis test in our specific

problem. Although the empirical sampling distributions constructed from the bootstrap samples

seem to have slightly thicker right tails compared with the theoretical chi-square distributions,

the two distributions appear to be similar for practical purposes. The discrepancy between the

two distributions seems to decrease with the increasing sample sizes according to the chi-square

Q-Q plots in Figure 1. This result is reasonable because the asymptotic assumptions should work

well in large samples.

One of the factors that can influence the performance of the bootstrap hypothesis tests is the

size of the bootstrap samples. It is known that the smaller is the size of the bootstrap samples,

the less powerful is the test (Jockel, 1986). The simulation result in this study also shows that

the performance of the bootstrap hypothesis test with the bootstrap sample sizes of 10,000 was

slightly better than the one with the bootstrap sample sizes of 1,000 in terms of the statistical

power. Another factor that can influence the performance of the bootstrap hypothesis tests is the

data generation process for the bootstrap samples (MacKinnon, 2009). In this study, the original

data were generated using the 3PLM in the IRT, whereas the bootstrap samples were generated

using the LR equation with the coefficients satisfying the null hypothesis. The slightly lower

performance of the BLRT may be due to this discrepancy in the data generation process. This

study only tested a single data generation process and different data generation processes may

yield different results, which could be the limitation of this study. However, considering the

similarity in the sampling distributions of the asymptotic test and the bootstrap hypothesis test

shown in Figure 1, it is expected that different data generation processes may not significantly

change the results of this study.

In all, the LR procedure based on the asymptotic LRT seems to work well even in small

samples. Although the results from the PLRT and BLRT were similar with the results from the

asymptotic method in this study, the PLM and bootstrap method have outperformed the asymp-

totic method in the cases where the asymptotic assumptions are suspect. Therefore, investigat-

ing the applicability of the PLM and bootstrap method for such a case would be very interesting

topics for future research in the area of measurements.
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Note

1. In this study, the penalized likelihood ratio test (PLRT) was conducted using the logistf() function in

the logistf R package. The Firth’s penalized likelihood estimation is also available by using PROC

LOGISTIC with firth option in SAS software package and FIRTHLOGIT module in Stata software

package. The bootstrap likelihood ratio test (BLRT) was conducted using the author-written R code,

which is available upon request from the corresponding author.
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