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Abstract

Although person-fit analysis has a long-standing tradition within item response theory, it has
been applied in combination with dominance response models almost exclusively. In this article,
a popular log likelihood-based parametric person-fit statistic under the framework of the gener-
alized graded unfolding model is used. Results from a simulation study indicate that the person-
fit statistic performed relatively well in detecting midpoint response style patterns and not so
well in detecting extreme response style patterns.
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One of the goals of Item Response Theory (IRT) is to measure a latent variable for a set of sub-

jects, based on the observed scores on a set of items. The positions of both the items and the

subjects on the latent variable are assessed, thus providing users with rich information about

the standing of the subjects on the latent variable of interest. IRT models are nowadays used in

various applied settings, ranging from cognitive to psychological and personality measurement.

The most common unidimensional IRT models used, such as the 1-, 2-, and 3-parameter

logistic models for dichotomous data (e.g., Embretson & Reise, 2000), are based on cumulative

item response functions (IRFs). Cumulative IRFs imply that the probability of answering an

item correctly (or of endorsing it) is expected to increase as the score on the latent variable

increases. This model assumption is suitable, for example, in cognitive measurement, in which

increasing knowledge is expected to be associated with a higher probability of answering an

item correctly. Coombs (1964) referred to this underlying response process as being dominant.

There are, however, other settings where dominant models are not necessarily optimal.

Measuring latent person characteristics such as preferences and attitudes provides two examples

(e.g., Drasgow, Chernyshenko, & Stark, 2010; Hoijtink, 1993). The ideal point response pro-

cess described by Coombs (1964) presented an alternative model approach in these settings. An

ideal point process is based on the idea of a person endorsing an item to the extent that the per-

son’s opinion is close to the item’s statement (Thurstone, 1928, 1929). Hence, what determines

the probability of a person endorsing an item is the relative distance between the score of this

1University of Groningen, Groningen, The Netherlands

Corresponding Author:

Jorge N. Tendeiro, Department Psychometrics and Statistics, Faculty of Behavioural and Social Sciences, University of

Groningen, Grote Kruisstraat 2/1, 9712 TS Groningen, The Netherlands.

Email: j.n.tendeiro@rug.nl



person on the latent variable (say, un for person n) and the item’s standing on the latent variable

(say, di for item i). As such, IRFs may peak at the value of the latent variable where un = di,

and the probability of endorsing the item may decrease as the latent score is further from di in

either direction. The so-called unfolding response models (Coombs, 1964) take the proximity

between the persons and items into account and therefore allow for peaked IRFs.

Research concerning dominant models by far overwhelms that of unfolding models mostly

because of the huge impact of the work of Rensis Likert (1932), but this state of affairs is not a

settled issue (see the focal article by Drasgow et al., 2010 and the following replies for a very

interesting discussion). Some of the most notorious IRT unfolding models available for either

dichotomous or polytomous data include the logistic models of DeSarbo and Hoffman (1986),

the squared simple logistic model (Andrich, 1988), the PARELLA model (Hoijtink, 1990,

1991), the (generalized) hyperbolic cosine model (Andrich, 1996; Andrich & Luo, 1993), and

the generalized graded unfolding model (GGUM; Roberts & Laughlin, 1996; Roberts,

Donoghue, & Laughlin, 2000). In this article, the author focuses on the GGUM (Roberts et al.,

2000; Roberts & Laughlin, 1996). The GGUM is suitable for both dichotomous and polyto-

mous data. Moreover, it also became popular due to available dedicated software (GGUM,

Roberts, Fang, Cui, & Wang, 2006; see also Markov Chain Monte Carlo [MCMC] GGUM,

Wang, de la Torre, & Drasgow, 2015).

The goal of this article is to adapt a popular polytomous person-fit statistic to the GGUM.

Person-fit analysis comprises a broad set of statistical procedures aimed at detecting item

response patterns that deviate from what would be expected based on the fitted model or on the

groups of respondents. These atypical response patterns are often referred to as being aberrant

or misfitting. An aberrant response pattern typically reflects idiosyncratic response behavior

(such as guessing, carelessness, or sleepiness; Meijer, 1996). A latent trait estimate based on an

aberrant response pattern may not accurately reflect the person’s true standing on the latent

variable. Therefore, detecting this type of response patterns is an important step toward assuring

the validity and the fairness of results. The importance of person-fit analysis is also recognized

by the International Test Commission (2013).

To the author’s knowledge, there is no research on person-fit analysis with the popular

GGUM. This article intends to start filling in this gap. The focus is on the popular l�z person-fit

statistic (Drasgow, Levine, & Williams, 1985; Snijders, 2001) and, in particular, on its recent

extension to polytomous items (Sinharay, 2015). Henceforth, the latter shall be referred as the

l�z(p) person-fit statistic. The l�z(p) statistic is based on the well-known standardized log likelihood

statistic introduced by Drasgow et al. (1985), which has a long-standing relevance in person-fit

research.

This article is organized as follows. In the next section, the details of both the GGUM and

the l�z(p) person-fit statistic are introduced. Then, the details of a simulation study that was con-

ducted to study the performance of l�z(p) under the framework of the GGUM are presented. The

goal of this study is to understand how the Type I error and detection rates vary across several

conditions. In particular, how the aberrant behavior was operationalized is explained. The

‘‘Results’’ section summarizes the relevant findings from the simulation study. Finally, some

conclusions and new possible research directions are discussed.

The GGUM

Let Zi denote a random variable consisting of the score on item i (i = 1, . . . , I), with possible

observable response categories z = 0, 1, . . . , Ci. Ci equals 1 if item i is dichotomous and is larger

than 1 if the item is polytomous. For simplicity, assume that the number of item response cate-

gories is the same across all items, so Ci = C for all items. Score z = 0 corresponds to the
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strongest level of disagreement with the item’s statement, and z = C corresponds to the strongest

level of agreement with the item’s statement. As noted before, denote the location of person n

(n = 1, . . . , N ) on the latent variable by un. The GGUM (Roberts et al., 2000) is given by the

following equation:

P Zi = zjunð Þ= f zð Þ+ f M � zð ÞPC
w = 0

f wð Þ+ f M � wð Þ½ �
, ð1Þ

where

f wð Þ = exp ai w un � dið Þ �
Xw

k = 0

tik

" #( )
: ð2Þ

In Equation 1, M = 2C + 1. For item i, ai is the discrimination parameter, di is the location

parameter, and tik (k = 0, . . . , M) are the threshold parameters. Parameter ti0 is arbitrarily con-

strained to zero, and parameters tik (k = 1, . . . , M) are typically constrained such that

ti C + 1ð Þ = 0 and tiz = � ti M�z + 1ð Þ for z = 1, . . . , C, ð3Þ

which implies that
Pz

k = 0 tik =
PM�z

k = 0 tik , z = 0, . . . , C.

The GGUM is a divide-by-total model (Thissen & Steinberg, 1986). See Roberts et al.

(2000) for more details on how the GGUM has been derived and on the interpretation of each

model parameter. The GGUM is suitable for modeling the probability of endorsing an item

based on the relative distance between a person’s location (un, n = 1, . . . , N ) and the item’s

location (di, i = 1, . . . , I): The smaller the distance between un and di, the larger the probability

given by Equation 1.

Figure 1 shows an example of the GGUM for a polytomously scored item with four observa-

ble response categories (‘‘strongly against,’’ ‘‘against,’’ ‘‘in favor,’’ ‘‘strongly in favor’’), thus

C = 3. The expected value of an observable response conditional on u has also been superim-

posed (solid curve). As it can be readily seen, the curve of the expected value is peaked around

0, a consequence of the GGUM being based on the relative differences between the standing of

the persons and the item.

The lz Person-Fit Statistic

Drasgow et al. (1985) introduced the most well-known person-fit statistic in use, usually

referred to as the lz statistic. The fact that lz can be used for either dichotomous or polytomous

items, as well as its purported asymptotic standard normal distribution (more about this below),

partly explains the popularity that this person-fit statistic has enjoyed. The lz statistic is based

on the standardized log likelihood of a response vector X = (X1, X2, . . . , XI ). Denoting the prob-

ability P(Zi = zju) by Piz(u) (Drasgow et al., 1985),

lz =
l0 uð Þ � E l0ð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Var l0ð Þ
p , ð4Þ

where

l0 uð Þ= log L uð Þð Þ, ð5Þ
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L uð Þ=
YI

i = 1

XC

z = 0

gizPiz uð Þ, ð6Þ

E l0 uð Þð Þ =
XI

i = 1

XC

z = 0

Piz uð Þ log Piz uð Þð Þ, ð7Þ

and

Var l0 uð Þð Þ=
XI

i = 1

XC

z1 = 0

XC

z2 = 0

Piz1
uð ÞPiz2

uð Þ log Piz1
uð Þð Þ log Piz1

uð Þ=Piz2
uð Þð Þ: ð8Þ

Variable giz is an indicator variable such that giz = 1 if Xi = z and 0 otherwise. In Equation 8, z1

and z2 denote the usual observable response categories (ranging between 0 and C). Small values

of lz (say, below a prespecified threshold or cutoff value) are indicative of misfitting item

response patterns.

The claim that lz is asymptotically standard normally distributed is only valid when true per-

son parameters u are used in the computations. However, in most practical applications, one

only has access to estimated person parameters, say û. In this case, it is well known that the

asymptotic distribution of lz deviates from the standard normal distribution (Molenaar &

Hoijtink, 1990; Nering, 1995, 1997; Reise, 1995). Snijders (2001) proposed a modified version

of lz, known as the l�z statistic, that introduced a correction which resets the asymptotic distribu-

tion to be standard normal even when sample estimates of person parameters are used. Snijder’s

Figure 1. GGUM for an item with four observable response curves (from ‘‘strongly against’’ through
‘‘strongly in favor’’).
Note. The item’s expected value conditional on u is also shown (solid curve). The item parameters are ai = di = 1,

tik = �3, �1:5, �:6, 0, :6, 1:5, 3. GGUM = generalized graded unfolding model.
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correction applies only to dichotomously scored items. Recently, Sinharay (2015) generalized

Snijders’ correction to polytomous items (and to mixed-format tests in general), which is the

l�z(p) statistic.

The goal of this study was to understand how the l�z(p) statistic works in combination with

the GGUM. The outcome was not clear to us beforehand, as there is no previous work on this

topic (to the best of our knowledge). The author wanted to study Type I error rates as well as

the power to detect aberrant response patterns under varying conditions. To this effect, a simu-

lation study was carried out, the details of which are discussed next.

Simulation Study

Four factors were manipulated: Scale length (factor I with four levels: I = 10, 20, 40, 100), the

proportion of aberrant items (factor AbI with three levels: AbI = :10, :20, :25), the proportion of

aberrant simulees (factor AbN with three levels: AbN = :05, :10, :20), and the number of obser-

vable response categories (factor C with three levels: C = 3, 5, 7, thus corresponding to 4, 6, and

8 observable response categories, respectively). Thus, in total, the simulation study consisted of

108 conditions. One hundred datasets were generated per condition, based on a fixed sample

size of N = 1, 000 simulees per dataset.

The generation of model-fitting data closely followed previous research based on the

GGUM (Roberts, Donoghue, & Laughlin, 2002; Tay, Ali, Drasgow, & Williams, 2011; Wang,

Tay, & Drasgow, 2013). Item scores were randomly drawn from multinomial distributions

based on the conditional probabilities given by Equation 1. For each replicated dataset, true a

parameters were randomly drawn from a uniform distribution in the interval (0:5, 2:0). True d

parameters were randomly drawn from the standard normal distribution truncated between

22.0 and 2.0.1 True person parameters u were randomly drawn from the standard normal distri-

bution. Finally, the true tiC parameter was randomly drawn from a uniform distribution in the

interval (�1, �:4), and the remaining threshold parameters were recursively generated by

means of the following equation:

ti k�1ð Þ = tik � 0:25 + ei k�1ð Þ, for k = C, C �1, . . . , 2, ð9Þ

where ei(k�1) is an error term randomly drawn from a N(0, 0:04) distribution.

Two types of responding styles (i.e., systematic tendencies to respond to rating scales inde-

pendently of the content; Paulhus, 1991) were considered in this study. Extreme responding

style (ERS) is based on the person’s propensity to choose extreme answer options (coded 0 or

C), and midpoint responding style (MRS) is based on the person’s propensity to choose middle

answer options (say, between floor (C=2) and ceiling (C=2) for C = 3, 5, 7, as in this simulation

study). These responding styles have been a topic of interest on a wide range of fields, such as

marketing (e.g., Peterson, Rhi-Perez, & Albaum, 2014), selection (e.g., Levashina, Weekley,

Roulin, & Hauck, 2014), or clinical psychology (e.g., Forand & DeRubeis, 2014), among others

(Kieruj & Moors, 2010; von Davier & Khorramdel, 2013; Worthy, 1969). The author decided

to focus on these two types of responding style for simplicity, although other options would

also be possible (e.g., acquiescence, disacquiescence, varying response range, or noncontingent

responding; Baumgartner & Steenkamp, 2001).

For each replication in a condition, aberrantly responding simulees were randomly selected

from the sample of N simulees available. A proportion AbI of item scores was generated to

mimic ERS for half of the aberrantly responding simulees (N3AbN)=2, while for the other half

a proportion AbI of item scores was generated to mimic MRS. Also, the subset of items whose

scores were generated to reflect either ERS or MRS was randomly selected from the total set of

48 Applied Psychological Measurement 41(1)



items for each simulee. To simulate ERS, midpoint response categories were randomly selected

from each response vector, and the scores were changed to the corresponding extreme answer

option with probability 1. To simulate MRS, extreme response categories were randomly

selected, and the scores were changed to the corresponding midpoint answer option with prob-

ability 1. Table 1 summarizes this procedure.

The entire simulation study can be summarized in seven steps: (a) generate GGUM-fitting

data, (b) generate GGUM-misfitting data (ERS and MRS) for adequate proportions of persons

and items, (c) estimate item and person parameters, (d) control the quality of the estimated para-

meters, (e) look at model fit, (f) compute l�z(p) for each simulee and decide which simulees to flag

as displaying aberrant responding style, and (g) evaluate Type I error and detection rates. Step 3

was performed for the datasets without any aberrant item score (after Step 1) and with aberrant

item scores (after Step 2). The goal was to compare both sets of parameter estimates to assess

the impact of the operationalization of both ERS and MRS. The author hoped this impact would

be small, otherwise the performance of the l�z(p) statistic might have been overly affected by the

incidence of aberrant responding style in the data (see St-Onge, Valois, Abdous, & Germain,

2011, for an interesting discussion about this problem in a different context). Below, perfect

model-fitting data are generically referred to as ‘‘Datafit’’ and data that included misfitting score

patterns as ‘‘Datamisfit.’’

In Step 4, the estimated parameters based on Datafit and based on Datamisfit are compared

with the true parameters. The author looked at the bias (BIAS =
PT

t = 1 (ĝt � gTRUE
t )=T ), the

mean absolute deviation (MAD =
PT

t = 1 jĝt � gTRUE
t j=T ), and the correlation (COR =

cor(ĝt, gTRUE
t ), t = 1, . . . , T ) between true and estimated parameters, for each set of estimated

parameters fĝtg, across conditions. Here, gt stands for any of GGUM’s parameters (ai,di,tik ,

and un) and T is the corresponding number of parameters (I, I, I3C, and N, respectively).

Moreover, ANOVA models were fitted based on four factors: The number of items I, the num-

ber of answer options C, the proportion of aberrant item scores AbI, and the proportion of simu-

lees providing aberrant item scores AbN. The goal was to understand the strength and direction

of each effect on the BIAS, MAD, and COR, and to make sure that the effects were comparable

across the two types of datasets (including and excluding aberrant response patterns).

In Step 5, the INFIT (weighted mean square error) and the OUTFIT (unweighted mean

square error) statistics (Wright & Masters, 1982, 1990) were computed, as originally suggested

by Roberts et al. (2000). Denote the score of person n (n = 1, . . . , N) on item i (i = 1, . . . , I) by

zni. Using Equation 1, the expected value and the variance of zni are, respectively, computed as

Eni =
XC

z = 0

zPiz unð Þ and Vni =
XC

z = 0

z� Enið Þ2Piz unð Þ: ð10Þ

The formulas for INFIT and OUTFIT for item i are then given by

OUTFITi =
1

N

XN

n = 1

zni � Eniffiffiffiffiffiffi
Vni

p
� �2

, INFITi =

PN
n = 1

zni � Enið Þ2

PN
n = 1

Vni

: ð11Þ

Under the null hypothesis of model fit, both test statistics are chi-square distributed with N

degrees of freedom. Furthermore, the adjusted x2 degrees of freedom ratios (x2=df ;

Chernyshenko, Stark, Chan, Drasgow, & Williams, 2001; Drasgow, Levine, Tsien, Williams, &

Mead, 1995; LaHuis, Clark, & O’Brien, 2011) were also computed. These chi-square statistics
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are based on expected frequencies that depend on the estimated item parameters and the distri-

bution of u. The formula for the unadjusted statistic for item i is

x2
i =
XC

z = 0

Oiz � ~Eiz

� �2

~Eiz

, with ~Eiz = N

ð
Piz uð Þf uð Þdu, ð12Þ

where Oiz is the observed frequency of endorsing answer option z for item i, and f(u) denotes

the standard normal density. The x2 tests of Equation 12 apply to single items (also referred to

as ‘‘singlets’’). Drasgow et al. (1995) advised generalizing the procedure above to doublets (i.e.,

pairs) and triplets of items to better evaluate model (mis)fit. The procedure requires choosing

subsets of suitable doublets and triplets based on the items’ difficulty, as the total number of

options increases rapidly as the number of items increases (see Drasgow et al., 1995, and the

MODFIT program for more details; Stark, 2001). Finally, the x2 statistics of Equation 12 are

adjusted to a sample size of 3,000 (Drasgow et al., 1995; LaHuis et al., 2011) by means of the

formula

x2
i =df =

3, 000 x2
i � df

� �
N

+ df , ð13Þ

where df is the adequate number of degrees of freedom (dependent on the number of singlets/

doublets/triplets). The common heuristic used is that values of x2=dfs larger than 3 are indica-

tive of model misfit. In this simulation, the integral in Equation 12 (and its natural generaliza-

tion to doublets and triplets) was evaluated by numerical quadrature using 61 equally spaced

points between 23 and + 3. After analyzing the results of INFIT, OUTFIT, and MODFIT, the

author hoped to find as least misfitting items as possible.

The value of l�z(p) was computed for each simulee in Step 6.2 It was necessary to estimate a

cutoff value for l�z(p) to have a decision rule to flag each response pattern as either aberrant or

not. Some preliminary analyses indicated that the nominal cutoff value derived from the stan-

dard normal distribution, which is valid only asymptotically, was not appropriate for the num-

ber of items that were considered in this simulation, possibly except for I = 100. Further details

concerning this issue will be presented in the ‘‘Results’’ section, based on the data generated

for this study. Instead of using nominal cutoff values, person-based cutoff values (e.g., de la

Torre & Deng, 2008; Sinharay, 2016; van Krimpen-Stoop & Meijer, 1999) were estimated as

follows. For each simulee in each dataset, 100 GGUM-fitting item response patterns were gen-

erated based on the model parameters that were estimated from Datamisfit and on the person’s

estimated u. The values of l�z(p) were computed for these perfectly fitting response patterns, and

Table 1. Operationalization of ERS and MRS.

Observable response categories ERS MRS

C = 3: 0, 1, 2, 3 1! 0 0! 1
2! 3 3! 2

C = 5: 0, 1, 2, 3, 4, 5 2! 0 0! 2
3! 5 5! 3

C = 7: 0, 1, 2, 3, 4, 5, 6, 7 3! 0 0! 3
4! 7 7! 4

Note. ERS = extreme responding style; MRS = midpoint responding style.
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the cutoff value was estimated by the 5% quantile of this distribution. The Type I error rate in

Step 7 was computed as the sample proportion of ‘‘normal’’ simulees with an associated l�z(p)

value smaller than the estimated cutoff value. The detection rate of ERS (MRS) was computed

as the sample proportion of ERS (MRS) simulees with an associated l�z(p) value smaller than the

estimated cutoff value.

The parameters of the GGUM were estimated using the marginal maximum likelihood

(MML) algorithm of Roberts et al. (2000). All the code, including the MML algorithm used to

estimate the GGUM parameters, the model fit statistics, and the l�z(p) person-fit statistic, was

written in R (R Core Team, 2016).

Results

Model Fit

Table 2 summarizes the results concerning the BIAS, MAD, and COR measures, averaged

across all conditions and replications. First, all sets of estimated parameters were always strongly

linearly related to the true values (typically correlations above .94). For both the location and the

person parameters, the estimated parameters based on data including misfitting item response

patterns (d̂misfit and ûmisfit, respectively) and based on model-fitting data (d̂fit and ûfit, resp.) were

very close. For example, the absolute differences in BIAS or MAD between d̂fit and d̂misfit and

between ûfit and ûmisfit were at most 0.1 in more than 97% replications across all conditions.

Moreover, d̂ and û were on average unbiased based on either Datafit or Datamisfit. Furthermore,

the BIAS and the MAD of the u estimates were compared based on Datamisfit between the ‘‘nor-

mal’’ and the ‘‘aberrant’’ simulees to make sure that this operationalization of aberrant behavior

did not systematically bias the estimation of u for the aberrant simulees. The author found that

differences in BIAS were very small (between 20.02 and 0.01 across replications). In terms of

MAD, the MAD of the u estimates of the aberrant simulees were typically larger (mean differ-

ence of 0.04), and the MAD did increase with the proportion of misfitting items, AbI. However,

these differences were relatively small (all mean differences in MAD were smaller than 0.15).

On the contrary, Table 2 also shows that the estimation of the discrimination parameters a

and the threshold parameters t from Datamisfit was affected by factors AbI and AbN (the larger

the AbI and AbN, the worse the BIAS and MAD values). Also, estimates âMisfit were slightly

underestimated on average. However, the absolute differences in BIAS or MAD between âFit

and âMisfit and between t̂Fit and t̂Misfit were at most 0.2 in more than 96% replications across all

conditions.

In terms of model fit for the datasets that include aberrant item score patterns, INFIT flagged

5% or more of the items of a dataset as misfitting on 0.6% of all replications, so it was very

conservative. OUTFIT flagged 5% or more of the items of a dataset as misfitting on 6.4% of all

replications, which is slightly above the nominal 5% significance level used in the analyses. In

particular, OUTFIT was affected by increasing proportions of aberrant simulees in the data

(h2 = :26), but the proportion of items flagged as misfitting was still relatively low.

Furthermore, results based on MODFIT showed that no fit issues occurred for small to moder-

ate number of items (I = 10, 20, 40): The percentage of flagged singlets, doublets, and triplets

was lower than 5% in 79 of 81 conditions. However, in the 27 conditions based on I = 100

items, most singlets and doublets were flagged, indicating misfit. The author speculates that

MODFIT may be too sensitive for larger number of items, at least in the GGUM framework.

To check this, the MODFIT results were also looked at based on Datafit, as a term of
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comparison. The author confirmed that, also for the GGUM-fitting data, MODFIT flagged most

singlets and doublets when I = 100, indicating misfit.

Summarizing, the author concludes that operationalization of ERS and MRS did not greatly

distort the estimation of the model parameters, as intended. Moreover, the checks of model fit

based on INFIT, OUTFIT, and MODFIT seem to indicate that the prevalence of misfitting items

was low, with the exception of the datasets based on I = 100, according to MODFIT. The latter

finding might, however, be explained by an unusual sensitivity of MODFIT to larger number of

items, at least under the GGUM framework.

Table 2. Assessing the Quality of the Estimated GGUM Parameters.

Datafit Datamisfit

Parameter BIAS MAD COR BIAS MAD COR

ai

M 20.03 0.09 0.98 20.09 0.12 0.97
SD 0.06 0.03 0.02 0.08 0.06 0.02
R2 0.96 0.80 0.88 0.77

h2
I

0.96 0.80 0.64 0.42

h2
C

0.60 0.02 0.75 0.56

h2
AbI

0.42 0.29

h2
AbN

0.63 0.50

di

M 20.01 0.09 1.00 20.01 0.09 1.00
SD 0.11 0.15 0.03 0.11 0.15 0.04
R2 0.54 0.64 0.54 0.54

h2
I

0.54 0.60 0.53 0.50

h2
C

0.02 0.23 0.02 0.14

h2
AbI

0.01 0.01

h2
AbN

0.01 0.01

tik

M 20.05 0.12 0.94 20.03 0.12 0.93
SD 0.06 0.04 0.03 0.05 0.03 0.04
R2 0.90 0.90 0.78 0.87

h2
I

0.89 0.82 0.74 0.60

h2
C

0.51 0.80 0.08 0.83

h2
AbI

0.15 0.06

h2
AbN

0.29 0.13

un

M 0.00 0.17 0.98 0.00 0.17 0.98
SD 0.07 0.19 0.02 0.07 0.19 0.03
R2 0.03 0.84 0.08 0.86

h2
I

0.02 0.83 0.04 0.86

h2
C

(*) 0.09 (*) 0.13

h2
AbI

0.01 (*)

h2
AbN

0.04 0.01

Note. The mean and standard deviation (SD) values reported are across all conditions and replications. The h2 values

are based on four-way fixed-effects ANOVA models which only include main effects. The star symbol ‘‘(*)’’ denotes

effect sizes smaller than 0.01. GGUM = generalized graded unfolding model; BIAS = bias; MAD = mean absolute

deviation; COR = correlation.
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Cutoff Values

The estimated person-based cutoff values were compared with the (asymptotic) nominal cutoff

value to reinforce the decision of estimating cutoff values in this study. At a 5% significance

value, the nominal cutoff value is equal to 21.64. The estimated cutoff values, averaged across

all replications and conditions based on the same number of items, were equal to 21.78

(SD = :0019) for I = 10, 21.73 (SD = :0019) for I = 20, 21.69 (SD = :0015) for I = 40, and

21.66 (SD = :0015) for I = 100. Hence, on average, the estimated cutoff values do seem to get

closer to the nominal value as the number of items increases, as expected, but not as quickly as

desired. The differences between the estimated and the nominal cutoff value were deemed too

large to be ignored except when I = 100, which again helps understanding why we did not rely

on the asymptotic nominal approximation. It is interesting to observe that the nominal cutoff

value, 21.64, is more conservative than the average estimated cutoff. As a result, both the

Type I error and the power rates discussed below, which are based on estimated cutoff values,

are actually smaller in comparison with what would be expected based on the nominal cutoff

value.

Type I Error

The author started by analyzing the Type I error rates for model-fitting data only, based on fac-

tors I and C (thus, with the constraint AbN = AbI = 0), on a separate small simulation. The goal

was to ascertain that the detection method was working as expected, namely, by incorrectly flag-

ging about 5% (the nominal Type I error rate) of the simulees. This was found to be approxi-

mately the case. The procedure was slightly conservative (mean Type I error rate equal to .04,

SD = .01), with the observed mean Type I error rate closer to the nominal 5% value as the num-

ber of items increased.

The analysis of the Type I error rates in the full simulation study indicated that the l�z(p) sta-

tistic was very conservative. The mean Type I error rate across conditions and replications was

equal to .03 (SD = .01), for a nominal 5% error rate, which is slightly below the Type I error

rates found based on model-fitting data only. A four-way ANOVA including main effects only

(I, C, AbI, AbN) indicated that all factors had a strong effect on the Type I error rates—

F(9, 98) = 75:28, p\:001, adjusted R2 = :86; h2
p = :07, :78, :50, :70 for effects I, C, AbI, and

AbN, respectively. The error rates tended to decrease with C, AbI, AbN, and I.

Detection of ERS and MRS Patterns

The detection rates of the ERS answer patterns were relatively low. The mean ERS detection

rate across conditions and replications was .17 (first and third quartiles = .06 and .22, respec-

tively). For most conditions (92 in the 108 total), not more than 30% of the ERS patterns were

detected by the l�z(p) person-fit statistic. Table 3 displays the results. It can be seen from this

table that the best detection rates mostly concern conditions associated to a large number of

items (I = 40, 100) and answer options (C = 7), with a moderate to large proportion of aberrant

item scores (AbI = :20, :25). A four-way ANOVA including main effects only (I, C, AbI, AbN)

indicated that all factors had a moderate to strong effect on the detection rates of the ERS pat-

terns—F(9, 98) = 26:95, p\:001, adjusted R2 = :69; h2
p = :32, :62, :20, :11 for effects I, C, AbI,

and AbN, respectively. Typically, the detection rates of the ERS patterns increased with I, AbI,

and especially with the number of answer options C (see Figure 2). The latter result makes

sense because the evidence for ERS becomes stronger when the middle and the extreme answer

options are further apart from one another (i.e., as C increases). The detection rates of ERS
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Table 3. Detection Rates for ERS Patterns.

Detection rate

C AbN AbI I = 10 I = 20 I = 40 I = 100

3 .10 .05 .04 .05 .05
.05 .20 .05 .06 .06 .06

.25 .07 .06 .06 .05

.10 .05 .05 .05 .05
.10 .20 .06 .06 .05 .05

.25 .06 .05 .05 .05

.10 .05 .04 .05 .04
.20 .20 .05 .05 .05 .04

.25 .05 .05 .04 .03

5 .10 .08 .09 .10 .14
.05 .20 .08 .13 .18 .26

.25 .15 .16 .23 .36

.10 .08 .08 .10 .12
.10 .20 .10 .12 .16 .21

.25 .12 .14 .19 .29

.10 .07 .07 .09 .10
.20 .20 .08 .09 .11 .14

.25 .10 .11 .13 .16

7 .10 .13 .15 .24 .40
.05 .20 .20 .30 .51 .81

.25 .29 .39 .63 .90

.10 .12 .14 .20 .36
.10 .20 .17 .28 .42 .68

.25 .25 .34 .51 .81

.10 .10 .11 .16 .25
.20 .20 .13 .19 .28 .46

.25 .16 .23 .32 .55

Note. Detection rates larger than .30 are marked in bold. ERS = extreme responding style.

Figure 2. Effect of the number of items (I), the number of answer options (C), and the proportion of
aberrant item scores in the response pattern (AbI) on the detection rates of ERS patterns.
Note. ERS = extreme responding style.
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patterns slightly decreased as the proportion of aberrantly responding simulees AbN increased,

thus indicating that the performance of l�z(p) can suffer in cases of large proportions of aberrant

respondents in the sample (St-Onge et al., 2011).

In contrast, the detection rates of the MRS patterns were higher in comparison with the ERS

condition. The mean MRS detection rate across conditions and replications was .45 (first and

third quartiles = .17 and .72, respectively). A four-way ANOVA including main effects only (I,

C, AbI, AbN) indicated that all factors had a moderate to strong effect on the detection rates of

the MRS patterns—F(9, 98) = 124:70, p\:001, adjusted R2 = :91; h2
p = :85, :78, :69, :07 for

effects I, C, AbI, and AbN, respectively. The detection rates increased with I, AbI, andC, as

shown in Figure 3.

The difference between the detection rates associated to ERS and MRS patterns may be

partly explained by the proportion of extreme item scores ( = 0, C) and midpoint item scores (=

floor(C/2), ceiling(C/2)) in the randomly generated GGUM-fitting data. The model-fitting item

scores were generated based on Equation 1, with model parameters randomly drawn from prob-

ability distributions as explained in the description of the simulation study. For each generated

GGUM-fitting dataset, the ratio of the number of generated extreme item scores to the number

of generated midpoint item scores (denote this ratio by fE=M) was computed. It was verified

that fE=M (averaged over replications) ranged from 1.40 through 1.89. The effect of the number

of answer options C on fE=M was very strong—F(2, 105) = 15, 698:14, p\:001, h2 = 1:00—see

Figure 4. This implies that the proportion of generated extreme scores exceeded the proportion

Figure 3. Effect of the number of items (I), the number of answer options (C), and the proportion of
aberrant item scores in the response pattern (AbI) on the detection rates of MRS patterns.
Note. MRS = midpoint responding style.

Figure 4. Effect of the number of answer options, C, on the ratio of the number of generated extreme
item scores to the number of generated midpoint item scores, fE=M.
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of generated midpoint scores, a fact that was exacerbated with the increase of C. A conse-

quence is that MRS is more prone to be detected, because response patterns are largely domi-

nated by the extreme scores, and therefore midpoint answer options are more ‘‘unexpected.’’

Equivalently, ERS is less prone to be detected, since the proportion of extreme item scores in

the data is already large. The author believes that this property of the data influenced the detec-

tion rates found for both the ERS and the MRS type of patterns.

Furthermore, as suggested by an anonymous reviewer, it is also possible that the bias of the

estimated parameters played a role in the difference of results between detecting ERS and MRS

patterns. To check this, the effects of I, C, AbI, and AbN on the detection rates from a main-

effects four-way ANOVA were compared with the same effects in regression models that fur-

ther included the mean bias (across replications) of parameters ai, di, tik , and un. It was con-

cluded that the bias of parameters di and un had a negligible effect on the detection rates of

either ERS or MRS (by considering a regression model based on factors I, C, AbI, AbN, mean

di bias, and mean un bias). However, the inclusion of the mean bias of parameters ai and tik

(thus, considering the regression model based on factors I, C, AbI, AbN, mean ai bias, and

mean tik bias) greatly decreased the effect of AbN for detecting both ERS and MRS patterns

(the effect of AbN based on the four-way ANOVA, given by h2
p = :11 for ERS and h2

p = :07 for

MRS, decreased to h2
p = :004 and h2

p = :01, respectively, in the new regression model). Also, in

the ERS case, the effect of I was also greatly reduced (from h2
p = :32 to h2

p = :03). These results

seem to suggest that the detection rates of ERS were more strongly affected by the bias of the

estimated parameters in comparison with the MRS case. This finding may also help explaining,

at least partly, the difference of the results between both types of aberrant behavior.

Discussion

The measurement of personality traits, preferences, and attitudes typically involve response pro-

cesses that require some sort of ‘‘introspection’’ (Drasgow et al., 2010, p. 467). This type of

response is not always perfectly captured by dominant response models, and unfolding models

may be better suited in some situations (see, for example, Weekers & Meijer, 2008). The lack

of published research concerning person-fit analytical approaches suitable to unfolding models

is striking. This article attempts to shed some light on this important topic.

We have applied the l�z(p) person-fit statistic based on the GGUM. The results of this study

indicated that the procedure was conservative (low Type I empirical error rates) and that the

detection of midpoint response style patterns was promising in some conditions. The detection

rates of extreme response style patterns were more modest, except for conditions associated to

large number of items and answer options and to relatively large proportions of aberrant item

scores. As previously explained, the author believes that this finding was related to the preva-

lence of extreme item scores in the generated data.

There are many open questions that deserve investigation. For example, it is unclear how

other person-fit statistics (see Karabatsos, 2003 and Meijer & Sijtsma, 2001 for overviews of

available procedures, and Tendeiro, Meijer, & Niessen, 2015 for an R implementation of most

statistics) would perform under the unfolding framework. Also, it would be interesting to extend

these analyses to other types of responding styles (Baumgartner & Steenkamp, 2001) and to

unfolding models other than the GGUM. Furthermore, in this study, the number of answer

options was kept constant throughout the set of items. Research based on mixed-format instru-

ments would be of great value. These questions open interesting possibilities for future research

in this field.
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Notes

1. The author observes that, in some instances, larger absolute values of d can lead to numerical instabil-

ity. This is a well-known issue of the marginal maximum likelihood (MML) algorithm for the general-

ized graded unfolding model (GGUM) that was used to estimate the model parameters in this study

(Luo, 2000; Roberts & Thompson, 2011).

2. For completeness, the lz(p) statistic was also computed, that is, the original polytomous person-fit statis-

tic proposed by Drasgow, Levine, and Williams (1985). The results were extremely similar to the ones

based on l�z(p), therefore only the latter adjusted statistic is focused.
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