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Abstract

In differential item functioning (DIF) analysis, a common metric is necessary to compare item
parameters between groups of test-takers. In the Rasch model, the same restriction is placed
on the item parameters in each group to define a common metric. However, the question how
the items in the restriction—termed anchor items—are selected appropriately is still a major
challenge. This article proposes a conceptual framework for categorizing anchor methods: The
anchor class to describe characteristics of the anchor methods and the anchor selection strategy
to guide how the anchor items are determined. Furthermore, the new iterative forward anchor
class is proposed. Several anchor classes are implemented with different anchor selection strat-
egies and are compared in an extensive simulation study. The results show that the new anchor
class combined with the single-anchor selection strategy is superior in situations where no prior
knowledge about the direction of DIF is available.

Keywords
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The analysis of differential item functioning (DIF) in item response theory (IRT) research inves-

tigates the violation of the invariant measurement property among subgroups of examinees, such

as male and female test takers. Invariant item parameters are necessary to assess ability differ-

ences between groups in an objective, fair way. If the invariance assumption is violated, differ-

ent item characteristic curves occur in subgroups. In this article, the focus is on uniform DIF

where one group has a higher probability of solving an item (given the latent trait) over the

1Ludwig-Maximilians-Universität München, Germany
2Universität Innsbruck, Austria
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entire latent continuum and the group differences in the logit remain constant (Mellenbergh,

1982; Swaminathan & Rogers, 1990).

A variety of testing procedures for DIF on the item-level is available (for an overview, see,

e.g., Millsap & Everson, 1993). These testing procedures can be divided into IRT-based meth-

ods that rely on the estimation of an IRT model and non-IRT methods, following a classifica-

tion used, for example, by Magis, Raı̂che, Béland, and Gérard (2011). They list Lord’s chi-

square test, Raju’s area method and the likelihood ratio test as the most commonly known

IRT-based methods, and the Mantel–Haenszel method, the Simultaneous Item Bias Test

(SIBTEST) method, and the logistic regression procedure as the most widely used non-IRT

methods. In the analysis of DIF using IRT, item parameters are to be compared across

groups. Mostly, research focuses on the comparison of two predefined groups, the reference

and the focal group. Thus, a common scale for the item parameters of both groups is required

to assess meaningful differences in the item parameters. The minimum (necessary but not

sufficient) requirement for the construction of a common scale in the Rasch model is to place

the same restriction on the item parameters in both groups (Glas & Verhelst, 1995). The

items included in the restriction are termed anchor items.

An anchor method determines how many items are used as anchor items and how they are

located. The choice of the anchor items has a high impact on the results of the DIF analysis: If

the anchor includes one or more items with DIF, the anchor is referred to as contaminated. In

this case, the scales may be biased and items that are truly free of DIF may appear to have DIF.

Therefore, the false alarm rate may be seriously inflated—in the worst case all DIF-free items

seem to display DIF (Wang, 2004)—and the results of the DIF analysis are doubtful, as various

examples demonstrate (see the ‘‘Anchor Process for the Rasch Model’’ section). Even though

the importance of the anchor method is undeniable, Lopez Rivas, Stark, and Chernyshenko

(2009) claim that ‘‘at this point, little evidence is available to guide applied researchers through

the process of choosing anchor items’’ (p. 252). Consequently, the aim of this article is to pro-

vide guidelines how to choose an appropriate anchor for DIF analysis in the Rasch model.

In the interest of clarity, the authors introduce a new conceptual framework that distin-

guishes between the anchor class and the anchor selection strategy. First, anchor classes that

describe the pre-specification of the anchor characteristics are reviewed and a new anchor class

named the iterative forward anchor class is introduced. Second, the anchor selection strategy

determines which items are chosen as anchor items. The complete procedure to choose the

anchor is then called an anchor method. To derive guidelines which anchor method is appropri-

ate for DIF detection in the Rasch model, the authors conduct an extensive simulation study.

In the subsequent study, the authors compare the all-other, the constant, the iterative back-

ward, and the newly suggested iterative forward anchor class for the first time. Furthermore,

the subsequent study is to the authors’ knowledge the first to systematically contrast differ-

ent anchor selection strategies that are combined with the anchor classes. We discuss the all-

other (AO) selection strategy (introduced as rank-based strategy by Woods, 2009) and the

single-anchor (SA) selection strategy (based on a suggestion by Wang, 2004). Finally, prac-

tical recommendations are given to facilitate the anchor process for DIF analysis in the

Rasch model. In the next section, necessary technical details are explained. The conceptual

framework is introduced in detail in the ‘‘A Conceptual Framework for Anchor Methods’’

section. The simulation study is presented in the ‘‘Simulation Study’’ section and the results

are discussed in the ‘‘Results’’ section. The problem of contamination and its impact are

addressed in the ‘‘Impact of Anchor Contamination’’ section. Characteristics of the selected

anchor items are discussed in the ‘‘Characteristics of the Anchor Items Inducing Artificial

DIF’’ section. A concluding summary and practical recommendations are given in the

‘‘Summary and Discussion’’ section.
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The Anchor Process for the Rasch Model

In the following, the anchor process is technically described and analyzed for the Rasch model.

The item parameter vector is b = (b1, . . . , bk)> 2 R
k , where k denotes the number of items in

the test. In the following, it is estimated using the conditional maximum likelihood (CML) esti-

mation due to its unique statistical properties, its widespread application (Wang, 2004) and the

fact that its estimation process does not rely on the person parameters (Molenaar, 1995).

Scale Indeterminacy

As the origin of the scale in the Rasch model can be arbitrarily chosen (Fischer, 1995)—what is

often referred to as scale indeterminacy—one linear restriction of the form,

Xk

‘= 1

d‘~b‘ = 0, ð1Þ

with constants d‘ holding
Pk

‘ = 1 d‘ 6¼ 0 is placed on the item parameter estimates ~b‘ (Eggen &

Verhelst, 2006). Thus, in the Rasch model only k21 parameters are free to vary and one param-

eter is determined by the restriction. Note that Equation 1 includes various commonly used

restrictions such as setting one estimated item parameter ~b‘ = 0 or restricting all estimated item

parameters to sum zero
Pk

‘ = 1
~b‘ = 0 (Eggen & Verhelst, 2006). Without loss of generality, here

the item parameter vector ~b is estimated with the employed restriction ~b1 = 0. The correspond-

ing covariance matrix dVar(~b) then contains zero entries in the first row and in the first column.

In the following, different restrictions for which the sum of the estimated item parameters of a

selection of items is set to zero are discussed. These restrictions can be obtained by transforma-

tion using the equations

b̂ = A~b ð2Þ

and dVar b̂
� �

= AdVar ~b
� �

A>, ð3Þ

where A = Ik � 1Pk

‘ = 1

a‘

1k � a>, Ik denotes the identity matrix, 1k denotes a vector of one entries,

and a is a vector with one entries for those elements a‘ that are included in the restriction and

zero entries otherwise (e.g., a = (1, 0, 1, 0, 0, . . . )> including items 1 and 3). In addition, the

entries of the rank deficient covariance matrix dVar(b̂) in the row and in the column of the item

that is first included in the restriction are set to zero. While for the estimation itself, the choice

of the restriction is arbitrary, for the anchor process a careful consideration of the linear restric-

tion that is now employed in each group g is necessary. A necessary but not sufficient require-

ment to build a common scale for the item parameters of two groups is that the same restriction

is employed in both groups (Glas & Verhelst, 1995). Items in the restriction are termed anchor

items and the restriction can be rewritten as

Xk

‘= 1

a‘b̂
g

‘ =
X
‘2A

b̂
g

‘ = 0, ð4Þ

where the set A is termed the set of anchor items or the anchor. The estimated and anchored

item parameters are denoted b̂
g
. Equation 4 includes various commonly used anchor methods

such as setting one estimated item parameter b̂
g

‘ to zero (b̂
g

‘ = 0, for one ‘ 2 {1, 2, . . . , k}) for
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the so-called constant single-anchor method or restricting all items except the studied item j to

sum to zero in each group (
P

‘6¼j b̂
g

‘ = 0) for the so-called all-other anchor method. The item

parameters and covariance matrices, estimated separately in each group, are transformed to the

respective anchor method by means of Equations 2 and 3, so that all items are then shifted on

the scale by � 1
jAj
P

‘2A
~b

g

‘ .

Item-Wise Wald Test

As a statistical test for DIF, the focus is on the item-wise Wald test here (see,

e.g., Glas & Verhelst, 1995), but the underlying ideas in the next section can also be applied

to other tests for DIF. Note that this item-wise Wald test is applied to the CML estimates

(as in Glas & Verhelst, 1995) and not the joint maximum likelihood (JML) estimates (as

in Lord, 1980). The inconsistency of the JML estimates leads to highly inflated false

alarm rates (see, e.g., McLaughlin & Drasgow, 1987). The recent work of Woods, Cai, and

Wang (2013) showed that an improved version of the Wald test, termed Wald-1 (see Paek &

Han, 2013, and the references therein), also displayed well-controlled false alarm rates in

their simulated settings if the anchor items were DIF-free. As the Wald-1 test also requires

anchor items, it can in principle be combined with the anchor methods discussed here

as well.

The rationale behind the Wald test is that DIF is present if the item difficulties are not equal

across groups. The test statistic Tj for the null hypothesis H0 : bref
j = bfoc

j , where bref
j and bfoc

j

denote the item difficulties for reference and focal group for item j and b̂
ref

j and b̂
foc

j the corre-

sponding estimated item parameters using the anchor Aj, has the following form:

Tj =
b̂ref

j � b̂foc
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar b̂ref

j � b̂foc
j

� �r =
b̂ref

j � b̂foc
jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffidVar b̂

ref
� �

j, j
+dVar b̂

foc
� �

j, j

r : ð5Þ

Note that the estimated and anchored item parameters b̂
g

= b̂
g
(Aj), which can be calculated

using Equation 2, depend on the anchor and, hence, so does the test statistic Tj = Tj(Aj). A

detailed empirical example is provided in an online supplement. The anchor set Aj may depend

on the studied item (as is the case for the all-other method). If the anchor is constant regardless

which item is tested for DIF, it is denoted A in the following.

From a theoretical perspective and from the instructive example in the online supplement, it

is obvious that an appropriate anchor is crucial for the results of the DIF analysis. Previous

simulation studies have compared different selections of anchor methods. Empirical findings

also show that, ideally, the anchor items should be DIF-free. Unfortunately, as prior to DIF

analysis, it cannot be known which items are DIF-free, a somewhat circular problem is faced,

as pointed out by Shih and Wang (2009). If DIF items are included in the anchor, this con-

tamination may lead to seriously inflated false alarm rates in DIF detection (see, e.g., Finch,

2005; Wang, 2004; Wang & Su, 2004; Wang & Yeh, 2003; Woods, 2009) that ‘‘can result in

the inefficient use of testing resources, and . . . may interfere with the study of the underlying

causes of DIF’’ (Jodoin & Gierl, 2001, p. 329). Naturally, the risk of contamination would

suggest to use only few items in the restriction (i.e., a short anchor), but the simulation results

also show that the statistical power increases with the length of a DIF-free anchor (Shih &

Wang, 2009; Thissen, Steinberg, & Wainer, 1988; Wang, 2004; Wang & Yeh, 2003; Woods,

2009).
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A Conceptual Framework for Anchor Methods

In the following, the authors introduce a conceptual framework in which a variety of previously

suggested anchor methods can be embedded. The new conceptual framework distinguishes

between the anchor class and the anchor selection strategy.

Anchor Classes

In this conceptual framework, anchor classes describe characteristics of the anchor that answer

the following questions: Is the anchor length predefined? If so, how many items are included in

the anchor? Is the anchor determined by the anchor class itself or is an additional anchor selec-

tion strategy necessary? Are iterative steps intended?

The equal-mean and the all-other anchor class. In the equal-mean-difficulty anchor class (see, e.g.,

Wang, 2004, and the references therein) all items are restricted to have the same mean difficulty

(typically zero) in both groups, whereas in the all-other anchor class (used, e.g., by Cohen,

Kim, & Wollack, 1996) the sum of all item difficulties—except the item currently tested for

DIF—is restricted to be zero and the anchor set Aj = f1, . . . , kg n j depends on the studied item

j = 1, . . . , k. Both anchor classes have a predefined anchor length but no additional anchor

selection is necessary as the items included in the restriction are already determined by the

anchor class itself. The equal-mean-difficulty and the all-other class only differ in one anchor

item and, therefore, essentially lead to similar results (cf. Wang, 2004) and, hence, only the all-

other method is included in the following simulation study.

The constant anchor class. The constant anchor class (used, e.g., by Shih & Wang, 2009; Thissen

et al., 1988; Wang, 2004) includes a predefined number of the items (e.g., one or four items

according to Thissen et al., 1988) or a certain proportion of the items (e.g., 10% or 20% accord-

ing to Woods, 2009) as anchor. The term constant reflects the constant set of anchor items with

a predefined, constant anchor length. In the subsequent simulation study, the authors implemen-

ted the constant anchor class with one single anchor item as well as the constant anchor includ-

ing four items, which is supposed to assure sufficient power (cf. e.g., Shih & Wang, 2009;

Wang, Shih, & Sun, 2012). The constant anchor class needs to be combined with an explicit

anchor selection strategy. For the constant single-anchor class, the first item of the ranking order

of candidate anchor items is used as anchor, whereas for the constant four-anchor class, the first

four items of the ranking order of candidate anchor items are used as anchor.

The iterative backward anchor class. The iterative backward anchor class (used, e.g., by Candell

& Drasgow, 1988; Drasgow, 1987; Hidalgo-Montesinos & Lopez-Pina, 2002) includes a variety

of iterative methods that have been suggested, discussed, and combined with different statistical

methods to assess DIF. Here, we focus on the commonly used relinking procedure where one

parameter estimation step suffices to conduct DIF analysis. First, the scales of both groups are

linked on (approximately) the same metric, e.g., by using the all-other anchor method. Then, the

DIF items are excluded from the current anchor,1 the scales are re-linked using the new current

anchor, the DIF analysis is carried out for all items except for the first anchor candidate (see the

‘‘Anchor Methods’’ section) and the steps are repeated until two steps reach the same results

(e.g., Drasgow, 1987; Candell & Drasgow, 1988; Hidalgo-Montesinos & Lopez-Pina, 2002).

This iterative procedure is referred to here as the iterative backward anchor class, as the method

includes the majority of items in the anchor at the beginning. Then, it successively excludes

items from the anchor. The research of Wang and Yeh (2003), Wang (2004), Shih and Wang

(2009), and Wang et al. (2012) made clear that the direction of DIF influences the results of the

DIF analysis using all other items as anchor: If all items favor one group, what is referred to as
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unbalanced DIF, DIF tests using all other items as anchor result in inflated false alarm rates.

Hence, in complex DIF situations such as unbalanced DIF, the initial step of the iterative back-

ward anchor class, that includes all other items as anchor, may lead to biased test results.

The iterative forward anchor class. Inspired by this result, the authors introduce another possible

strategy to overcome the problem that the anchor selection is based on initially biased test

results: the iterative forward anchor class. As opposed to the iterative backward class, the

authors suggest to build the iterative anchor in a step-by-step forward procedure. Starting with

the first candidate anchor item—determined by the anchor selection strategy—as single anchor

item, the scales are linked and DIF is estimated. Then, iteratively, one item—located again by

means of the respective anchor selection strategy—is added to the current anchor and DIF anal-

ysis is conducted using the new current anchor. These steps are repeated as long as the current

anchor length is shorter than the number of nonsignificant test results in the current DIF tests

(in short the number of currently presumed DIF-free items). Unlike the iterative backward

anchor class where items are successively excluded, now items are successively included in the

anchor. An anchor selection strategy is again needed to guide which items are included in the

anchor.

Anchor Selection Strategies

The anchor selection strategies discussed here are based on preliminary item analyses. This

means that—before the final DIF test is done—preliminary DIF tests are conducted to locate

(ideally) DIF-free anchor items. The (nonstatistical) alternative relying on expert advice and

certain prior knowledge of DIF-free anchor items (Wang, 2004; Woods, 2009) will not often be

possible in practice (for a literature overview where this approach fails, see Frederickx,

Tuerlinckx, De Boeck, & Magis, 2010).

The AO anchor selection. In the subsequent simulation study, the authors implemented different

anchor selection strategies that provide a ranking order of candidate anchor items. One anchor

selection strategy investigated in this article is the rank-based strategy proposed by Woods

(2009) that is termed AO anchor selection strategy here. Initially, every item is tested for DIF

using all other items as anchor. The ranking order of candidate anchor items is defined accord-

ing to the lowest ranks of the resulting (absolute) DIF test statistics.

The next candidate (NC) and the SA anchor selection. Originally, Wang (2004) suggested an

anchor method that is referred to as the NC method here. It includes both an anchor selection

and an anchor class and is, thus, discussed in detail in the next section. Moreover, the authors

simplify the suggestion of Wang (2004) for the anchor selection and call it the SA-selection

strategy. It is, to the authors’ knowledge, for the first time systematically compared with the

AO-strategy using various anchor classes. With every item acting as single anchor, every

other item is tested for DIF. Again, the anchor sets Aj vary across the studied items and k21

tests result for every item j = 1, . . . , k of the test. The ranking order of candidate anchor

items is defined according to the smallest number of significant results. If more than one

item displays the same number of significant results, one of the corresponding items is

selected randomly.

Anchor Methods

An anchor method results as a combination of an anchor class with an anchor selection strategy

(in cases where the latter is necessary). The anchor methods to be investigated in this article are
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now presented and summarized in Table 1. All anchor methods that rely on an anchor selection

consist of two steps: First, the anchor selection is carried out to determine a ranking order of

candidate anchor items and the procedure defined by the anchor class is carried out to deter-

mine the final anchor. Second, the final anchor found in the first step is then used for the assess-

ment of DIF. This procedure was termed DIF-free-then-DIF strategy by Wang et al. (2012).

The final anchor A is independent of which item is studied. As k21 parameters are free in the

estimation, only k21 estimated standard errors result (Molenaar, 1995), the k-th standard error

is determined by the restriction and, hence, only k21 tests can be carried out and one item in

the final assessment of DIF obtains no DIF test statistic. Thus, the first item selected as anchor

item is declared DIF-free in the final DIF test, a decision that may be false if even the item with

the lowest rank does indeed have DIF, but in this case, this would result in a lower hit rate in

the final test results. All remaining items are tested for DIF using the final anchor A. The all-

other anchor method does not require an additional anchor selection and k tests result using the

anchor Aj = f1, . . . , kg n j. The constant anchor class consisting of one anchor item or four

anchor items can be combined with the AO-selection strategy (single-anchor-AO, four-anchor-

AO) and also with the SA-selection strategy (single-anchor-SA, four-anchor-SA).

Furthermore, the authors implemented the original suggestion of Wang (2004) that is referred

to as the four-anchor-NC method. In the four-anchor-NC method, the item that is selected by

the SA-selection strategy functions as the current single-anchor and DIF tests are conducted

(see Wang, 2004). In this step, one DIF test statistic results for every item except for the anchor.

The next candidate anchor item is the item that displays ‘‘the least magnitude of DIF’’ (Wang,

2004, p. 250) among all remaining items that is defined here as lowest absolute DIF test statistic

from the tests using the current single anchor item. The candidate item is added to the current

anchor, only if its DIF test result is not significant (Wang, 2004). The next DIF test is conducted

using the new current anchor, and the next candidate item is selected again if it has the lowest

absolute DIF test statistic among all remaining items and displays no significant DIF.2 These

steps are repeated until either the next candidate anchor item displays DIF or the maximum

anchor length (of four items in our implementation of the four-anchor-NC method) is reached.

The iterative backward class is implemented using all other items as anchor in the initial step and

then excluding DIF items from the anchor (iterative-backward-AO) as it is widely used in prac-

tice (e.g., Edelen, Thissen, Teresi, Kleinman, & Ocepek-Welikson, 2006). Note that the iterative

backward class is not combined with the SA-selection as the latter provides only a ranking order

of candidate anchor items, but no information which set of items should be used in the initial

step. The newly suggested iterative forward class can be combined with the AO-selection strat-

egy (iterative-forward-AO) and with the SA-selection strategy (iterative-forward-SA).

Simulation Study

To evaluate which of the anchor methods presented in the previous section (for a brief

description and nomenclature, see again Table 1) are best suited to correctly classify items

with and without DIF, an extensive simulation study is conducted. Details about the back-

ground and motivation of the subsequent simulation study are provided in the online supple-

ment. A total of 2,000 data sets (i.e., replications) are generated from each of 77 different

simulation settings. For every data set, the item-wise Wald test (see the ‘‘Anchor Process for

the Rasch Model’’ section)—based on one out of nine investigated anchor methods—is con-

ducted at the significance level of .05 in the free R system for statistical computing (R Core

Team, 2013). A short description of the study design is given in the following paragraphs.

Parts of the simulation design were inspired by the settings used by Wang et al. (2012),

Woods (2009), and Wang (2004).
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Data-Generating Process

Each data set corresponds to the simulated responses of two groups of subjects (the reference

[ref] and the focal [foc] group) in a test with k = 40 items. The authors also considered different

test lengths of 20, 60, or 80 items (results not shown). In all cases, the results were qualitatively

similar albeit the differences between the iterative forward and constant four-anchor class are

somewhat smaller for 20 items (due to more similar anchor lengths) and larger for 60 and 80.

Person and item parameters. In the following simulation study, the authors have included ability

differences as this case is often found more challenging for the methods than a situation where

no ability differences are present (see, e.g., Penfield, 2001). The person parameters are gener-

ated from a normal ability distribution with a higher mean for the reference group uref ~ N(0, 1)

than for the focal group ufoc ~ N(21, 1) similar to Wang et al. (2012). For the item parameters,

the authors chose the values that were already used by Wang et al. (2012).3

DIF items. In case of DIF, the first 15%, 30%, or 45% of the items (see the ‘‘Directions and pro-

portions of DIF’’ section) are chosen to display uniform DIF by setting the difference in the item

parameters of reference and focal group DDIF = bref
j � bfoc

j to + .6 or 2.6 (consistent with the

intended direction of DIF). These differences have been used in previous DIF simulation studies

(Finch, 2005; Swaminathan & Rogers, 1990; Wang et al., 2012) and reflect a moderate effect

size measured by Raju’s area (Jodoin & Gierl, 2001; Raju, 1988).

IRT model. The responses in each group follow the Rasch model. They are generated in two

steps: The probability of person i solving item j is computed by inserting the corresponding item

and person parameters in the Rasch model Equation 6. The binary responses are then drawn

from a binomial distribution with the resulting probabilities:

P Uij = 1jui, bj

� �
=

exp ui � bj

� �
1 + exp ui � bj

� � : ð6Þ

Manipulated Variables

Three main conditions determine the specification of the manipulated variables: one condition

under the null hypothesis where no DIF is present and two conditions under the alternative

where DIF is present.

Sample sizes. The sample sizes in reference and focal group are defined by the following pairs

(nref, nfoc) 2 {(250; 250), (500; 250), (500; 500), (750; 500), (750; 750), . . . ,(1,500; 1,500)}.

Thus, both equal and different group sizes are considered.

Directions and proportions of DIF. Under the condition of the null hypothesis (no DIF), only the

sample sizes are varied. The two remaining conditions represent the alternative hypothesis where

DIF is present, but they differ with respect to the direction of DIF: The second condition repre-

sents balanced DIF. Here, each DIF item favors either the reference or the focal group but no sys-

tematic advantage for one group remains because the effects cancel out. For the third unbalanced

DIF condition a systematic disadvantage for the focal group is generated such that every DIF item

favors the reference group. In addition to the sample size, also the proportion of DIF is manipu-

lated including the following percentages p 2 {15%; 30%; 45%}. The sample sizes, the DIF per-

centages and the DIF conditions (balanced and unbalanced) were fully crossed.
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Outcome Variables

To allow for a comparison of the anchor methods, the classification accuracy of the DIF tests is

evaluated by means of false alarm rate and hit rate.

False alarm rate. For a single replication, the false alarm rate is defined as the proportion of

DIF-free items that are (erroneously) diagnosed with DIF. The estimated false alarm rate for

each experimental setting is computed as the mean over all 2,000 replications and, thus, corre-

sponds to the Type I error rate. Similarly, the standard error is estimated as the square root of

the unbiased sample variance over all replications.

Hit rate. Analogously, for a single replication the hit rate is computed as the proportion of DIF

items that are (correctly) diagnosed with DIF. The hit rate is only defined in conditions that

include DIF items, namely, in the balanced and unbalanced condition. The estimated hit rate

and the standard error are again computed as mean and standard deviation over all 2,000 repli-

cations and correspond to the power of the statistical test and its variation.

Further outcome variables. Moreover, the percentage of replications where at least one item in

the anchor is a simulated DIF item (risk of contamination) is computed over all replications of

one setting. The average proportion of simulated DIF items as compared with the overall num-

ber of anchor items (degree of contamination) is computed, too, for replications where the

anchor is contaminated. Average false alarm rates are also computed separately for the tests

based on a contaminated and for the tests based on a pure (not contaminated) anchor to allow

for a more detailed interpretation of the results.

Results

Null Hypothesis: No DIF

In the first condition, all items were truly DIF-free. Therefore, only the false alarm rates (pro-

portions of DIF-free items that were diagnosed with DIF) were computed and are displayed in

Figure C.1 in the online supplement. The standard errors are reported in Table C.1 in the online

supplement for equal sample sizes.

False alarm rates. All anchor methods held the 5% level. Although methods from the all-other,

the iterative backward (iterative-backward-AO) and the iterative forward class (iterative-for-

ward-SA, iterative-forward-AO) together with the constant four-anchor-NC method were near

the significance level, most methods from the constant anchor class (single-anchor-AO and

single-anchor-SA; four-anchor-AO and four-anchor-SA) remained below that level. Hence,

DIF tests with an anchor method from the constant anchor class combined with the AO- and

the SA-selection—especially the constant single-anchor methods, but also the constant four-

anchors—were over-conservative.

Balanced DIF: No Advantage for One Group

In the balanced condition, a certain proportion of DIF items (15%, 30%, or 45%) was present.

Each DIF item favored either the reference or the focal group, but the single advantages can-

celed out.

False alarm rates. Figure 1 (top row) contains the false alarm rates for the balanced condition,

reported also for equal sample sizes together with the standard errors in Table C.2 in the online

supplement. Most methods displayed well-controlled false alarm rates—similar to the null
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condition—with the following exceptions: The constant four-anchor-NC method and the four-

anchor-SA method showed a false alarm rate that first increased but then decreased again with

growing sample size in case of 45% DIF. The same inverse u-shaped pattern occurred in case

of unbalanced DIF and is discussed in more detail in the ‘‘Characteristics of the Anchor Items

Inducing Artificial DIF’’ section. Both constant single anchor methods (single-anchor-AO and

single-anchor-SA) as well as the four-anchor-AO method, again, remained below the signifi-

cance level. Hence, DIF tests based on the single-anchor-AO, the single-anchor-SA and the

four-anchor-AO method were over-conservative.

Hit rates. Figure 1 (bottom row) depicts the hit rates (that specify how likely true DIF is

detected) in the balanced condition, which increased monotonically with the sample size (for

standard errors, see also Table C.3 in the online supplement). The hit rates with the slowest

increase were from the constant single-anchor methods, but also from the constant four-anchor

methods. The methods from the constant anchor class that were combined with the AO-selec-

tion (single-anchor-AO, four-anchor-AO) achieved higher hit rates than those combined with

the SA-selection (single-anchor-SA, four-anchor-SA) or the NC-selection (four-anchor-NC). In

terms of hit rates, all iterative procedures (iterative-forward-AO, iterative-forward-SA and itera-

tive-backward-AO) as well as the all-other method showed rapidly increasing hit rates that con-

verged to one for sample sizes above 750 in each group.

Unbalanced DIF: Advantage for the Reference Group

In the unbalanced condition, all items simulated with different item parameters favored the ref-

erence group. False alarm rates for the unbalanced condition are shown in Figure 2 (top row)

and in Table C.4 in the online supplement together with the standard errors.

False alarm rates. As opposed to the previous results, in this condition, the majority of the

anchor methods produced inflated false alarm rates: When the proportion of DIF items

increased, the false alarm rates rose as well. Moreover, for most anchor methods, the false

alarm rates increased with growing sample size. The settings from the unbalanced condition—

especially with 30% and 45% DIF items—are now discussed in more detail in groups of anchor

classes. The all-other method yielded the highest false alarm rate in the majority of the simula-

tion settings. The reason for this is that the all-other method is always contaminated in situa-

tions where more than one item has DIF. On average, the mean item parameters of the

reference group were lower than the mean item parameters of the focal group. These mean dif-

ferences in the item parameters shifted the scales of focal and reference group apart when the

all-other method defined the restriction (similar to the instructive example in the online supple-

ment). These artificial differences became significant when the sample size increased and, thus,

resulted in an inflated false alarm rate. For methods from the constant anchor class, the selec-

tion strategy explains the false alarm rates: The strategy of selecting anchors based on the DIF

tests with all other items as anchor yielded biased DIF test results that induced a high false

alarm rate when the sample size was large (as illustrated and discussed in more detail regarding

the impact of contamination in the ‘‘Impact of Anchor Contamination’’ section). Constant

anchors selected by the SA-strategy produced lower false alarm rates in regions of medium or

large sample sizes. Here, again, an inverse u-shaped form is visible. After a certain point, the

false alarm rates decreased again (a detailed explanation given in the ‘‘Characteristics of the

Anchor Items Inducing Artificial DIF’’ section). The constant single-anchor methods showed

lower false alarm rates than the corresponding constant four-anchor methods. For all constant

methods, the single-anchor-SA method had the lowest false alarm rate when the sample size

was large. The method from the iterative backward anchor class, which started the initial step
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by using the all-other method, also led to inflated false alarm rates that rose when sample size

increased. Methods from the iterative forward class displayed heterogeneous false alarm rates.

The iterative-forward-AO method led to increased false alarm rates—similar to the constant

methods with the AO-selection criterion—in the setting with 30% or 45% DIF. The clearly best

iterative method in terms of a low false alarm rate was the new iterative-forward-SA method.

Hit rates. The hit rate in the unbalanced condition (cf. Figure 2, bottom row, and Table C.5 in

the online supplement) in the settings of larger proportions of DIF items was different:

Generally, the overall level of the hit rate was lower. Methods from the constant anchor class

showed the slowest increase with the sample size. These methods also had lower hit rates com-

pared with the methods from the iterative forward or backward class that were the only meth-

ods that displayed rapidly increasing and high hit rates. The all-other method was between the

constant anchor methods and the iterative anchor methods. The new iterative-forward-SA

method provided the highest hit rate and a rapid rise of the hit rate with increasing sample size.

In case of 45% DIF, it displayed a much higher hit rate compared with all remaining methods

in the majority of the simulated settings. The SA-selection strategy in combination with meth-

ods from the constant anchor class was more suitable than the AO-selection strategy regarding

the hit rates when the sample size was large. The simplified four-anchor-SA method outper-

formed the originally suggested constant four-anchor method (four-anchor-NC) in terms of

higher hit rates (and lower false alarm rates). The iterative forward procedure with the SA-

selection was equal or superior to the iterative-forward-AO method over the entire range of

simulated sample sizes. When accounting for both, the false alarm rate and the hit rate, the

newly suggested iterative-forward-SA method is the only reasonable choice among the investi-

gated methods in the simulated settings.

The Impact of Anchor Contamination

As discussed in the ‘‘Anchor Process for the Rasch Model’’ section and in the online supple-

ment, the contamination of the anchor may induce artificial DIF and, thus lead to a seriously

inflated false alarm rate. New anchor methods are often judged by their ability to correctly

locate a completely DIF-free (i.e., pure, uncontaminated) anchor (e.g., Wang et al., 2012).

Thus, the authors take a brief look at the simulation results focusing on the aspect of anchor

contamination for one exemplary setting of 45% unbalanced DIF items in this section and pro-

vide a more detailed discussion in the online supplement. Figure 3 (top row) depicts the propor-

tion of replications where at least one item of the anchor was a simulated DIF item (top-left)—

this is referred to as risk of contamination—and the proportion of simulated DIF items in the

anchor when the anchor was contaminated (top-right)—this is referred to as degree of contami-

nation together with the false alarm rates (bottom row), including only the replications that

resulted in a contaminated anchor (bottom-left) next to those including only the replications

that resulted in a pure (i.e., DIF-free) anchor (bottom-right). If none of these pure replications

resulted, the respective false alarm rate is omitted.

The results showed the following: All methods that rely on tests with all other items as

anchor (namely, the all-other, single-anchor-AO, four-anchor-AO, iterative-forward-AO, itera-

tive-backward-AO) displayed risks and also degrees of contamination that did not or only

slightly decrease with the sample size. The overall risk and degree level depended on the

anchor length. Short anchors, e.g., displayed a lower risk of contamination compared with lon-

ger anchors. The corresponding false alarm rates with a contaminated anchor increased, as—

with increasing sample size—the power of detecting artificial DIF (DIF-free items that dis-

played DIF due to the chosen anchor method) increased. Those methods that are built using the
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SA-selection (namely, the single-anchor-SA, four-anchor-SA, iterative-forward-SA) showed

risks and degrees that decreased with the sample size (except for the degree of the single-

anchor). Their false alarm rates in contaminated replications were also lower when the sample

size was high. An interesting finding here is the result for the four-anchor-NC method: It dis-

played a rapidly decreasing risk of contamination, but also a very high degree of contamination.

As a consequence, the false alarm rate in contaminated replications was very high and even

increased in the sample size. This explains the weak overall performance (see again Figure 2,

top row right). This result makes clear that it is not the risk of contamination alone that
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determines the performance of the anchor method. The iterative-forward-SA method (that per-

formed best—in terms of a low false alarm rate together with a high hit rate—in this condition,

see again Figure 2, right) displayed a higher risk of contamination but a lower degree of con-

tamination compared with the four-anchor-NC method. The false alarm rate of the iterative-for-

ward-SA method was low, independent of whether the anchor was contaminated or not (see

Figure 3, bottom row). Thus, we conclude that research on anchor methods should not only

concentrate on the risk of contamination but also focus on the consequences, which strongly

depend on the degree of contamination, that is, the proportion of DIF items in the contaminated

anchor. The second astounding finding, which is addressed in the next section, was that we

observed false alarm rates exceeding the significance level, even in the case when only pure

replications without anchor contamination were regarded (see Figure 3, bottom row right).

Characteristics of the Anchor Items Inducing Artificial DIF

In the simulation study, several anchor methods displayed inverse u-shaped false alarm rates

that are yet to be explained. There are two mechanisms at work here: On one hand, the risk and

the degree of contamination decrease with increasing sample size when the anchor selection

strategy works appropriately, and thus, the extent of artificial DIF decreases. On the other hand,

the power of detecting artificial DIF increases with growing sample size. One possible explana-

tion for the inverse u-shaped pattern is the interaction between the decreasing extent of artificial

DIF induced by anchor contamination and the increasing power of detecting statistically signifi-

cant artificial DIF. In the beginning, the false alarm rate increases due to the increasing power

for detecting artificial DIF, but at some point the false alarm rate decreases again as the risk of

contamination decreases. This explanation is consistent with the findings from the ‘‘Impact of

Anchor Contamination’’ section, when the anchor was contaminated, and the authors provide a

more detailed discussion of the contaminated replications in the online supplement. However,

with this argument, the authors cannot yet explain why the false alarm rates showed a similar

pattern for pure (uncontaminated) replications (see again Figure 3, bottom-right), where the sin-

gle-anchor-SA, the four-anchor-SA as well as the four-anchor-NC method displayed inverse

u-shaped false alarm rates. Therefore, the presence of artificial DIF induced by contamination

alone cannot explain this finding. To understand this phenomenon, it is important to note that

artificial DIF can also be caused by special characteristics of the anchor items that were located

by an anchor selection strategy. To clarify how artificial DIF is related to the observed patterns

of the false alarm rates, the authors conducted an additional simulation study focusing again on

the extreme condition of 45% unbalanced DIF items. Here, the authors examined the difference

in the sum of the estimated anchor item parameters between focal and reference group that the

authors termed scale shift (because it measures how far both scales of the item parameters are

shifted apart during the construction of the common scale) for all constant four-anchor meth-

ods. To assess reliable estimates of the scale shift, the authors used all items that were DIF-free

by design as anchor items to build the ideal common scale. The scale shift reflects the extent of

artificial DIF and may be caused by contamination, as discussed in the previous sections, or by

special characteristics of the anchor items in particular when the selection strategies locate

anchor items that show relatively high empirical differences in the estimated item parameters

due to random sampling fluctuation even if the located anchor items were simulated to be DIF-

free. To determine whether anchor items found by a selection strategy display this characteris-

tic, the authors included a benchmark method of four-anchor items that were randomly selected

from the set of all DIF-free items. The benchmark method, thus, represents the ideal four-

anchor method that does not select items with high differences more often than others. The

results, separated for contaminated and pure replications, are depicted in Figure 4. The second
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argument now becomes important in the case of pure anchors, which are discussed in more

detail in this section: The scale shift for the benchmark method of randomly chosen DIF-free

anchor items (Figure 4, right) fluctuated around zero and displayed no systematic shift in

one direction. However, the scale shift of all remaining constant four-anchor methods

was negative. This represents the fact that the supposedly pure items chosen by an anchor

selection strategy displayed different characteristics than did randomly chosen pure

anchor items. From all items that were ‘‘pure’’ by definition (i.e., were drawn from distribu-

tions with no parameter difference) the anchor selection strategies selected not the ones with

the lowest empirical difference (due to random sampling), as one might hope, but those

with a large empirical difference which induced artificial DIF for the other items. As can be

seen from Figure 4 (right), the absolute scale shift for the four-anchor methods reduced with

increasing sample size. In regions of large sample sizes, the absolute scale shift was directly

related to the false alarm rate: When the absolute scale shift was high (as was the case

for the four-anchor-AO method), the false alarm rate was high as well (Figure 3, bottom-

right). In regions of smaller sample sizes, the scale shift of all four-anchor methods was

high, but the false alarm rates were low at the beginning and then increased with growing

sample size. When the scale shift decreased with growing sample size (e.g., for the four-

anchor-SA method), the corresponding false alarm rate decreased as well and resulted in an

inversely u-shaped pattern (see again Figure 3, bottom-right). Here, the interaction between

the extent of artificial DIF—now induced by large empirical differences in the pure anchor

items—and the power of detecting artificial DIF was visible that explained the false alarm

rates.
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Summary and Discussion

The assessment of DIF for the Rasch model based on the Wald test was investigated by means

of hit and false alarm rates. Under the null hypothesis, all methods from the iterative forward

and backward class as well as the all-other method held the significance level, while methods

from the constant anchor class remained below that level. When DIF was balanced, the all-

other method and also methods from the iterative forward and backward class yielded high hit

rates while simultaneously exhausting the significance level. As expected, the AO-selection

strategy outperformed the SA-selection strategy. In case of unbalanced DIF, the SA-selection

procedure was superior to the AO-selection strategy when the sample size was large. The con-

stant four-anchor class was not only combined with the AO-selection and the SA-selection

strategy but also with the original NC-selection. Even though the four-anchor-NC method led

to a low risk of contamination (see the ‘‘Impact of Anchor Contamination’’ section), it was out-

performed by the four-anchor-SA method, which yielded lower false alarm rates and higher hit

rates. In this unbalanced case, the newly suggested iterative-forward-SA method yielded the

highest hit rate and a low false alarm rate and was, thus, the best performing anchor method.

Based on these results, a careful consideration of the employed anchor method is necessary to

avoid high misclassification rates and doubtful test results. Note, however, that the Rasch

model, which was used for analyzing the data, was also the truly underlying data generating

process. This assumption should be critically assessed in practical applications and future

research should further investigate the separability of DIF and model misspecification. When

no reliable prior knowledge about the DIF situation exists, as will be the case in most real data

analysis settings (as opposed to simulation analysis where the true DIF pattern is known), the

authors thus recommend to use the iterative-forward-SA method. When the sample size was

large enough (above 1,000 observations in each group in the simulated settings), the false alarm

rates were low in any condition even if the anchor was contaminated. Hit rates rapidly grew

with the sample size and converged to one. The iterative-forward-SA method outperformed the

iterative-backward-AO, iterative-forward-AO, the all-other as well as anchor methods from the

constant anchor class by yielding a lower false alarm rate together with a higher hit rate. There

are several reasons that explain the superior performance of the iterative-forward-SA method.

First, the method has a head start compared with the methods that rely on DIF tests using the

all other items as anchor (e.g., the classical iterative procedures, such as the iterative-backward-

AO). The latter start with a criterion that is severely biased when DIF is unbalanced, whereas

the iterative-forward-SA method does not require that DIF effects almost cancel out (for a dis-

cussion, see Wang, 2004). Second, the SA-selection strategy combined with the iterative for-

ward anchor class also performed well in case of balanced DIF. Although the AO-selection

strategy performed better than the SA-selection strategy when it was combined with the meth-

ods from the constant anchor class, the advantage in combination with the iterative forward

class appeared negligible. Third, the study showed that the consequences of contamination

depend on the proportion of contaminated items rather than on the risk of contamination itself.

Therefore, the iterative-forward-SA method yielded better results in DIF analysis even though

the anchor was long and, thus, often contaminated. The risk of contamination decreased with

increasing sample size, and beyond that, the proportion of DIF items in the contaminated

anchor (the degree of contamination) decreased. Fourth, the iterative forward anchor class adds

items to the anchor as long as the number of anchor items is smaller than the set of presumed

DIF-free items. If the sample size is large enough, this leads to the desirable property, that it

produces a longer anchor when the proportion of DIF items is low and a shorter anchor if the

proportion of DIF items is high, similar to the iterative backward method.4 Another astounding

finding of the simulations presented here was that anchor items located by an anchor selection
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strategy displayed different characteristics compared with randomly chosen DIF-free items and

may be exactly those items that again induce artificial DIF. Including more anchor items (than,

e.g., four anchor items) reduces the artificial scale shift that is induced by anchor items with

empirical group differences and, thus, can also occur when the anchor is (by definition) pure.

The reason for this is that a longer anchor, that contains some items that induce artificial DIF

but also several items that do not, shifts the scales of the item parameters less strongly than a

shorter anchor, where the proportion of items inducing artificial DIF is higher. The simulation

study presented here was limited to DIF analysis in the Rasch model using the Wald test. Thus,

future research (the interested reader is referred to the online supplement) may investigate the

usefulness of the iterative-forward-SA method for other IRT models and combine it with other

DIF detection methods.
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Notes

1. In case all items were excluded from the anchor (which happened in only 7 out of 154,000 replica-

tions), one single-anchor item was chosen randomly in our simulation study.

2. Technically speaking, this procedure is a combination of the constant and the iterative anchor class

because it allows a varying anchor length, but its length is limited to a prespecified number of items.

However, as in the subsequent simulation, it turned out that always four anchor items were selected

for the final anchor, here the anchor class is classified as constant. Note that a significance level of .05

was used, but, of course, it would also be possible to choose, a higher level such as .30 as suggested

by Wang (2004).

3. In addition to these item parameter values b = (22.522, 21.902, 21.351, 21.092, 20.234, 20.317,

0.037, 0.268, 20.571, 0.317, 0.295, 0.778, 1.514, 1.744, 1.951, 21.152, 20.526, 1.104, 0.961, 1.314,

22.198, 21.621, 20.761, 21.179, 20.610, 20.291, 0.067, 0.706, 22.713, 0.213, 0.116, 0.273,

0.840, 0.745, 1.485, 21.208, 0.189, 0.345, 0.962, 1.592), the main results with various other item

parameter settings were replicated (results not shown). Therefore, the authors are confident that the

different behavior of the anchor methods is not limited to the settings investigated here.

4. It may appear as a drawback that the iterative forward anchor class uses a short anchor in the initial

steps, beginning with only one anchor item located by the respective anchor selection strategy. The

resulting DIF tests may lack statistical power due to fact that the anchor is short. However, this does

not affect the performance of the new iterative forward anchor methods as the test results are only

used for the decision whether the anchor should include one more anchor item. Thus, a small statisti-

cal power of the DIF tests in the first iterations automatically leads to a longer anchor that is expected

to increase the power of the actual DIF test in the final step.
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