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Abstract

The non-compensatory class of multidimensional item response theory (MIRT) models fre-
quently represents the cognitive processes underlying a series of test items better than the com-
pensatory class of MIRT models. Nevertheless, few researchers have used non-compensatory
MIRT in modeling psychological data. One reason for this lack of use is because non-
compensatory MIRT item parameters are notoriously difficult to accurately estimate. In this arti-
cle, we propose methods to improve the estimability of a specific non-compensatory model. To
initiate the discussion, we address the non-identifiability of the explored non-compensatory
MIRT model by suggesting that practitioners use an item-dimension constraint matrix (namely, a
Q-matrix) that results in model identifiability. We then compare two promising algorithms for
high-dimensional model calibration, Markov chain Monte Carlo (MCMC) and Metropolis–
Hastings Robbins–Monro (MH-RM), and discuss, via analytical demonstrations, the challenges in
estimating model parameters. Based on simulation studies, we show that when the dimensions
are not highly correlated, and when the Q-matrix displays appropriate structure, the non-
compensatory MIRT model can be accurately calibrated (using the aforementioned methods)
with as few as 1,000 people. Based on the simulations, we conclude that the MCMC algorithm is
better able to estimate model parameters across a variety of conditions, whereas the MH-RM
algorithm should be used with caution when a test displays complex structure and when the
latent dimensions are highly correlated.
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Diagnostic assessments are increasingly used to measure educational outcomes and

psychological constructs (Rupp, Templin, & Henson, 2010). Recent psychometric, statistical,

and computational advances have improved the performance and widened the availability of

these models in measuring complex psychological phenomena (Roussos, Templin, & Henson,

2007). In particular, successfully integrating diagnostic models in large-scale, standardized

testing can better direct feedback on student strengths and weakness to significantly improve

instruction and learning (Chang, 2012).

In psychometrics, two distinct classes of models have been proposed for cognitive diagnostic

purposes, namely, multidimensional item response theory (MIRT) models and diagnostic classi-

fication models (DCMs). The major difference between MIRT and DCM is how they concep-

tualize the latent space. In DCMs, the latent space is assumed to consist of dichotomous skills

that combine to form K-dimensional, discrete cognitive states. Conversely, MIRT models (i.e.,

latent trait models) consist of continuous skills that comprise a K-dimensional, continuous

latent trait vector. Whether to use a particular type of model depends on whether practitioners

should treat skills as discrete or continuous (Stout, 2007). One rule of thumb in deciding

between models is that if the attributes measured by a test, questionnaire, or inventory are

broadly defined, such as general math ability, then a continuous latent trait is typically more

informative. Otherwise, if the attributes are finer grained, such as mastering the chain rule in

calculus, then a discrete constellation of latent traits should be assumed.

A fundamental restriction common to either set of multidimensional models is specifying

whether the traits or states combine in a compensatory or non-compensatory fashion. In com-

pensatory latent trait models, examinees with high ability on one dimension can compensate

for lower abilities on the other dimensions. Compensatory tasks often assume that examinees

use one of several, alternative strategies for solving each problem (Embretson & Yang, 2013).

Conversely, non-compensatory models (also called conjunctive models) assume that examinees

must possess all skills comprising an item to obtain a correct response to that item. Conjunctive

approaches tend to be popular when modeling cognitive traits because the process of solving a

cognitive problem is often seen as successfully executing a series of steps, in order, each of

which depends on a different skill.

Unfortunately, the multiplicative structure of conjunctive MIRT (C-MIRT) presents severe estima-

tion challenges. Unlike compensatory models, non-compensatory models often necessitate separate

difficulty parameters for each item on each dimension. As Bolt and Lall (2003) noticed, estimating

these parameters ‘‘requires sufficient variability in the relative difficulties of components across items

to identify the dimensions’’ (p. 396). Therefore, despite a non-compensatory structure potentially

modeling cognitive processes better than a compensatory structure, few authors have proposed meth-

ods for estimating non-compensatory MIRT model parameters or advocated using non-compensatory

MIRT models in practical applications. The aim of this article is, therefore, to present a restricted and

estimable version of the C-MIRT model and compare several methods of estimating its parameters.

The organization of the article is as follows. First, the original C-MIRT model is introduced, and a

restricted version that is the focus of this article is proposed. We then present two algorithms used in

model calibration (the details of which are outlined in Appendices A and B of the online version of

this article) then, using analytical and graphical methods, the properties of conjunctive models and

corresponding reasons for the simulation results are discussed. Finally, the performance of each algo-

rithm is explored via an extensive simulation study.

C-MIRT Models

The simplest (Rasch) version of the C-MIRT model (Bolt & Lall, 2003; Embretson, 1984;

Whitely, 1980) defines the probability of a correct response to item j by examinee i as
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P Xij = 1jui1, . . . , uiK

� �
=
YK
k = 1

exp uik � bjk

� �
1 + exp uik � bjk

� �, ð1Þ

where bi1, . . . , biK are the K component-specific difficulty parameters of item i. Unlike com-

pensatory IRT models, non-compensatory models include separate item-specific difficulty

parameter for each ability dimension. A simple explanation of Model 1 is that a correct

response to item i requires the successful completion of a sequence of K task components,

and bi1, . . . , biK correspond to the difficulty of successfully executing each component.

One extension of the C-MIRT model, the multi-component latent trait model (MLTM;

Embretson, 1984, 1997), links being able to apply the necessary attributes with being able to

correctly answer an item. The item response function (IRF) for the ith examinee and the jth

item in MLTM is defined as

P Xij = 1
� �

= a
Y

k

P Xijk = 1
� �

+ g 1�
Y

k

P Xijk = 1
� � !

, ð2Þ

where P(Xijk = 1) is the probability that examinee i has applied attribute k to item j, a is the

probability that item j is correctly solved when all of the necessary components are success-

fully applied to the item, and g is the probability that item j is correctly solved when at least

one of the necessary components are not successfully applied to the item. The a-parameter

of Equation 2 can be interpreted as the probability of using a meta-component, such as exec-

utive functioning (Embretson, 1984), to correctly answer an item, whereas the g-parameter

can be interpreted as the probability of using an alternative method, such as guessing, to cor-

rectly answer an item. According to the MLTM, the probability of person i correctly apply-

ing attribute k to item i depends on the ability of person i on skill k (uik) and the difficulty of

item j on skill k (bik):

P xijk = 1
� �

=
exp uik � bjk

� �
1 + exp uik � bjk

� � : ð3Þ

MLTM uses the same unidimensional IRFs as C-MIRT to model both the probability of suc-

cessfully applying each skill and the probability of successfully executing all of the necessary

skills.

Although MLTM and C-MIRT are similar in structure, they differ in how their model

parameters are usually estimated. Bolt and Lall (2003) and Babcock (2011) estimated both item

and examinee parameters of the C-MIRT model via Markov chain Monte Carlo (MCMC).

Conversely, Maris (1999) proposed estimating the MLTM by treating attribute-specific

responses, the xijks, as missing data and using the EM algorithm. Maris’s method improved over

Embretson, who originally assumed that both the item and attribute within item responses, xij

and xijk, were observed. Observing xijk greatly simplifies estimation but is nearly impossible to

obtain in practice. In this article, we present two algorithms in detail, MCMC and Metropolis–

Hastings Robbins–Monro (MH-RM), which should capably estimate parameters of the MLTM

without requiring observable attribute-specific item responses. Unlike previous attempts at esti-

mation, we add an additional term to the model—the Q-matrix—which removes indeterminacy

inherent in the original MLTM and also simplifies parameter estimation. Before detailing the

model estimation methods, we explain the purpose of restricting item loadings by means of a

Q-matrix.
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Restricted C-MIRT (RC-MIRT) Model

Without sufficient restrictions on the item parameter or person parameter matrices, multidimen-

sional IRT models manifest both metric and rotational indeterminacy. Metric indeterminacy can

be resolved by setting b1k = 0 8k 2 f1, 2, . . . , Kg, a specification recommended by both Maris

(1995) and Bolt and Lall (2003). However, arbitrary restrictions on the item parameter matrix

require post-equating the b̂s and ûs back to the original metric of the generating parameters.

Instead, we fix the mean of estimated ability to be a vector of zeros. Anchoring u = 0 is a

common method of mitigating indeterminacy in unidimensional IRT models and does not

require post-equating the item parameters.

After setting a metric, one must also ensure that the ability estimates measure the appropri-

ate latent traits. Bolt and Lall (2003) observed dimension switching over stages of a Markov

chain and suggested inspecting the history of a chain for inadvertent switching. If switching

occurs, they advised imposing an ordinal constraint across a single item’s difficulty parameter

and restarting the chain. In contrast to previous suggestions, we recommend establishing a Q-

matrix to force particular items to load on particular attributes (see Embretson & Yang, 2008,

2009, 2013, who recently proposed a similar matrix, the C-matrix of Embretson & Yang, 2012,

to ensure model identification). Q-matrices have been implemented in DCM (Tatsuoka, 1995) to

link individual items with the attributes that those items measure. Specifically, a Q-matrix con-

tains J rows (representing items) and K columns (representing dimensions or attributes) of 1s

and 0s. If the jth item loads on the kth attribute, then the element in row j and column k should

be 1. Otherwise, the (j, k)th element should be 0. DCM researchers generally assume that Q-

matrices are constructed by subject matter experts and/or test developers (McGlohen & Chang,

2008; Roussos, DiBello, Henson, Jang, & Templin, 2008) and are known prior to model calibra-

tion. Recently, though, Q-matrix construction by means of a priori knowledge is proving to be

time-consuming (e.g., Roussos et al., 2007), and several authors (e.g., de la Torre, 2008; Liu,

Xu, & Ying, 2012) have proposed statistical methods designed to empirically estimate the Q-

matrix.

Statistically, McDonald (2000) provided the rationale for an item-restriction matrix by show-

ing that a sufficient condition for identifying within-item dimensional structure for a compensa-

tory multidimensional model is for at least two items (if Cov (u) is not a diagonal matrix) or

three items (if Cov (u) is a diagonal matrix) measuring a specific uk to load only on the kth

dimension. Therefore, if each trait has several ‘‘unidimensional’’ items, then the compensatory

MIRT model is properly identified, and estimation will occur in the proper orientation. With

regard to non-compensatory models, Babcock (2011) found that at least six items were needed

to load separately on each dimension for accurate estimation of the C-MIRT model. Assuming

that an appropriate Q-matrix is specified, estimation is ready to proceed.

Hereafter, we assume that practitioners have a priori knowledge of the Q-matrix structure

for any set of MLTM items. Imposing a Q-matrix on MLTM estimation aligns MLTM test

development theory with cognitive diagnosis theory and helps avoid dimensional indeterminacy

inherent in the original MLTM. Given an appropriate Q-matrix, let qjk = 1 if item j loads onto

dimension k and qjk = 0 otherwise. Then, the RC-MIRT model becomes

P Yij = 1jui1, . . . , uik

� �
= pij = a� gð Þ

YK
k = 1

exp uik � bjk

� �
1 + exp uik � bjk

� � !qjk

+ g: ð4Þ

For the purposes of this article, we restrict the a-parameter to be 1 and the g-parameter to be

0. These constraints are necessary due to one of the proposed algorithms, MH-RM, requiring

inversion of a sizable matrix. Setting a = 1 and g = 0 simplifies this matrix to block-diagonal
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form and allows inversion to proceed while avoiding potential numeric difficulty. If a and g

must be estimated (either due to theory or model fit), then one could easily estimate these para-

meters using MCMC (see Appendix B of the online supplementary material for additional esti-

mation details).

Model Calibration

In this section, two algorithms—MCMC and MH-RM—that might adequately calibrate the

RC-MIRT model are considered. MCMC is especially flexible in estimating model parameters

when response data come from an (sparse data) adaptive testing design. Unlike MCMC, the

MH-RM algorithm, which combines elements from MCMC with stochastic approximation, has

a strict convergence criterion reminiscent of conventional maximization routines. MH-RM was

proposed by Cai (2008) and successfully implemented in several commercial programs (e.g.,

IRTPRO, Cai, du Toit, & Thissen, 2011, and FlexMIRT, Cai, 2012) for calibrating multigroup,

multilevel, and multidimensional IRT models. Unfortunately, all previous applications have

used MH-RM to estimate parameters of models with linear (compensatory) structure. Little

research has compared MH-RM with MCMC in a more difficult maximization problem, such

as that found in estimating parameters of a nonlinear (conjunctive) IRT model.

MCMC Versus MH-RM

The technical details of both the MCMC and MH-RM algorithms, as applied to the RC-MIRT

model, are outlined in Appendices A and B, respectively, of the online version of this article.

MH-RM is an alternative algorithm to MCMC that, as the name suggests, synthesizes elements

from MCMC with stochastic approximation. At a general level, MH-RM is a data-augmented

Robbins–Monro algorithm driven by the random imputations produced by a Metropolis–

Hastings sampler (see Cai, 2010a, 2010b, for details of the general algorithm). Due to its sto-

chastic component, the MH-RM algorithm supplies a flexible and efficient mechanism for han-

dling complex parametric structures, such as those of the C-MIRT model. MH-RM consists of

three basic steps: stochastic imputation, stochastic approximation, and a Robbins–Monro

update. In every iteration of the algorithm, these three steps are sequentially executed, and the

algorithm terminates after satisfying a particular convergence criterion. With regard to the RC-

MIRT model, the known Q-matrix restricts certain b-parameters to be zero, which affects the

MH-RM equations, and, ultimately, identifiability.

To facilitate a fair comparison between the MH-RM and the MCMC algorithms, we adopt a

Bayesian version of the MH-RM algorithm, which is also described in Appendix B of the online

version of this article. Note that the idea behind MH-RM is to let simple, stochastic imputation

approximate the expectation step of EM in lieu of high-dimensional integration (over the space

of u). Unsurprisingly, one can adopt EM to maximize a posterior distribution instead of a likeli-

hood function, and therefore, we consider this approach (MH-RM with a prior distribution) as

an additional experimental condition.

Usually, the objective of marginal maximum likelihood estimation (and thus MH-RM esti-

mation) is to accurately estimate the item parameters. The examinee parameters, by contrast,

are usually treated as nuisance parameters in model calibration. However, if one does need to

estimate both item and examinee parameters, then a simple solution would be to estimate item

parameters using MH-RM, then treat item parameters as known, and then estimate examinee

parameters using a standard (e.g., maximum likelihood, Bayesian modal, expected-a-posteriori)

method. In the next section, we discuss additional challenges in estimating MLTM model
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parameters. We then compare the performance of MCMC and MH-RM (as well as Bayesian

MH-RM) in estimating parameters of the MLTM model in a comprehensive simulation study.

Analytical Discussions

Non-compensatory models have been shown to be much more difficult to calibrate than com-

pensatory models under similar conditions (Bolt & Lall, 2003). Therefore, before detailing the

simulation studies, we first discuss analytical properties of the RC-MIRT model that lead to

challenges in model calibration. These analytical properties include the Q-matrix structure and

the ultimate form of the likelihood function. (An additional difficulty arises for large correla-

tions between ability dimensions. Due to space constraints, we include a description of this phe-

nomenon in Appendix D of the online supplement.)

The role of Q-matrix: complex versus simple structure. We had earlier claimed that the Q-matrix

must be of a particular form for estimation to proceed. Previous authors noticed that a certain

number of items must load on only one dimension for the C-MIRT model to be accurately cali-

brated (Babcock, 2011). In this subsection, we analytically show why items loading on a single

dimension are typically preferred. For simplicity, assume a = 1, g = 0, and K = 2. If an item

loads on both dimensions, then the asymptotic variance of b̂j1, var(b̂j1), is

var b̂j1

� �
=

1PN
i = 1

pi1pi2 1�pi1ð Þ2
1�pi1pi2

� � PN
i = 1

pi1pi2 1�pi2ð Þ2
1�pi1pi2

� �
�

PN
i = 1

pi1pi2 1�pi1ð Þ 1�pi2ð Þ
1�pi1pi2

� �2
,

where pi1 =
exp(ui1�bj1)

1 + exp(ui1�bj1)
and pi2 is defined in the similar fashion. But if item j loads on only the

first dimension, then the asymptotic variance of b̂j1 becomes

var� b̂j1

� �
=

1PN
i = 1

pi1 1� pi1ð Þ
:

One can easily verify that var�(b̂j1) � var(b̂j1). Therefore, MLTM items loading on a single

dimension tend to have smaller sample to sample variability than items loading on multiple

dimensions and, thus, have parameters that are easier to accurately estimate.

Estimation errors contained in u estimates will likely to carry along and affect item param-

eter recovery ultimately. Thus, one could also estimate the effect of Q-matrix structure on the

precision in u estimates. To do this, write the likelihood function for a single examinee, ui,

given a set of J items as

L X jui, bð Þ=
YJ

j = 1

Y2

k = 1

exp uik � bjk

� �
1 + exp uik � bjk

� � !qjk
" #xij

1�
Y2

k = 1

exp uik � bjk

� �
1 + exp uik � bjk

� � !qjk
" #1�xij

: ð5Þ

Define pijk =
exp (uik�bjk )

1 + exp (uik�bjk )
for clarity, and partition the Fisher information matrix into

IðuiÞ ¼
I 11ðuiÞ I 12ðuiÞ
I 21ðuiÞ I 22ðuiÞ

� 	
. Then, elements of the top row of the information matrix become

I 11 uið Þ=
XJ

j = 1

pij1pij2 1� pij1

� �2

1� pij1pij2

" #qj1qj2

pij1 1� pij1

� �
 �qj1(1�qj2)
0ð Þ(1�qj1)(1�qj2)
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and

I 12 uið Þ=
XJ

j = 1

pij1pij2 1� pij1

� �
1� pij2

� �
1� pij1pij2

� �qj1qj2

0ð Þ1�qj1qj2 :

To find elements of the bottom row of I(ui), simply switch pij1 and pij2 in I11(ui) and

I 12(ui). If all items load on both dimensions, then the information matrix obviously becomes

I uið Þ=

PJ
j = 1

pij1pij2 1�pij1ð Þ2
1�pij1pij2

PJ
j = 1

pij1pij2 1�pij1ð Þ 1�pij2ð Þ
1�pij1pij2PJ

j = 1

pij1pij2 1�pij1ð Þ 1�pij2ð Þ
1�pij1pij2

PJ
j = 1

pij1pij2 1�pij2ð Þ2
1�pij1pij2

0BBB@
1CCCA:

But if t2 items load exclusively on the first dimension, t3 items load exclusively on the second

dimension, and the remaining t1 items load on both dimensions (so that J = t1 + t2 + t3), then the

information matrix changes to

I� uið Þ =

Pt1
j = 1

pij1pij2 1�pij1ð Þ2
1�pij1pij2

+
Pt1 + t2

j = t1 + 1

p�ij1 1� p�ij1

� � Pt1
j = 1

pij1pij2 1�pij1ð Þ 1�pij2ð Þ
1�pij1pij2Pt1

j = 1

pij1pij2 1�pij1ð Þ 1�pij2ð Þ
1�pij1pij2

Pt1
j = 1

pij1pij2 1�pij2ð Þ2
1�pij1pij2

+
Pt1 + t2 + t3

j = t1 + t2 + 1

p�ij2 1� p�ij2

� �
0BBB@

1CCCA,

where p�ij1 might be smaller than pij1 for j = t1 + 1, . . . , t1 + t2 because a single dimension must

now account for the earlier multiplicative structure across two dimensions. If ui is estimated by

means of maximum likelihood estimation, then var(bui) = I�1(ui), so that var(ûi1) = ½I�1(ui)�11.

Although we could not find any explicit analytical condition under which

½I��1(ui)�11 � ½I�1(ui)�11, we found that this inequality is often satisfied for a majority

of examinees.

To illustrate this idea, we selected 3,721 uis on a two-dimensional grid, such that Y1 = Y2 =

f�3:0, � 2:9, � 2:8, . . . , + 2:8, + 2:9, + 3:0g, Y2 = Y13Y2, and ui2Y2. We then chose a test

length of J = t1 + t2 + t3 = 60, and we sampled b-parameters from either N (0, 1) or N (� 1, 1).

The latter density was selected because the difficulty of each item-by-attribute should be low

for the probability of a correct response to be sufficiently high due to the multiplicative structure

of a non-compensatory model (Bolt & Lall, 2003). Using randomly generated b-parameters, we

considered tests conforming to four Q-matrix structures: t2 = t3 = 0, 10, 20, and 30. Then the

number of cases (out of 3,721) that the inequality ½I��1(ui)�11 � ½I�1(ui)�11 was satisfied was

found, and this number was averaged over 50 replications.

The results are displayed in Table 1 and can be explained pretty succinctly: var(ûi1) is gener-

ally smaller when at least some items load only on a single dimension (n2 = n3� 10) than when

all items load on both dimensions. An additional discussion about the role that the Q-matrix

plays in facilitating parameter estimation of tests displaying hierarchical structure (Rupp &

Templin, 2008) is provided in Appendix C of the online version of this article.

The challenge of optimization-based method. As opposed to MCMC, the MH-RM algorithm must

implicitly maximize a likelihood function through Robbins–Monro updates. The precision of

MH-RM thus depends on the concavity of this function. As an illustration, Figure 1 shows a

log-likelihood surface as well as the corresponding contours of equal density for two items mea-

suring two dimensions. As is easily seen in the plot, both items include a relatively large region
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near the maximum with nearly indistinguishable log-likelihood values. Due to the relatively flat

likelihood function, the standard MH-RM algorithm should have trouble finding the maximum

and result in parameter estimates with excessive error. To overcome instability in likelihood

estimates, two corrections to the standard MH-RM algorithm were considered. First a version of

the MH-RM algorithm that maximizes the posterior distribution rather than the likelihood func-

tion was attempted. Due to a moderately informative prior, the posterior distribution should be

more peaked and, thus, easier for an algorithm to maximize. Also the stochastic imputation step
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Figure 1. Log-likelihood function surface and contour of b for two items.
Note. The black dot in the contour plot denotes the position of the true parameter.

Table 1. Number of Examinees (Out of 3,721) That Satisfy the Inequality I��1
11 � I�1

11 .

n2 = n3 = 10 n2 = n3 = 20 n2 = n3 = 30

b;N (� 1, 1) 3,682 3,634 3,346
b;N (0, 1) 3,716 3,715 3,661
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of the MH-RM algorithm was tweaked to depend on the degree of correlation between latent

ability. Specifically, the ‘‘burn-in’’ size of the imputation sampler (i.e., mr) was increased given

increased correlations between true ability dimensions.

Simulation Study

A simulation study was conducted to determine the performance of both the MCMC and MH-

RM algorithms on the accuracy of item parameter estimates. To keep things simple, RC-MIRT

models with three dimensions and three levels of correlation among pairs of dimensions, r = .2,

r = .5, and r = .75, were considered. Higher correlations among the dimensions should create

difficulties in model estimation (e.g., Babcock, 2011). The sample consisted of either n = 1,000

or n = 2,000 simulees, with ability vectors generated from a multivariate normal distribution

where m = 0 and S2u =

1 r r

r 1 r

r r 1

0@ 1A. We simulated responses of examinees to tests of length

J = 30 or J = 45 with either a simple or complex Q-matrix structure. If the Q-matrix was ‘‘sim-

ple’’ in structure, then one third of the items loaded exclusively on each of the three dimen-

sions. Conversely, if the Q-matrix was ‘‘complex’’ in structure, then one sixth of the items

loaded exclusively on each of the three dimensions, and the remaining items randomly loaded

on either two or three dimensions (see Table E1 in Appendix E of the online supplement for an

example of complex Q-matrix that was used in one of the simulation conditions). Items that

loaded on a single dimension had difficulty parameters generated from a normal distribution

with a mean of 0 and a variance of 1.5. Otherwise, difficulty parameters were generated from a

normal distribution with a mean of 21.0 and a variance of 1.5 (see Bolt & Lall, 2003, who

found that difficulty parameters generated from the latter distribution most closely matched

those observed in Embretson, 1983). The design therefore has 3 (correlations) 3 2 (sample

sizes) 3 2 (test lengths) 3 2 (Q-matrix structures) = 24 conditions. For each condition, results

across 50 replications were averaged (using the median rather than the mean). Most of the

code was written in R (R Core Team, 2012) with some of the heavy computations wrapped in a

C loop.

The purpose of this study was to compare three parameter estimation algorithms: MCMC,

MH-RM, and a Bayesian version of MH-RM. The MCMC algorithm differs from Babcock’s

(2011) in two important ways: (a) Initial values were obtained using an informative method;

see Appendix A of the online supplement, and (b) the inverse-Wishart distribution was used as

the prior for the unknown covariance matrix, Su. For both of the MH-RM algorithms, the item

parameters were assumed to be targets of calibration, so that the Metropolis–Hastings portion

of the algorithm sampled person parameters and the ability covariance matrix. As discussed in

Appendix B of the online supplement, the degree of imputation ‘‘burn-in’’ (i.e., mr) was

increased as r increased. Specifically, the number of ‘‘burn-in’’ iterations given true correla-

tions of r = .25, .50, and .75 were mr = 20, 40, and 60, respectively. As in any maximization

algorithm, the convergence of MH-RM depends on the proximity of the initial values to the

maximum of the function. For each iteration of the MH-RM algorithm, the behavior of para-

meter updates were closely monitored and were (rarely) restarted the algorithm if a divergence

were detected. Simulation results and computation times were recorded only in the case of suc-

cessfully converged runs (at e\ .001). The eventual calibration accuracy of each algorithm for

a given condition was determined via the mean-squared error (MSE; that is, MSE(bk) =
1
J

PJ
j = 1 (b̂jk � bjk)

2
qjk), average bias (i.e., bias(uk) = 1

N

Pj
j = 1 (b̂jk � bjk)qjk), and correlation coef-

ficient between the true and estimated parameters. Results are presented in Table 2.1 Note that
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the results were aggregated over the three b-parameters due to the space limit in Table 2, and

the full results are presented in Appendix E in the online supplement.

Consider the accuracy of the parameter estimates first, as shown in Table 2. When every

items loads on only one dimension, then all three algorithms tend to accurately recover the

item difficulty parameters. Notice that for those conditions with a simple Q-matrix, the bias

is nearly zero, the MSE is very small, and the correlation between the estimated and true

parameters is close to 1 irrespective of the value of r. Moreover, for these conditions, the

MH-RM and Bayesian MH-RM algorithms are much faster than MCMC. When items are

allowed to load on multiple dimensions, then, as predicted, MH-RM results in less accurate

parameter estimates than MCMC. Adding a prior to the MH-RM algorithm helps stabilize

the estimation process. Notice that Bayesian MH-RM yields fewer required iterations and a

shorter average computation time than standard MH-RM. Moreover, despite the Bayesian

MH-RM estimates often resulting in reduced sample to sample variability as compared with

standard MH-RM, the Bayesian MH-RM estimates are often much more biased.

Interestingly, the relative estimation accuracy of MCMC over alternative estimation methods

increases as the correlation between the dimensions is increased. Therefore, MCMC appears

less affected by any underlying correlation between latent ability dimensions than the MH-

RM algorithms.

As shown in Table 2, the MH-RM algorithm also results in a highly variable running time

compared with MCMC. It was decided to run MCMC the same number of iterations regardless

of condition, so the corresponding computation times only depend on the size of the item and

person parameter matrices. Conversely, MH-RM relies on a convergence criterion for terminat-

ing each estimation loop. With a Q-matrix that displays simple structure, MH-RM quickly finds

the maximum and is, therefore, a much more efficient algorithm than is MCMC. However,

when a test exhibits complex structure, then the number of iterations required for convergence

dramatically increases, and MH-RM is no longer more computationally efficient than MCMC.

Not surprisingly, holding everything else constant, the MH-RM algorithm terminates in fewer

iterations for n = 2,000 as compared with n = 1,000.

Table 3 presents the median standard errors corresponding to each of the conditions and

algorithms. Again, the results were aggregated over b1, b2, and b3. For the MCMC algorithm,

the ‘‘standard error’’ is defined as the standard deviation of the marginal posterior distribution

and estimated from 5,000 post burn-in draws of the MCMC sampler. Conversely, the estimated

standard error for both MH-RM algorithms is simply the square-rooted diagonal elements of

the negative, inverse Hessian matrix (Cai, 2008). As shown in Table 3, the standard errors

obtained using the MH-RM algorithm are uniformly larger than those obtained using either the

MCMC algorithm or the Bayesian MH-RM algorithm (excepting very few cases with a com-

plex Q-matrix and a correlation of r = .75 between the dimensions). Because an informative,

multivariate normal we used prior on the item difficulty parameters in MCMC and Bayesian

MH-RM, the resulting posterior variance of b̂ should be smaller than likelihood-based, asymp-

totic variance estimated from MH-RM. Oddly, when a test displays complex structure and

when r = .75, then MH-RM algorithms perform worse (as evidenced by increased MSE, aver-

age bias, and/or standard error of the item parameters in a few cells) for the larger sample size

condition. This result is unexpected, and further analyses and simulations will be to pinpoint its

underlying reasons.

Discussion and Conclusion

For researchers who study MIRT, a distinction is often made between compensatory and non-

compensatory models (see, e.g. Ackerman, 1989; Embretson & Reise, 2000). Both classes of
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models make assumptions about the process underlying examinee responses to items.

Compensatory models are appropriate for items with disjunctive component processes (Maris,

1999) such as examinees being able to use multiple strategies to arrive at the solution (Reckase,

1997). On items with many routes to an answer, one ability can naturally compensate for defi-

ciencies in other abilities. Contrarily, non-compensatory models, such as those discussed in this

article, would better represent items with conjunctive component processes (Embretson &

Yang, 2013; Maris, 1999) such as a mathematical word problem requiring both reading and

math ability (Bolt & Lall, 2003). Unlike the compensatory MIRT models, which are relatively

easy to calibrate, non-compensatory models include component-specific difficulty parameters

that add complexity to model calibration. Accurate estimation of non-compensatory model

parameters requires sufficient variability in the relative difficulties of components across items

(Bolt & Lall, 2003).

Examined were the relative strengths and weaknesses of calibrating a restricted version of a

one-parameter non-compensatory MIRT model using two promising algorithms: MCMC and

MH-RM. Unlike previous simulation studies by Bolt and Lall (2003) or Babcock (2011),

restrictions to constrain certain items to load on specific dimensions were explicitly imposed

and, as a consequence, increased the estimability of model parameters (Embretson & Yang,

2013). Based on preliminary simulations, when the correlation between true ability was small,

both MCMC and MH-RM resulted in similar and accurate parameter estimates. But as the cor-

relation between true ability increased, both MH-RM algorithms were much less precise than

MCMC at recovering true item parameters. It was predicted that the worsen parameter esti-

mates under high correlation scenario would be offset by more items, and future studies could

certainly extend the current test length of 45 to a longer length. Given the comparable running

times of all three algorithms, the authors would caution against estimating RC-MIRT item para-

meters via a MH-RM algorithm except in the simplest cases. The study supported both Bolt

and Lall (2003) and Babcock (2011), who found that high correlations between ability dimen-

sions lead to poorer item parameter estimation. With high correlations between ability, a wide

variety of item parameters could accurately fit the data, which implies large standard errors and

difficult estimation. And as shown in this article, items loading on multiple dimensions resulted

Table 3. Standard Error of Parameter Estimates.

r n

J = 30 J = 45

MCMC MH-RM B MH-RM MCMC MH-RM B MH-RM

Simple Q .2 1,000 0.076 0.149 0.149 0.080 0.154 0.152
2,000 0.057 0.109 0.111 0.059 0.101 0.102

.5 1,000 0.082 0.190 0.184 0.084 0.183 0.182
2,000 0.057 0.143 0.141 0.056 0.133 0.129

.75 1,000 0.081 0.276 0.269 0.081 0.236 0.230
2,000 0.061 0.207 0.189 0.057 0.200 0.187

Complex Q .2 1,000 0.227 0.248 0.237 0.269 0.248 0.237
2,000 0.178 0.198 0.194 0.194 0.202 0.196

.5 1,000 0.319 0.294 0.292 0.259 0.283 0.264
2,000 0.184 0.241 0.238 0.201 0.227 0.219

.75 1,000 0.429 0.405 0.422 0.354 0.371 0.338
2,000 0.369 0.439 0.500 0.300 0.410 0.363

Note. MCMC = Markov chain Monte Carlo; MH-RM = Metropolis–Hastings Robbins–Monro; B MH-RM = Bayesian

Metropolis–Hastings Robbins–Monro.
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in increased variability (and, therefore, decreased information) with respect to the difficulty

parameters on each dimension. Even so, the MCMC algorithm appears to be relatively robust

with respect to the magnitude of correlation between different abilities. However, for tests dis-

playing simple structure, all three algorithms generated nearly indistinguishable, accurate

results.

Recently, Embretson and Yang (2013) proposed a new model based on the logic underlying

the RC-MIRT model examined in this article. The multicomponent latent trait model for diag-

nosis (MLTM-D) assumes that responses to test items depend on both a global, continuous

competency trait (u) and local, finer grained, dichotomous attributes (a). One might apply

the MLTM-D model to tests constructed from a heterogeneous item pool where items differ

in the specific, cognitive operations needed for finding a solution (Embretson & Yang,

2013). Examples of tests potentially fitting a MLTM-D model include accountability tests

and licensure exams. Yet, as emphasized by Embretson and Yang (2013), the estimation of

the MLTM-D model also requires powerful estimation algorithms. The current article is one

of the first few attempts at applying a newly developed algorithm, MH-RM, to an IRT model

with multiplicative structure. The resulting discussion of the pros and cons of MH-RM (and

MCMC) should also apply to models with a more complicated structural form, such as the

MLTM-D model.

As calibration is generally considered the first step toward applying any model to a set of real

data, the focus of this article was primarily on the relative strengths and weaknesses of different

estimation algorithms. However, we bolstered findings from the simulation by examining some

structural aspects of the model, such as briefly showing that items loading on a single dimension

yield more informative ability estimates. If applying any model in practice, practitioners must

also select items to be on an exam. One might wonder how he or she could select the most infor-

mative items in estimating ability. Recall that in a unidimensional Rasch model, ability Fisher

information is maximized when u = b. And in a multidimensional compensatory model (e.g.,

Mulder & van der Linden, 2009; Wang, Chang, & Boughton, 2011), Fisher information is maxi-

mized when item difficulty is equal to a weighted linear combination of the abilities. To demon-

strate what happens in a non-compensatory model, consider a two-dimensional item with q1 =

q2 = 1 (so the item is non-trivial), and a = 1 and g = 0 (for simplicity). Then, the Fisher informa-

tion for ability u1 can be easily expressed as I(u1) = p1p2

1�p1p2
(1� p1)2, where p1 and p2 are both

between 0 and 1. For fixed p2, one can easily verify that I (u1) is maximized when

p1 =
3�

ffiffiffiffiffiffiffiffiffiffi
9�8p2

p
4p2

, which evaluates to a maximum value of I (u1jp2) =
3�

ffiffiffiffiffiffiffiffiffiffi
9�8p2

p

1 +
ffiffiffiffiffiffiffiffiffiffi
9�8p2

p 1� 3�
ffiffiffiffiffiffiffiffiffiffi
9�8p2

p
4p2

� 	2

.

In this equation, I (u1jp2) is monotonically increasing with respect to p2, so that when p2 = 1,

then p1 = .5 and I (u1jp2) is at a maximum. Therefore, an item will result in maximum informa-

tion for a given ability (or, alternatively, an ability vector will result in maximum information

for a given item dimension) if the item is moderately difficult on that dimension and extremely

easy on the other. Generalizing to the K-dimensional case, an item will result in maximum infor-

mation for a given ability if the corresponding component probability is close to .5 and the prod-

uct of the remaining component probabilities is close to 1. Of course, a more rigorous derivation

will be needed to consider the change in information across multiple dimensions simultane-

ously. Yet, the main argument in this article holds that items loading on a single dimension tend

to be more informative at measuring that dimension. Although writing purely unidimensional

items is rather difficult, especially in the context of a non-compensatory, multidimensional test,

these results can provide useful guidelines for item pool construction and test assembly.
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