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Abstract

The use of mixture item response theory modeling is exemplified typically by comparing item
profiles across different latent groups. The comparisons of item profiles presuppose that all
model parameter estimates across latent classes are on a common scale. This note discusses the
conditions and the model constraint issues to establish a common scale across latent classes.
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The use of mixture item response theory (IRT) modeling, which is an integration of IRT and

latent class models, is exemplified typically by comparing item profiles across different latent

groups or latent classes. Mixture IRT modeling provides a useful methodology for identifying

latent subgroups of examinees without having to specify group membership in advance and has

been applied to a variety of problems, for example, modeling guessing (Mislevy & Verhelst,

1990) or speededness behaviors (Bolt, Cohen, & Wollack, 2002), detection of differences in

strategy use in problem solving (Rost & von Davier, 1993), and detection of differential item

functioning (DIF; Cohen & Bolt, 2005; Cohen, Gregg, & Deng, 2005; Dai & Mislevy, 2006;

Samuelsen, 2008), to name a few. Despite the continued popularity of mixture IRT modeling,

there seems to be not enough attention in the mixture IRT literature to the conditions and the

model constraints necessary to establish the parameter estimate comparability between different

latent classes. This article is a note that discusses the issue of scale comparability between latent

classes and what conditions or the model constraints are required to achieve a common scale

across latent classes in the mixture IRT modeling.1 The mixture Rasch model is used (Rost,

1990) for discussion and illustrations.
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Scale Comparability Between Latent Classes

Let us assume that the mixture Rasch model is applied for detecting DIF in a set of real item

responses from a 20-item test. Also suppose that two distinct latent classes (g = 1 and 2) exist.

A practitioner’s purpose here is to identify unknown latent groups and the different item profiles

that characterize the latent classes. The practitioner uses a popular model constraint
P

dig = 0,

where dig is the item difficulty of the ith item in the gth latent class and the summation is over

items at a given g. Suppose that the model estimation is done and correctly identifies two-class

solutions. Now the practitioners have all the results: Two latent classes are identified and 40-

item-difficulty-parameter estimates (20 items 3 2 latent classes) are provided. The practitioner

starts comparing the item difficulties between the two latent classes and makes conclusions rele-

vant to his or her purpose. No further action regarding the scales of the latent classes is taken by

the practitioner. The current mixture IRT literature does not provide any further instructions

beyond this in the applications to real data.

Is
P

dig = 0 sufficient to establish a common scale across the two latent classes for this ‘‘real

data analysis’’? It depends. In the following, the authors posit four scenarios for a test having 20

items and discuss the matter. Note that
P

dig = 0 is sufficient to establish a common scale within

a class, so there is no problem for comparing the model parameter estimates within a class.

First, the truth in the real data is equal to
P

dig = 0. A common scale is achieved across dif-

ferent latent classes after the estimation of the model with the constraint
P

dig = 0. No further

action is required.

Second, the averages of item difficulties for the two latent classes are the same, but they are

not equal to zero, that is,
P

dig = 1 =
P

dig = 2 6¼ 0. A common scale between latent classes is

established with the constraint
P

dig = 0. Again, no further action is required after the model

estimation. The origin of the latent scale is arbitrary. What matters is to recover the differences

between parameter values which are on a common scale across latent classes. Because the

averages of item difficulties are the same for the two latent classes, with the
P

dig = 0 con-

straint, the item difficulty differences between latent classes are recovered correctly on the

same scale regardless of whether the two latent classes follow the same or different ability

distributions.

Third, the situation in this scenario is
P

dig = 1 6¼
P

dig = 2, with ug;N (m, s2). That is, the

two latent classes follow the same distribution for ability while there are differences in the item

profiles and their averages are not the same. Suppose that the average item difficulty of the sec-

ond latent class is higher than that of the first latent class by, for example,
P

dig = 1 = 0 andP
dig = 2 = 20. There will be systematic bias by the amount of one when the item difficulty esti-

mates of the second latent class are compared with the true item difficulties of the second latent

class. Accordingly, the magnitude of the average bias of item difficulty differences between the

two latent classes is also one. Does this pose a problem in a simulation study where researchers

know the data generating true values such as these? The answer is ‘‘no’’ in the simulation case.

The researcher conducting the simulation knows that the mean difference in the latent classes

should reflect this average item profile differences. Therefore, the researcher would do adjust-

ment to the estimated item difficulties by using the estimated latent class mean difference. Note

here the reasons why the researcher is making a post hoc adjustment for the item difficulties

after the model estimation. He or she knows that
P

dig = 0 is violated in the simulation data

and needs to take action on the estimated item difficulties. Also, most of all, note that the key

to success in this action of adjustment is that the ability distributions of the latent classes do not

have the difference in their means. Otherwise, the latent class mean difference may not cor-

rectly show the average item difficulty differences between the two classes. The current mix-

ture IRT literature neither suggest any post hoc linking adjustment to the estimated parameters
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between latent classes for practitioners’ applications to real data analyses nor make an explicit

assumption clearly that latent classes follow the same distribution. In this scenario, it is possible

to achieve a common scale across latent classes with the
P

dig = 0 constraint, but it requires a

post hoc linking procedure and the assumption of no mean differences in the ability distribu-

tions for the latent classes.

Fourth, the latent classes follow different ability distributions in terms of their means

½ug;N(mg, s2
g)� and item profile differences exist and their averages are not equal to each other

½
P

dig = 1 6¼
P

dig = 2�, for example, ug = 1;N(0, 1), ug = 2;N (1, 1), and the average of item diffi-

culties in the second latent group is higher by 1 than the first latent group, that is,
P

dig = 1 = 0

and
P

dig = 2 = 20. (Note that the mixture Rasch model is employed here for discussion, where

the slope parameters of items in the item response function is unity. Therefore, the difference

in s2
g does not pose a problem in establishing a common scale between latent classes.) In this

case, two latent classes have different means (mg = 1 6¼ mg = 2) and the averages of item difficul-

ties from the latent classes are not the same. Estimating the mixture IRT model with theP
dig = 0 constraint fails to provide a common scale across latent classes. Even the use of the

post hoc linking procedure as in the third scenario fails because both the unequal averages of

item difficulties and the latent class ability difference exist together. The higher ability of the

second latent class (mg = 2 = 1.mg = 1 = 0) is offset by the same amount of the positive average

difficulty difference between the two latent classes (E(dig = 2) = 1.E(dig = 1) = 0). Thus, the link-

ing adjustment coefficient, estimated by the class mean difference, is zero (or close to zero in

using a sample estimate). This is tantamount to no adjustment in the estimated item difficulties

for the second latent class. The bias in the item difficulties cannot be corrected even with the

post hoc linking procedure using the estimated latent class mean difference. Therefore, the item

difficulty differences between the latent classes cannot be recovered correctly.

In real data analyses with the use of
P

dig = 0, we now have a few choices to ensure the

establishment of a common scale across latent classes. First, practitioners simply assumeP
dig = 0 or

P
dig = 1 =

P
dig = 2, which is the least favorable option from the authors’ view-

point. Second, assume no mean difference in the ability distributions for latent classes and

always conduct a post hoc linking procedure using the estimated latent class mean difference.

These were never clearly stated in the mixture IRT literature for real data applications. Third, if

we do not want to make such an assumption of no mean difference in the ability distributions

for the latent classes or
P

dig = 1 =
P

dig = 2, we propose the use of class-invariant items, which

was also suggested by von Davier and Yamamoto (2004). Those invariant items have the same

item difficulties across latent classes. Once a set of class-invariant items are available, estimat-

ing the model with both
P

dig = 1 = 0 and the equality constraint for the class-invariant items

(Dg = 1 = Dg = 2 [for the two-class solution], where Dg is a vector containing the class-invariant

item difficulty parameters for the gth class) ensures a common scale across latent classes. The

challenge here is to identify class-invariant items. In this regard, some studies exist in the mix-

ture IRT literature (e.g., Cho, Cohen, & Bottge, 2013; Cho, Cohen, Kim, & Bottge, 2010;

Finch & Finch, 2013; Leite & Cooper, 2010; Maij-de Meij, Kelderman, & van der Flier, 2008,

2010), where a statistical procedure was applied as an attempt to locate class-invariant items in

real data analyses. Finding class-invariant items may be aided by both content-based judgments

and statistical procedure. Further studies on how to find class-invariant items in the context of

mixture IRT modeling are requested in the future. In spite of this challenge of finding class-

invariant items, compared with other constraint approaches discussed previously for establish-

ing a common scale between latent classes, use of class-invariant items is the only approach to

recover the parameter differences correctly in both item profiles and ability distributions for

latent classes when those differences exist simultaneously.
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An alternative, when the estimation method accommodates the latent class population distri-

butions as part of the modeling, is to put constraints on the population ability distributions of

latent classes, for example, ug;N (0, s2
g) for the mixture Rasch model. This constraint ensures

parameter estimate comparability within a latent class. Again, similar issues exist in this popu-

lation distribution mean constraint. The between-class scales may not be always comparable.

When ug;N (0, s2
g) is true in the data or ug;N (m, s2

g), where m 6¼ 0, that is, the same popula-

tion mean across latent classes, a common scale is established between latent classes. If this is

not the case (mg = 1 6¼ mg = 2) and item profiles are different such that averages of item difficul-

ties for latent classes are not the same (
P

dig = 1 6¼
P

dig = 2), ug;N(0, s2
g) is not a sufficient

constraint to establish a common scale between latent classes. Thus, we suggest again the use

of class-invariant items. In estimating the model, both ug = 1;N(0, s2
g = 1) and the equality con-

straint Dg = 1 = Dg = 2 on the class-invariant items are employed. (The population parameters for

g = 2 and all other parameters are freely estimated without any constraints.)

The discussions made so far are applicable to more general models such as the two-parameter

or three-parameter IRT model used in the mixture IRT modeling. ug;N (0, 1) is not sufficient to

provide a common scale between latent classes when the latent class ability distributions are not

identical and item profile differences exist with their averages unequal at the same time. With

the class-invariant item approach, one may use ug = 1;N (0, 1) and the equality constraint

Dg = 1 = Dg = 2 while all the other model parameters are freely estimated.

Example Analysis

In this section, two example estimation results using a real data and simulation data sets are

provided. Note that the purpose of these examples is not to draw substantive conclusions about

the data through in-depth analyses, but to demonstrate the impact of different constraints on the

comparability of the estimates between latent classes. The first analysis with real data employed

dichotomously scored item responses from a 14-item test with the sample size of 109. The test

was designed to assess the effects of an instructional intervention for students’ knowledge of

mathematics. The second analysis used simulated mixture Rasch model item responses: 21-item

dichotomous item responses with the two latent classes (ug;N(0, 1), where g = 1 and 2) and

item profile differences (E(dig = 1) = 0 and E(dig = 2) = 0:6). In the simulation, 6 items were simu-

lated to be class invariant, but the sixth item was not constrained to be equal in the class-

invariant item constraint approach. The number of simulees was 3,000 for each latent class to

ensure high precision of the model parameter estimates.

Two constraint approaches in estimating the mixture Rasch model were used for both real

and simulated data. One is
P

dig = 0 and the other is the class-invariant item approach, where

ug = 1;N (0, s2
g) and the equality constraint on the class-invariant item difficulties, that is,

Dg = 1 = Dg = 2. In addition, in the real data analysis, after the model estimation with
P

dig = 0, a

post hoc linking between latent classes was conducted using class-invariant items and its results

were compared with the other two constraint approaches.2

In the first analysis with real data, for the purpose of locating class-invariant items, results

from a study (using the same data) by Cho et al. (2010) were used, where they employed both

content experts’ knowledge and statistical analysis, and reported three items to be class-

invariant. The authors used those three items in the class-invariant item constraint approach in

this real data analysis. (Note that using these three items as class-invariant based on a previous

study result may not be fully adequate, because there is not yet an unequivocal clear procedure

for locating class-invariant items in the literature.) Both constraint approaches identified two

latent classes based on Akaike information criterion (AIC) and Bayesian information criterion

(BIC) indices. What matters in the estimation of a model, regardless of the chosen constraint
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approaches, is whether the constraint recovers item difficulty differences correctly (not the item

difficulty parameter values themselves). If
P

dig = 0 is sufficient to establish a common scale

between latent classes, item difficulty differences between latent classes should be the same as

those from the class-invariant item approach (ug = 1;N (0, s2
g) and Dg = 1 = Dg = 2). To investigate

how close the item difficulty differences between latent classes were in the two constraint

approaches, estimates for the item difficulty differences between the two classes are shown in

Figure 1. The dark circles indicate item difficulty differences using the
P

dig = 0 constraint and

the gray triangles indicate item difficulty differences obtained using the class-invariant item

approach (ug = 1;N(0, s2
g) and Dg = 1 = Dg = 2). Comparison of results in Figure 1 indicates that

the two sets of recovered item difficulty differences between latent classes were quite

dissimilar.

Furthermore, the post hoc linking (mean-sigma method) between latent classes was

conducted using the three class-invariant items. (See Kolen & Brennan, 2004, for IRT scale

linking techniques.) The white circles in Figure 1 indicate the results from the linking. The

Class 1 estimates were placed onto the Class 2 scale. It is clear that the rescaled item difficulty

differences after the linking process are much closer to those of Class 2. Theoretically, the

rescaled item difficulty differences after the linking should be the same as those from the class-

invariant item approach (ug = 1;N (0, 1) and Dg = 1 = Dg = 2). Now, we have two clearly distinct

sets of estimation results from
P

dig = 0 and the class-invariant item approach

(ug = 1;N (0, 1) and Dg = 1 = Dg = 2) regarding item profile differences. Which set of item diffi-

culty differences between latent classes would you trust? Without the knowledge of class-

invariant items, assuming that the latent class ability distributions have the same mean, a
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Figure 1. Item difficulty differences between two latent classes in a real data analysis.

Paek and Cho 139



different post hoc linking between latent classes may be conducted using the estimated latent

class means as was discussed previously.

The example above used a relatively small data set and results from Cho et al. (2010) to

identify the three class-invariant items. Now, we provide another example using simulated data

where we know the data generating true item difficulty differences and which items are class-

invariant. Biases in the item difficulty difference estimates from the two-class mixture Rasch

model application are shown in Table 1 for the
P

dig = 0 constraint and the class-invariant item

approach (ug = 1;N (0, 1) and Dg = 1 = Dg = 2). Items on which their difficulties had equality con-

straint are indicated by bold type item numbers. The estimation results followed the expected

patterns discussed in the previous section.

The
P

dig = 0 constraint alone without any other constraint or the post hoc linking cannot

recover the item difficulty differences correctly. Average bias (across all items) for item diffi-

culty difference is 0.6 (see the third column: d̂ig = 1 � d̂ig = 2 under
P

dig = 0 in Table 1), showing

the impact of the
P

dig = 0 constraint. Assuming the distributions of the latent classes have the

same means, which is correct in this case, because we simulated the data in such a way, the

amount of average bias 0.6 in the item difficulty difference is now properly reflected in the esti-

mated class mean difference. One can use this latent class mean difference to adjust the item dif-

ficulties of the second latent group and recover the item difficulty differences correctly. The

class-invariant item constraint approach, however, was able to recover the item difficulty differ-

ences between latent classes correctly without any follow-up adjustment (see the average bias in

Table 1. Bias in Item Difficulty Difference in the Two Constraint Approaches From a Simulation Study.

Item No.

True item difficulty difference

Bias in item difficulty difference

P
dig = 0

ug;N(0, 1) and

(Dig = 1 = Dig = 2)

dig = 1 � dig = 2 d̂ig = 1 � d̂ig = 2 d̂ig = 1 � d̂ig = 2

1 24.0 0.44 20.15
2 23.6 0.49 20.11
3 0.0 0.66 0.00
4 22.8 0.55 20.04
5 23.2 0.60 0.01
6 22.0 0.69 0.09
7 0.0 0.57 0.00
8 21.2 0.69 0.10
9 0.6 0.51 20.09

10 21.2 0.66 0.07
11 0.0 0.44 0.00
12 20.8 0.59 20.01
13 21.0 0.68 0.08
14 21.4 0.60 0.00
15 0.0 0.66 0.00
16 2.0 0.59 0.00
17 20.8 0.64 0.04
18 2.8 0.58 20.01
19 0.0 0.69 0.00
20 0.0 0.69 0.10
21 4.0 0.55 20.04
Average 20.60 0.60 0.00
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the last column in Table 1). If this were the two analyses of a real data set done by two indepen-

dent researchers (one uses
P

dig = 0 and the other uses both ug = 1;N (0, 1) and Dg = 1 = Dg = 2),

two sets of clearly dissimilar item difficulty differences (or item profile differences) exist. Note

again that for real data analysis, the practitioner using
P

dig = 0 would simply use the estimation

results without being aware of potential scale incomparability between latent classes. The class-

invariant item constraint approach achieves a common scale between latent classes without

requiring a follow-up adjustment or the assumption of the same mean in the ability distributions

for latent classes.

Summary

This article discussed the conditions and the constraint approaches to establish a common scale

between latent classes in the application of mixture IRT models. When a multiple-group latent

variable modeling is conducted, we always need to deal with the establishment of a common

scale across different ability groups whenever they are included in the model. In this regard, the

issue of scale linking across latent groups in the mixture IRT modeling is not new at all.

Multiple-group IRT (Bock & Zimowski, 1997), test score equating using IRT with a nonequiva-

lent groups anchor test design, and manifest group IRT DIF modeling (e.g., Thissen, Steinberg,

& Wainer, 1993), all these need to handle the same issue of a common scale establishment

across different groups. One of the key differences between these and the mixture IRT modeling

is that the latter does not employ the manifest group membership but latent group membership.

The most common solution to set up a common scale across different manifest groups for these

applications is to employ a set of common items typically called ‘‘anchor items,’’ whose item

parameters are the same across groups. The use of
P

dig = 0 or ug;N (0, 1) alone in the mixture

IRT modeling is equivalent to a separate calibration for each group in the test score equating or

multiple-group IRT applications or manifest group IRT DIF investigations. Without any subse-

quent linking procedure using the anchor items or a concurrent estimation where the anchor

item constraint is utilized, there is no guarantee in establishing a common scale between differ-

ent groups. (See Kolen & Brennan, 2004, for more details of test score equating design and the

equating methods.) If it is appropriate to assume that the two latent or manifest groups follow

the same ability distributions (the same ability means in the mixture Rasch case), ug;N (0, s2
g)

(or
P

dig = 0 with a post hoc linking using the estimated group mean difference) for the Rasch

mixture model and ug;N (0, 1) for the two- and three-parameter IRT mixture models suffice to

construct a common scale across different groups. The use of a set of class-invariant items

requires identification of such items in advance.3 The issue of finding the class-invariant items

is similar to that of finding the anchor (no DIF) items in DIF investigations or linking scales in

the presence of DIF. Research regarding refinement or purification of the scale in the DIF litera-

ture might provide an initial direction to which mixture IRT modelers may pursue in search of

the class-invariant items.

In the mixture IRT literature, despite the surge of its popularity, the issue of scale linking

between latent groups did not receive due attention so far. The authors hope that this article

facilitates practitioners’ and researchers’ understanding of the scale linking issue across latent

classes in the mixture IRT model applications to real data.
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Notes

1. There are other types of mixture modeling. They include latent class models (as mentioned earlier),

factor mixture models, and growth mixture models (e.g., B. Muthén & Asparouhov, 2006; Nylund,

Asparouhov, & Muthén, 2007). The discussion of the mixture modeling in this article centers upon

what is known as the mixture item response theory (IRT) in the IRT literature. Readers who are not

familiar to the mixture IRT modeling, see, for example, Rost (1990) for the details of model definition

and parameterization. The factor mixture model for categorical responses corresponds to the mixture

IRT model.

2. In estimating the mixture Rasch model, the WINMIRA program (von Davier, 2001) was used for the

implementation of
P

dig = 0 and the Mplus program (Muthén & Muthén, 2006) was used for

ug = 1;N (0, s2
g) and Dg = 1 = Dg = 2. The WINMIRA program does not permit imposing the item diffi-

culty equality constraint, while Mplus does not allow the
P

dig = 0 constraint. The implementation of

the constraint ug = 1;N (0, s2
g) and Dg = 1 = Dg = 2 is feasible in the mdltm program (von Davier, 2005),

but Mplus was chosen to illustrate the use of the constraint in this study. The programs’ default options

were used regarding the estimation method and convergence criteria. WINMIRA employs the condi-

tional maximum likelihood and Mplus uses the marginal maximum likelihood estimation method.

Because of the differences in the estimation algorithms, these programs do not produce identical esti-

mates. However, each of the estimation methods employed in each of the program has been studied

well and the estimation differences between these programs are usually small (see Cho, Cohen, &

Kim, 2013). Also the differences observed and illustrated in our example when using different con-

straint approaches were systematically large and following the patterns expected from our discussions

in the previous section. Thus, the programs’ particularities pose little threat on the interpretations of

the observed differences in terms of the different constraint approaches.

3. In the class-invariant item approach, the effect of the different number of class-invariant items is also

not known under the mixture IRT estimation context. The test score equating literature (e.g., Kolen &

Brennan, 2004) suggests that the larger the number of anchor items, the better test score equating is.

We might conjecture some degree of a similar pattern in the estimation of a mixture IRT model with

the class-invariant item constraint, although a single class-invariant item, is theoretically sufficient to

provide a common scale between latent classes. Note that more anchor items may help with the stabi-

lity of the scale across latent classes, but decrease the chance to detect the latent classes.
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