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Abstract

This article introduces two new item selection methods, the modified posterior-weighted
Kullback–Leibler index (MPWKL) and the generalized deterministic inputs, noisy ‘‘and’’ gate
(G-DINA) model discrimination index (GDI), that can be used in cognitive diagnosis computer-
ized adaptive testing. The efficiency of the new methods is compared with the posterior-
weighted Kullback–Leibler (PWKL) item selection index using a simulation study in the context
of the G-DINA model. The impact of item quality, generating models, and test termination rules
on attribute classification accuracy or test length is also investigated. The results of the study
show that the MPWKL and GDI perform very similarly, and have higher correct attribute classi-
fication rates or shorter mean test lengths compared with the PWKL. In addition, the GDI has
the shortest implementation time among the three indices. The proportion of item usage with
respect to the required attributes across the different conditions is also tracked and discussed.
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Recent developments in psychometrics put an increasing emphasis on formative assessments

that can provide more information to improve learning and teaching strategies. In this regard,

cognitive diagnosis models (CDMs) have been developed to detect mastery and nonmastery of

attributes or skills in a particular content area. In contrast to the unidimensional item response

models (IRTs), CDMs provide a more detailed evaluation of the strengths and weaknesses of

students (de la Torre, 2009). Computerized adaptive testing (CAT) has been developed as an

alternative to paper-and-pencil test, and provides better ability estimation with a shorter and tai-

lored test for each examinee (Meijer & Nering, 1999; van der Linden & Glas, 2000). Most of
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the research in CAT has been conducted in the traditional IRT context. However, a small num-

ber of research has recently been done in the context of cognitive diagnosis computerized adap-

tive testing (CD-CAT; e.g., Cheng, 2009; Hsu, Wang, & Chen, 2013; McGlohen & Chang,

2008; Wang, 2013; Xu, Chang, & Douglas, 2003).

One of the main components of CAT is the item selection method. By choosing more appro-

priate methods, better estimates of the examinees’ abilities or attribute vectors can be expected.

Because of the discrete nature of attributes, some of the concepts in traditional CAT such as

Fisher information are not applicable in CD-CAT. The goal of this study is to introduce two

new indices, the modified posterior-weighted Kullback–Leibler index (MPWKL) and the gen-

eralized deterministic inputs, noisy ‘‘and’’ gate (G-DINA) model discrimination index (GDI),

as item selection methods in CD-CAT, and evaluate their efficiency under the G-DINA frame-

work. Their efficiency is compared with the posterior-weighted Kullback–Leibler index

(PWKL; Cheng, 2009). The effects of different factors are also investigated: The item quality

is manipulated, reduced versions of the G-DINA model are used for generating item response

data, and fixed-test lengths and minimum of the maximum (minimax) of the posterior distribu-

tion of attribute vectors (Hsu et al., 2013) are used as stopping rules in the test administration.

With respect to the stopping rules, the former provides a comparison of the efficiency of the

three indices under different fixed-test lengths, whereas the latter provides tailored tests with

different test lengths for each examinee.

The remaining sections of the article are laid out as follows: The next section gives a back-

ground in the G-DINA model and its reduced versions. In addition, the item selection indices

are discussed, and the use of the GDI as an item selection method is illustrated. In the

‘‘Simulation Study’’ section, the design and the results of the simulation study are presented,

and the efficiency of the indices under different conditions is compared. Finally, ‘‘Discussion

and Conclusion’’ section presents with a discussion of the findings of this work and directions

for future research.

CDMs

CDMs aim to determine whether examinees have or have not mastered a set of specific attri-

butes. The presence or absence of the attributes is represented by a binary vector. Let ai = {aik}

be the examinee’s binary attribute vector for k = 1, 2, . . . , K attributes. The kth element of the

vector is 1 when the examinee has mastered the kth attribute, and it is 0 when the examinee has

not mastered it. Similarly, let Xi = {xij} be the binary response vector of examinee i for a set of

J items in which i = 1, 2, . . . , N and j = 1, 2, . . . , J . In CDM, the required attributes for each item

are represented in a Q-matrix (Tatsuoka, 1983), which is a J 3 K matrix. The element of the jth

row and the kth column, qjk, is 1 if the kth attribute is required to answer the jth item correctly,

and 0 otherwise.

A general CDM called generalized deterministic inputs, noisy ‘‘and’’ gate (G-DINA) model

was proposed by de la Torre (2011). It is a generalization of the deterministic inputs, noisy

‘‘and’’ gate (DINA; de la Torre, 2009; Haertel, 1989; Junker & Sijtsma, 2001) model, and it

relaxes some of the strict assumptions of the DINA model. Instead of two, the G-DINA model

partitions examinees into 2K�j groups, where K�j is the number of required attributes for item j.

The mathematical representation of the model consists of the combination of the baseline prob-

ability, the main effects due to the attribute k, the interaction effects due to the attributes k and

k# (k 6¼ k#), and other higher order interaction effects (for more details, see de la Torre, 2011).

A few of commonly encountered CDMs are constrained versions of, and therefore, are sub-

sumed by the G-DINA model (de la Torre, 2011). These include the DINA model, the determi-

nistic input, noisy ‘‘or’’ gate (DINO; Templin & Henson, 2006) model, and the additive CDM
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(A-CDM; de la Torre, 2011). As constrained CDMs, the DINA model assumes that lacking one

of the required attributes is as the same as lacking all of the required attributes; the DINO model

assumes that having one of the required attributes is as the same as having all of the required

attributes; and the A-CDM assumes that the impacts of mastering the different required attri-

butes are independent of each other.

CAT

CAT has become a popular tool to estimate examinees’ ability levels with shorter test lengths.

The main goal of CAT is to construct an optimal test for each examinee. Appropriate items to

each examinee’s ability level are selected from an item bank, and the ability level is estimated

during or end of the test administration. Therefore, different tests including different items with

different lengths can be created for different examinees. Weiss and Kingsbury (1984) listed the

components of CAT, which include item selection method and calibrated item pool. In addition,

CAT can be used with different psychometric frameworks such as IRT or CDM. The Fisher

information statistic (Lehmann & Casella, 1998) is widely used in the traditional CAT; how-

ever, it cannot be applied in CD-CAT because it requires continuous ability levels, whereas the

attribute vectors in cognitive diagnosis are discrete. Fortunately, the Kullback–Leibler (K-L)

information, which is an alternative information statistic, can work under both continuous and

discrete cases. This study focuses on item selection methods in the cognitive diagnosis context,

which include K-L–based indices.

The PWKL. The K-L information is a measure of distance between the two probability density

functions, f(x) and g(x), where f(x) is assumed to be the true distribution of the data (Cover &

Thomas, 1991). The function measuring the distance between f and g is given by

K f , gð Þ=
ð

log
f xð Þ
g xð Þ

� �� �
f xð Þdx: ð1Þ

Larger information allows easier differentiation between the two distributions or likelihoods

(Lehmann & Casella, 1998). Xu et al. (2003) used the K-L information as an item selection

index in CD-CAT. Cheng (2009) proposed the PWKL, which computes the index using

the posterior distribution of the attribute vectors as weights. Her simulation study showed that

the PWKL outperformed the K-L information in terms of estimation accuracy. The PWKL is

given by

PWKLj â
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where P(Xj = x|ac) is the probability of the response x to item j given the attribute vector ac,

and p
(t)
i (ac) is the posterior probability of examinee i given the responses to the t items. The

posterior distribution after tth response can be written as

p
tð Þ

i acð Þ} p
0ð Þ

i acð ÞL X
tð Þ

i jac

� �
,

where X
(t)
i is the vector containing the responses of examinee i to the t items, p

(0)
i (ac) is the

prior probability of ac, and L(X
(t)
i jac) is the likelihood of X

(t)
i given the attribute vector ac. The

(t + 1)th item to be administered is the item that maximizes the PWKL.
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The MPWKL. The PWKL is calculated by summing the distances between the current estimate

of the attribute vector and the other possible attribute vectors using the K-L information, and it

is weighted by the posterior distribution of the attribute vectors. By using the current estimate

â(t)
i , it assumes that the point estimate is a good summary of the posterior distribution p

(t)
i (a).

However, this may not be the case particularly when the test is still relatively short. Instead of

using a point estimate, the new PWKL propose modifying by considering the entire posterior

distribution, which involves 2K attribute vectors. The resulting new index can be referred to as

the MPWKL and can be computed as

MPWKL
tð Þ

ij =
X2K

d = 1

X2K

c = 1

X1
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log
P Xj = xjad

� 	
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Compared with the PWKL, by using the posterior distribution, the MPWKL does not require

estimating the attribute vector a(t)
i . Using an estimate in the numerator of Equation 2 is tanta-

mount to assigning a single attribute vector (i.e., â(t)
i ) a probability of 1, which may not accu-

rately describe the posterior distribution at the early stages of the testing administration. In

contrast, the numerator in Equation 3 considers all the possible attribute vectors, and weights

them accordingly, hence, the extra summation and posterior probability. Because the MPWKL

uses the entire posterior distribution p
(t)
i (a) rather than just an estimate â(t)

i , it can be expected

to be more informative than the PWKL.

The GDI. The GDI, which measures the (weighted) variance of the probabilities of success of an

item given a particular attribute distribution, was first proposed by de la Torre and Chiu (2010)

as an index to implement an empirical Q-matrix validation procedure. However, in this article,

the index is used as an item selection method for CD-CAT. To define the index, let the first K�j
attributes be required for item j, and define a�cj as the reduced attribute vector consisting of the

first K�j attributes, for c = 1, 2, . . . , 2K�j . For example, if a q-vector is defined as (1,1,0,0,1) for

K�j = 3 number of required attributes, the reduced attribute vector is (a1,a2,a5). Also, define

p(a�cj) as the probability of a�cj, and P(Xij = 1ja�cj) as the success probability on item j given a�cj.

The GDI for item j is defined as

§2
j =
X2K�

j

c = 1

p a�cj

� �
P Xij = 1ja�cj

� �
� �Pj

h i2

, ð4Þ

where �Pj =
P2

K�
j

c = 1 p(a�cj)P(Xij = 1ja�cj) is the mean success probability. In CD-CAT applications,

the posterior probability of the reduced attribute vector p
(t)
i (a�cj) is used in place of p(a�cj). This

implies that the discrimination of an item is not static, and changes as the posterior distribution

changes with t. The GDI measures the extent to which an item can differentiate between the

different reduced attribute vectors based on their success probabilities, and is minimum (i.e.,

equal to zero) when P(Xij = 1ja�1j) = P(Xij = 1ja�2j) = P(Xij = 1ja�
2

K�
j j

) = �Pj (or, trivially, when the

posterior distribution is degenerate). It also attaches greater importance to reduced attribute vec-

tors with higher p(�). As such, a larger GDI indicates a greater ability to differentiate between

reduced attribute vectors that matter. The GDI is computed for each candidate item in the pool,

and the candidate item with the largest GDI is selected.

The GDI has two important properties. First, instead of the original attribute vector, ac, it

uses the reduced attribute vector, a�cj. Consequently, the GDI can be implemented more
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efficiently than can the PWKL or MPWKL. For example, if K = 5 and K�j = 2, computing the

GDI involves 2K�j = 4 terms, whereas the PWKL and MPWKL involve 2K = 32 and 2K 3 2K =

1,024 terms, respectively.

Second, the GDI takes both the item discrimination and the posterior distribution into

account. This property is illustrated using the example in Table 1. It involves K = 3, and six

items, three of which are of low discrimination (LD), and the other three are of high discrimina-

tion (HD). For the low-discriminating items, the difference between the lowest and the highest

probabilities of success is .4; for the high-discriminating items, this difference is .8. In addition,

these items involve one of the following q-vectors: q100, q110, and q111. Four distributions are

considered: (1) all attribute vectors are equally probable, as in, p(ac) = 0.125; in (2), (3), and

(4), the attribute vector, namely, (1,0,0), (1,1,0), or (1,1,1), respectively, has a probability of

.965 and was deemed dominant, whereas each of the remaining attribute vectors has a probabil-

ity of .005. In Condition 1, the impact of the posterior distribution is discounted, whereas in

Conditions 2, 3, and 4, one-attribute vector is highly dominant. In this table, the GDI was com-

puted using the DINA model.

Several results can be noted. First, for a fixed q-vector, the high-discriminating items had

higher GDI values compared with the low-discriminating items regardless of the posterior dis-

tribution. Second, when there was no dominant attribute vector, one-attribute items had the

highest GDI values for a fixed item discrimination. In contrast, when one-attribute vector was

highly dominant, the items with q-vectors matching the dominant attribute vectors had the high-

est GDI values. Finally, it can also be observed that the low-discriminating items with q-vectors

that match the dominant attribute vectors can at times be preferred over the high-discriminating

items with q-vectors that do not. For example, for attribute vector (1,1,0), the GDI for the low-

discriminating item with q110 is 0.010. This is higher than the GDI for the high-discriminating

item with q111, which is 0.003.

Based on the properties of the three indices discussed earlier, the authors expect the GDI and

the MPWKL will be more informative than the PWKL. In addition, they expect the GDI to be

faster than the PWKL in terms of implementation time, which in turn will be faster than MPWKL.

Simulation Study

The simulation study aimed to investigate the efficiency of the MPWKL and the GDI compared

with the PWKL under the G-DINA model context considering a variety of factors, namely, item

quality, generating model, and test termination rule. The correct attribute and attribute vector

classification rates, and a few descriptive statistics (i.e., minimum, maximum, mean, and coeffi-

cient of variation [CV]), of the test lengths were calculated based on the termination rules to

Table 1. GDIs for Different Distribution, Item Discrimination, and Q-Vectors.

Condition
Dominant

Low discrimination High discrimination

a q100 q110 q111 q100 q110 q111

1 None 0.090 0.068 0.039 0.160 0.120 0.070
2 (1,0,0) 0.007 0.004 0.002 0.013 0.006 0.003
3 (1,1,0) 0.007 0.010 0.002 0.013 0.019 0.003
4 (1,1,1) 0.007 0.010 0.012 0.013 0.019 0.022

Note. Numbers in bold represent the highest GDI in each condition for fixed item discrimination. GDI = G-DINA

model discrimination index; G-DINA = generalized DINA; DINA = deterministic inputs, noisy ‘‘and’’ gate.
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compare the efficiency of the item selection indices. In addition, the time required to administer

the test was also recorded for each of the item selection indices. Finally, the item usage in terms

of the required attributes was tracked and reported in each condition.

Design

Data generation. Different item qualities and reduced CDMs were considered in the data gener-

ation. First, due to documented impact of item quality on attribute classification accuracy (e.g., de

la Torre, Hong, & Deng, 2010), different item discriminations and variances were used in the data

generation. Two levels of item discrimination, HD and LD, were combined with two levels of var-

iance, high variance (HV) and low variance (LV), in generating the item parameters. Thus, a total

of four conditions, HD-LV, HD-HV, LD-LV, and LD-HV, were considered in investigating the

impact of item quality on the efficiency of the indices. The item parameters were generated from

uniform distributions. For HD items, the highest and lowest probabilities of success, P(0) and

P(1), were generated from distributions with means of .1 and .9, respectively; for LD items, these

means were 0.2 and 0.8. For HV and LV items, the ranges of the distribution were 0.1 and 0.2,

respectively. The distributions for P(0) and P(1) under different discrimination and variance con-

ditions are given in Table 2. The mean of the distribution determines the overall quality of the

item pool, whereas the variance determines the overall quality of the administered items.

Second, to investigate whether the efficiency of the indices is consistent across different

models, item responses were generated using three reduced models: the DINA model, the DINO

model, and the A-CDM. For the DINA and DINO models, the probability of success was set as

shown in Table 2. For the A-CDM, in addition to the success probabilities given in Table 2,

intermediate success probabilities were obtained by allowing each of the required attributes to

contribute equally. The four item qualities and three reduced models resulted in the 12 condi-

tions of the simulation study. The number of attributes was fixed to K = 5.

To design a more efficient simulation study, only a subset of the attribute vectors was consid-

ered. The six attribute vectors were a0 = (0, 0, 0, 0, 0), a1 = (1, 0, 0, 0, 0), a2 = (1, 1, 0, 0, 0),

a3 = (1, 1, 1, 0, 0), a4 = (1, 1, 1, 1, 0), and a5 = (1, 1, 1, 1, 1), representing no mastery, mastery

of a single attribute only, mastery of two attributes only, and so forth. For each attribute vector,

1,000 examinees were generated for a total of 6,000 examinees in each condition.

Test termination rules. Two test termination rules were considered in the simulation study:

fixed-test lengths and minimax of the posterior distribution of the attribute vectors. The former

allowed for a comparison of the efficiency of the indices with respect to classification accuracy

when the CAT administration was stopped after a prespecified test length was reached for each

examinee; the latter allowed for the comparison of the efficiency of the indices in terms of test

lengths when the CAT administration was terminated after the largest posterior probability of

Table 2. Item Parameters.

Item quality P(0) P(1)

HD-LV U(0.05, 0.15) U(0.85, 0.95)
HD-HV U(0.00, 0.20) U(0.80, 1.00)
LD-LV U(0.15, 0.25) U(0.75, 0.85)
LD-HV U(0.10, 0.30) U(0.70, 0.90)

Note. HD-LV = high discrimination–low variance; HD-HV = high discrimination–high variance; LD-LV = low

discrimination–low variance; LD-HV = low discrimination–high variance.
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an attribute vector was at least as large as a prespecified minimax value, which corresponds to

the first criterion by Hsu et al. (2013). Three fixed-test lengths, 10, 20, and 40 items, were con-

sidered for the first termination rule, and four minimax values, 0.65, 0.75, 0.85, and 0.95, were

used for the second rule.

Item pool and item selection methods. The Q-matrix was created to have 40 items from each of

2K2 1 = 31 possible q-vectors, resulting in 1,240 items in the pool. Three different item selec-

tion indices were considered: PWKL, MPWKL, and GDI. For greater comparability, the first

item administered to each examinee was chosen at random, and this item was fixed across the

three indices. In the case of PWKL, when â(t)
i was not unique, a random attribute vector was

chosen from the modal attribute vectors.

Let aikl and âikl be the kth true and estimated attribute in attribute vector l for examinee i,

respectively. For each of the six attribute vectors considered in this design, the correct attribute

classification (CAC) rates, and the correct attribute vector classification (CVC) rates were com-

puted as

CACl =
1

1, 000

X1, 000

i = 1

X5

k = 1

I aikl = âikl½ �,

and

CVCl =
1

1, 000

X1, 000

i = 1

Y5

k = 1

I aikl = âikl½ �, ð5Þ

where l = 0, 1, . . . , 5, and I is the indicator function. Using appropriate weights (described later),

the CAC and CVC were computed assuming the attributes were uniformly distributed for the

fixed-test length conditions. The minimum, maximum, mean, and CV of the test lengths were

calculated, again with appropriate weights where needed, when the minimax of the posterior

distribution was used as the stopping criterion. This study focused on attribute vectors that were

uniformly distributed. To accomplish this, the results based on the six attribute vectors needed

to be weighted appropriately. For K = 5, the vector of the weights are 1/32, 5/32, 10/32, 10/32,

5/32, and 1/32, which represented the proportions of zero-, one-, two-, three-, four-, and five-

attribute mastery vectors among the 32 attribute vectors. CV was calculated by taking the ratio

of the standard deviation to the mean.

Results

Fixed-Test Length

The sampling design of this simulation study can allow for results to be generalized to different

distributions of the attribute vectors. This study focused on attribute vectors that were uniformly

distributed. To demonstrate the efficiency of using such a design, a small study comparing two

sampling procedures for the DINA model with HD-LV items was carried out. In the first proce-

dure, which is the current sampling design, only six selected attribute vectors, each with 1,000

replicates, were used; in the second procedure, 32,000 attribute vectors were generated uni-

formly. The CAC and the CVC in the former and the latter were computed using weighted and

simple averages, respectively. Table 3 shows that despite working with fewer attribute vectors,

using selected attribute vectors can give the CAC and the CVC that were almost identical to
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those obtained using a much larger sample drawn randomly, and this was true across the differ-

ent test lengths. These findings can be expected to hold across other CDMs and item qualities.

For all conditions, the CAC rates were, as expected, higher than the CVC rates, but both mea-

sures showed similar patterns. For this reason, only the CVC rates were reported in this article.

However, the results in their entirety can be requested from the first author. The CVC results

using fixed-test lengths as a stopping rule under the different factors are presented in Table 4 for

all the generating models. Differences in the CVC rates were evaluated using two cut points,

0.01 and 0.10. Differences below 0.01 were considered negligible, between 0.01 and 0.10 were

considered slight, and above 0.10 were considered substantial.

Using the DINA and the DINO as generating models in conjunction with a short test length

(i.e., 10 items), the differences in the CVC rates of the MPWKL and the GDI were mostly neg-

ligible regardless of the item quality. The only exception is the one condition, with 10 LD-LV

items, where the CVC rate of the GDI was slightly higher than the MPWKL. Under the same

conditions, the CVC rates of the two indices were substantially higher than the PWKL regard-

less of the item quality. When the test lengths were longer (i.e., 20- and 40-item tests), all of

the three indices generally performed similarly using the DINA and DINO models. However,

in one condition (i.e., 20-item test with LD items and the DINA model), the MPWKL and the

GDI had slightly higher CVC rates compared with the PWKL.

Using the A-CDM as a generating model, the three indices had mostly similar CVC rates.

Interestingly, using 10-item tests with HD-LV items, the PWKL had slightly higher CVC rates

compared with the MPWKL and the GDI.

Additional findings can be culled from Table 4. First, as expected, increasing the test length

improved the classification accuracy regardless of the item selection index, item quality, and

generating model. Using a long test (i.e., 40-item test) provided a CVC rate of almost 1.00 for

all of the indices. However, a clear distinction can be seen on the efficiency of the indices when

shorter test lengths, in particular 10-item test, were used. For example, using the DINA model

and HD-LV items, the 10-item test yielded a maximum CVC rate of 0.89 for the MPWKL and

the GDI. In comparison, the PWKL had only a CVC rate of 0.75 under the same condition.

Second, the item quality had an obvious impact on the CVC rates: higher discrimination and

higher variance resulted in higher classification accuracy. As can be seen from the results, HD

items resulted in better rates compared with LD items regardless of the variance. Similarly,

items with HV showed higher classification rates compared with LV items. Consequently, HD-

HV items had the best classification accuracy, whereas LD-LV items had the worst classifica-

tion accuracy regardless of the item selection index and generating model. To illustrate, using

the DINA model and a 10-item test, the highest and the lowest CVC rates of 0.98 and 0.60,

were obtained with HD-HV and LD-LV items, respectively, for both the MPWKL and GDI; in

Table 3. Classification Accuracies Based on Two Sampling Procedures.

Item quality J

CAC CVC

Weighted Simple Weighted Simple

HD-LV 10 0.969 0.969 0.875 0.876
20 0.999 0.999 0.996 0.996
40 1.000 1.000 1.000 1.000

Note. CAC = correct attribute classification; CVC = correct attribute vector classification; HD-LV = high

discrimination–low variance.
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comparison, the CVC rates were 0.85 and 0.45 for HD-HV and LD-LV items, respectively, for

the PWKL.

To investigate how the item selection indices behaved for different attribute vectors, the

CVC rates for each attribute vector were calculated. Only the results for 10-item test with HD-

HV and LD-LV items are presented (see Figure 1). Across the different item quality conditions,

the CVC rates of the MPWKL and GDI were more similar for the different attribute vectors,

whereas they were more varied for the PWKL. A few conclusions can be drawn from this fig-

ure. First, for HD-HV items, the indices performed similarly for a4 and a5 when the DINA

model was used. However, under the same condition, the MPWKL and the GDI had higher

CVC rates compared with the PWKL for the other four attribute vectors. Using the same item

quality, the indices performed similarly for a0 and a1 when the DINO model was used; how-

ever, the CVC rates using the PWKL were lower for a2, a3, a4, and a5 compared with the

other two indices. It can also be noted that the classification accuracy of the PWKL was more

varied than those of the MPWKL and GDI across the attribute vectors. As can be seen from the

graphs, the CVC rate of the PWKL could range from around 0.65 to 1.00, whereas these rates

were mostly 1.00 for the MPWKL and the GDI. The three indices had almost the same results

when the A-CDM was involved.

Second, although the CVC rates were lower, the results for LD-LV items were similar to

those for HD-HV items. The MPWKL and the GDI had higher CVC rates than the PWKL for

a0, a1, a2, and a3 when the DINA model was used. In contrast, the PWKL outperformed the

MPWKL and GDI for a4 and a5 in the same condition. Using the same item quality and the

DINO model, the PWKL had higher CVC rates for a0 and a1. However, the MPWKL and GDI

had higher rates for the other four attribute vectors. Again, the CVC rates of the PWKL had

higher variability (0.26-0.82) compared with those of the MPWKL and the GDI (0.56-0.65).

Finally, the efficiency of the indices was similar for the A-CDM, but the extreme attribute vec-

tors a0 and a5 can be better estimated than the remaining attribute vectors.

Table 4. CVC Rates.

Item quality J

DINA DINO A-CDM

PWKL MPWKL GDI PWKL MPWKL GDI PWKL MPWKL GDI

HD-LV 10 0.752 0.878 0.887 0.749 0.855 0.849 0.839 0.817 0.826
20 0.989 0.996 0.996 0.986 0.995 0.996 0.992 0.992 0.991
40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

HD-HV 10 0.854 0.979 0.981 0.870 0.979 0.981 0.963 0.967 0.962
20 0.999 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
40 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

LD-LV 10 0.454 0.589 0.604 0.441 0.551 0.557 0.515 0.524 0.511
20 0.814 0.892 0.890 0.803 0.872 0.871 0.855 0.857 0.859
40 0.987 0.995 0.995 0.984 0.993 0.992 0.987 0.990 0.990

LD-HV 10 0.569 0.723 0.719 0.596 0.703 0.704 0.658 0.666 0.660
20 0.917 0.962 0.962 0.924 0.969 0.966 0.948 0.953 0.951
40 0.999 1.000 0.999 1.000 1.000 1.000 0.998 0.999 0.999

Note. CVC = correct attribute vector classification; DINA = deterministic inputs, noisy ‘‘and’’ gate; DINO =

deterministic input, noisy ‘‘or’’ gate; A-CDM = additive CDM; CDM = cognitive diagnosis model; PWKL = posterior-

weighted Kullback–Leibler index; MPWKL = modified posterior-weighted Kullback–Leibler index; GDI = G-DINA

model discrimination index; G-DINA = generalized DINA; HD-LV = high discrimination–low variance; HD-HV = high

discrimination–high variance; LD-LV = low discrimination–low variance; LD-HV = low discrimination–high variance.
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Minimax of the Posterior Distribution

For a fixed minimax of the posterior distribution, descriptive statistics of the test lengths are

shown in Tables 5 to 7 for the DINA, DINO, and A-CDM, respectively. Differences in the mean

were evaluated using two cut points, 0.5 and 1, and differences below 0.5 were considered neg-

ligible, between 0.5 and 1 slight, and above 1 substantial.

Using the DINA and DINO models, the mean test lengths of the MPWKL and the GDI were

generally similar (i.e., the differences were negligible), and they were substantially shorter

compared with the test lengths of the PWKL. This was true regardless of the minimax value

and item quality. The largest mean test length differences occurred when LD-LV items were

involved—these differences were greater than 2.0 and 1.8 for the DINA and DINO models,

respectively. However, when the A-CDM was used, all the three indices performed similarly

except in the HD-HV and 0.85 minimax value condition, where the PWKL had a slightly lon-

ger test length compared with the MPWKL and GDI.

It can also be noted that, as expected, increasing the minimax value resulted in longer test

lengths regardless of the item selection index, item quality, and generating model. The change

in the mean test length as a result of increasing the minimax value from 0.65 to 0.95 was sub-

stantial for all of the conditions except for one—there was only a slight change when the

MPWKL and the GDI were used with HD-HV items. In addition, as in the fixed-test length,

the item quality had an impact on the efficiency of the indices: Using items with higher dis-

crimination or higher variance resulted in shorter tests. Consequently, HD-HV and LD-LV

items had the shortest and the longest tests, respectively. In this study, using the minimax value

of 0.95, GDI, and DINA model, HD-HV items resulted in tests with a mean of 7.22; in contrast,

for LD-LV items, this mean was 19.46. Finally, generating model can have an impact on the

mean test lengths, but this moderated by the choice of the item selection index—with the GDI,

the DINA or DINO models consistently required shorter tests than the A-CDM, but this pattern

was not as obvious with the other two indices.

Other findings can be gleaned from Tables 5 to 7. First, the minimum test lengths of the three

indices were similar for most of the conditions. Second, increasing the minimax of the posterior

distribution generally resulted in higher minimum and maximum test lengths, especially at the

two extreme minimax values. However, using HD-HV items with the DINA model, the mini-

mum values remained the same for the three indices. Third, the item quality had an impact on the

minimum, maximum, and CV of the test lengths: HD-HV items provided the smallest minimum,

maximum, and CV values, whereas LD-LV items provided the largest statistics for all of the

indices. Finally, using the A-CDM, the indices had the smallest maximum and CV values; how-

ever, they had the highest minimum test lengths compared with the DINA and DINO models.

The mean test lengths for each attribute vector were calculated, and the results using HD-HV

and LD-LV items, and 0.65 as the minimax value are shown in Figure 2. For the DINA model,

the PWKL required longer tests, on the average, for the attribute vectors a0, a1, and a2 com-

pared with the MPWKL and GDI; however, these two indices required longer tests for a5. In

contrast, the MPWKL and GDI required longer tests for a0, and the PWKL required longer tests

for a2, a3, a4, and a5 with the DINO as the generating model. Using the A-CDM, the mean test

lengths were similar for each attribute vector.

Item Usage

To gain a better understanding of how different models utilize the items in the pool, the overall

item usage in terms of the number of required attributes was recorded for each condition. Only

the results for the fixed-test lengths with HD-HV and LD-LV items are shown in Table 8.
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For the DINA and DINO models, items that required one, two, and three attributes were gen-

erally used more often compared with those which required four and five attributes regardless

of the item selection index and item quality. The PWKL mostly used two-attribute items for the

same models except in one condition, where a 10-item test with LD-LV items and the DINA

were used. The MPWKL and GDI had a similar pattern of item usage (i.e., one-attribute items

were mostly used for 10- and 20-item tests with LD-LV items) across different test lengths and

item qualities for the DINA except in one condition where a 10-item test with HD-HV items

was used. However, for the A-CDM, one-attribute items were mostly used with a proportion of

at least 0.92 regardless of the item selection index and item quality.

To get a deeper understanding of the differences in item usage among the models, the items

were grouped based on their required attributes. To accomplish this, an additional simulation

study was carried out using the same factors except for one: item quality. For this study, the

lowest and highest success probabilities were fixed across all of the items, specifically, P(0) =

.1 and P(1) = .9. This design aimed to eliminate the effect of the item quality on item usage.

Due to the space constraint, only the results for the GDI, 20-item test, and a3 are shown in

Figure 3. Overall, the DINA model showed the following pattern of item usage: It uses items

that required the same attributes as the examinee’s true attribute mastery vector, and items that

required single attributes which were not mastered by the examinee. For a3, the DINA model

used the items that required (1,1,1,0,0), and items that required either (0,0,0,1,0) or (0,0,0,0,1).

In contrast, the DINO showed a different pattern of item usage: It uses items that required the

same attributes as the examinee’s true nonmastery vector, and items that required single attri-

butes, which were mastered by the examinee. Again for a3, the DINO model used items that

required (0,0,0,1,1) and items that required (1,0,0,0,0), (0,1,0,0,0), and (0,0,1,0,0). The A-CDM

used items that required single attributes regardless of the true attribute vector. The same pat-

tern was observed for the other attribute vectors.

To further investigate how the models converged into those patterns of item usage, the test

administrations were divided into periods each comparing of five items. The item usage was

recorded in each period. Only the results for the GDI, 20-item test, and a3 are shown (refer to

Figure 4). In the first period, which includes the first five items, one-attribute items were used

mostly regardless of the generating model and examinees’ true attribute vector. In the second,

third, and fourth periods (items from 6 to 10, 11 to 15, and 16 to 20, respectively), the most

common item types gradually became more similar to the previous patterns of item usage for

the DINA and DINO models. However, the A-CDM favored one-attribute item at the rate of

almost 1.00 in each period. Again, the same pattern was observed for the other attribute vectors

in this study.

Average Time

The average item administration time per examinee was recorded separately for each index.

The CAT administration code was written in Ox (Doornik, 2011) and run on a computer with

processor of 2.5 GHz. Only the average times in milliseconds using 10 HD-LV items and the

DINA model are shown in Table 9. The table shows that the MPWKL was the slowest, and the

GDI was the fastest index in terms of the administration time: the PWKL, the MPWKL, and

the GDI took 6.43, 20.18, and 4.53 ms, respectively. In other words, the GDI was 4.45 faster

than the MPWKL, and 1.42 faster than the PWKL. As mentioned earlier, the GDI works with

the reduced attribute vectors, and involves fewer terms compared with the PWKL and the

MPWKL. The dimensions in the PWKL and the MPWKL grow exponentially as the number of

attribute K increases. However, the GDI does not have the same problem as long as the number

of required attributes K�j remains small. The advantage of the GDI can be expected to be more
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Figure 3. Overall proportion of item usage for a3, GDI, and J = 20.
Note. GDI = G-DINA model discrimination index; G-DINA = generalized DINA; DINA = deterministic inputs, noisy

‘‘and’’ gate; DINO = deterministic input, noisy ‘‘or’’ gate; A-CDM = additive CDM; CDM = cognitive diagnosis model.
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Figure 4. The proportion of item usage in different periods for a3, GDI, and J = 20.
Note. GDI = G-DINA model discrimination index; G-DINA = generalized DINA; DINA = deterministic inputs, noisy

‘‘and’’ gate; DINO = deterministic input, noisy ‘‘or’’ gate; A-CDM = additive CDM; CDM = cognitive diagnosis model.
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apparent with the A-CDM because mostly one-attribute items are picked by the different

indices.

Discussion and Conclusion

Compared with traditional unidimensional IRT models, CDMs provide more information that

can be used to inform instruction and learning. These models can reveal examinees’ strengths

and weaknesses by diagnosing whether they have mastered a specific set of attributes. CAT is a

tool that can be used to create tests tailored for different examinees. This allows for a more effi-

cient determination of what students know and do not know. In this article, two new item selec-

tion indices, the MPWKL and the GDI, were introduced, and their efficiency was compared

with the PWKL. In addition, a more efficient simulation design was proposed in this study.

This design can allow for results to be generalized to different distributions of attribute vectors,

despite involving a smaller sample size.

Based on the factors manipulated in the simulation study, the two new indices performed

similarly, and they both outperformed the PWKL in terms of classification accuracy and test

length. The study also showed that items with HD or HV provided better classification rates or

shorter test lengths. Moreover, generating models can have an impact on the efficiency of the

indices: For the DINA and DINO models, the results were more distinguishable; however, the

efficiency of the indices was essentially the same for the A-CDM, except in a few conditions.

Although this study showed that the proposed indices, particularly the GDI, are promising,

more research needs to be done to determine their viability. First, some constraints on the design

of the Q-matrix and the size of the item pool need to be investigated. The Q-matrix in this study

involved all the possible q-vectors. However, in practice, this may not be the case, particularly,

when the CDMs are retrofitted to existing data. Therefore, it would be important to examinee

how the indices perform when only a subset of the q-vectors exists in the pool. The current study

uses a large item pool, which may not be always possible in real testing situations. Considering

smaller item pools, with or without constraints on the Q-matrix specifications, can lead to a bet-

ter understanding of how the proposed indices perform under more varied conditions.

Second, although diagnostic assessments are primarily designed for low-stakes testing situa-

tions, their use for high-stakes decisions cannot be totally precluded. Because test security is a

critical issue in high-stakes testing situations, item exposure in CD-CAT needs also to be con-

trolled. At present, there are procedures for item exposure control in the context of CD-CAT.

For example, Wang, Chang, and Huebner (2011) proposed item exposure control methods for

fixed-test lengths in CD-CAT. However, the performance of these methods with the proposed

indices has yet to be investigated. In addition, controlling the exposure of the items with the

MPWKL and the GDI can also be examined when different termination rules are involved.

Table 9. Average Test Administration Time per Examinee (J = 10, HD-LV, and DINA).

PWKL MPWKL GDI

Time (in ms) 6.43 20.18 4.53
Ratio (relative to GDI) 1.42 4.45 —

Note. HD-LV = high discrimination–low variance; DINA = deterministic inputs, noisy ‘‘and’’ gate; PWKL = posterior-

weighted Kullback–Leibler index; MPWKL = modified posterior-weighted Kullback–Leibler index; GDI = G-DINA

model discrimination index; G-DINA = generalized DINA.
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Third, each data set was generated using a single CDM in this study. However, as with previ-

ous indices, the MPWKL and the GDI are sufficiently general that it can simultaneously be

applied to any CDMs subsumed by the G-DINA model. As such, it would be interesting to

examine how the new indices will perform when the item pool is made up of various CDMs,

which reflects what can be expected in practice—different items might require different pro-

cesses (i.e., CDMs). Finally, to keep the scope of this work manageable, a few simplifications

about factors affecting the performance of CD-CAT indices were made. These include fixing

the number of attributes, using a single method in estimating the attribute vectors, and assuming

that the item parameters were known. To obtain more generalizable conclusions, future research

should consider varying these factors.
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