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Abstract

Test items scored as polytomous have the potential to display multidimensionality across rating
scale score categories. This article uses a multidimensional nominal response model (MNRM)
to examine the possibility that the proficiency dimension/dimensional composite best measured
by a polytomously scored item may vary by score category, an issue not generally considered in
multidimensional item response theory (MIRT). Some practical considerations in exploring
rubric-related multidimensionality, including potential consequences of not attending to it, are
illustrated through simulation examples. A real data application is applied in the study of item
format effects using the 2007 administration of Trends in Mathematics and Science Study
(TIMSS) among eighth graders in the United States.
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Constructed response (CR) items have become increasingly popular in standardized testing,

with many tests now using both multiple-choice and CR formats. The combination of item types

has led to dimensionality studies of construct equivalence across format types, yielding varying

results (see, for example, Rodriguez, 2003; Thissen, Wainer, & Wang, 1994; Wang, Drasgow,

& Liu, 2016). As CR items are frequently scored using partial credit, the use of multidimen-

sional item response theory (MIRT) models requires models that can accommodate more than

two score categories per item.

In MIRT settings, it is not always clear how partial credit items should be scored with respect

to the different underlying proficiency dimensions. Many unidimensional IRT models applied

to polytomously scored items can be viewed as special cases of a nominal response model

(NRM; Bock, 1972) that apply fixed interval scoring of the items (see Muraki, 1992; Thissen &

Steinberg, 1986). The assumption of fixed equal-interval scoring is generally carried over to

multidimensional extensions of these models as well (e.g., Yao & Schwarz, 2006), where items

are also assumed to measure a consistent proficiency dimension, or composite of dimensions,

across score categories. This assumption of a constant proficiency composite is also present in
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other multidimensional models applied to polytomously scored items, such as the multidimen-

sional graded response model (Muraki & Carlson, 1993), as well as the traditional multiple com-

mon factor model (Thurstone, 1947). Reckase (2009), however, has noted the potential for

different skills to be associated with different scores on an item. He presents a hypothetical sce-

nario in which the rubric for scoring a writing sample might at lower item score levels distinguish

with respect to simple writing mechanic skills, but at higher item scores in terms of organization

and style of writing (Reckase, 2009, pp. 110-111). If such skills are statistically distinguishable,

an item scored in this way might be viewed as displaying multidimensionality across the rating

scale. As Reckase (2009) noted, such occurrences are not captured in previously described MIRT

models, and represent a potential place for new model development.

The goal of this article is to illustrate the capability of a multidimensional nominal response

model (MNRM; Thissen, Cai, & Bock, 2010) to capture the situation considered by Reckase

(2009). Relative to previous models that have allowed for different proficiencies across score

categories (e.g., Kelderman & Rijkes, 1994), the approach in this article is exploratory with

respect to the scoring of items across dimensions, as the potential for rubric-related multidimen-

sionality could also emerge in conditions where the nature of the underlying proficiency dimen-

sions is unknown. An example might be a mathematics test containing partial credit word

problems. Such applied problems frequently introduce a language-related statistical dimension

(Wu & Adams, 2006), especially when the ability to interpret what is being asked has the

potential to interfere with measuring the examinee mathematics proficiency. In such a case, a

score of partial credit versus no credit may be highly related to language proficiency, as the

inability to process the item may preclude obtaining even partial credit, while higher score cate-

gories (i.e., the distinction between full and partial credit) may be more related to mathematics

problem solving. Importantly, such differences across score categories may be present even

though the scoring rubric does not make apparent the different proficiencies involved.

The NRM and Special Cases

The NRM (Bock, 1972) is frequently presented as a model for item score categories with an

unknown (or only partially known) ordering. The model expresses the probability of scoring in

category k (= 1, . . . , K) on an item j as

P Uj = kju
� �

=
exp ajku + cjk

� �
PK
h = 1

exp ajhu + cjh

� � , ð1Þ

where u denotes a person proficiency level, ajk denote item category slope parameters, and cjk

are category intercept parameters. For statistical identification, constraints must be imposed

across category parameters within each item, usually either an effect coding constraint (i.e.,P
k ajk = 0 and

P
k cjk = 0 for each item j), or a statistically equivalent first category constraint

(i.e., aj1 = 0; cj1 = 0 for each item j). A useful feature of the NRM relates to its category slope

parameters aj1, aj2, . . . , ajK , which define the scoring of the item. This feature is useful not just

when the score categories are nominal but also, as in the case of partial credit items, when the

ordering is known but the relative spacing of categories is not.

In the unidimensional case, models such as the partial credit model (PCM; Masters, 1982)

and generalized partial credit model (GPCM; Muraki, 1992) have been considered as special

cases of the NRM in which the scoring is defined using specified (and typically equally spaced)

values for the score categories (Thissen & Steinberg, 1986). The GPCM can be written as
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P Uj = kju
� �

=

exp a�j k � 1ð Þu½ � �
Pk
t = 1

djt

� �

PK
h = 1

exp a�j h� 1ð Þu½ � �
Ph
t = 1

djh

� � , ð2Þ

where a�j is an item discrimination parameter, and djk represent category threshold parameters,

with dj1 = 0 for each j. The PCM is a special case of Equation 2, where a�j = 1 for all j. When

applying the first category constraint of the nominal model mentioned above, the GPCM can

thus be viewed as a special case of Equation 1, where aj1 = a�j 0, aj2 = a�j 1, . . . , ajK = a�j (K � 1)

and djk = cjk � cj, k�1 for all k . 1, while the PCM is a special case where also aj1 = 0,

aj2 = 1, . . . , ajK = K � 1 (Thissen & Steinberg, 1986). As the category slopes define the scoring

of the item with respect to the latent trait, both the PCM and GPCM can be seen as assuming

fixed interval-level scoring across score categories that is equal (up to a proportionality con-

straint defined by the item discrimination parameter in the GPCM) across items.

Multidimensional Extensions of the Nominal Model

Some recent applications of the nominal model have considered its generalization to multiple

traits or proficiencies (Bolt & Johnson, 2009; Falk & Cai, 2016; Thissen et al., 2010). The

MNRM expresses the probability of scoring in category k as

P Uj = kju1, u2, . . . , uM

� �
=

exp ajk1u1 + ajk2u2 + . . . + ajkM uM + cjk

� �
PK
h = 1

exp ajh1u1 + ajh2u2 + . . . + ajhM uM + cjh

� � , ð3Þ

where u = u1, u2 . . . , uM denote M latent person proficiencies, ajk1, ajk2, . . . , ajkM denote the cor-

responding item category slope parameters for item j and category k, and cjk are category inter-

cept parameters. As for the unidimensional model, for identification purposes, either effect

coding constraints, that is,
P

k ajkm = 0 and
P

k cjk = 0, or first category constraints, that is,

aj1m = 0; cj1 = 0, are imposed on the category parameters for each item j and for each dimension

m. u is arbitrarily assigned a mean of 0 and an identity covariance matrix. In this article, u is

also assumed to be multivariate normal.

As in the unidimensional case, multidimensional extensions of the PCM and GPCM can be

viewed as special cases of the MNRM (Thissen et al., 2010). Under the MNRM, there are

potentially distinct ajk1, ajk2, . . . , ajkM across items, score categories and dimensions. As men-

tioned earlier, most applications of MIRT with polytomous items assume constant scoring

across dimensions, at least up to a proportionality constraint. Under the multidimensional PCM

(MPCM; Yao & Schwarz, 2006), for example, the probability of scoring in category k is

expressed as

P Uj = kju1, u2, . . . , uM

� �
=

exp k � 1ð Þ a�j1u1 + a�j2u2 + . . . + a�jmuM

� �
�
Pk
t = 1

djt

� 	

PK
h = 1

exp h� 1ð Þ a�j1u1 + a�j2u2 + . . . + a�jmuM

� �
�
Ph
t = 1

djh

� 	 , ð4Þ

where a�j = (a�j1, a�j2, . . . , a�jm) is now a vector of dimension-specific item discrimination para-

meters. Because the vector is constant across score categories, and is multiplied by category

scores of 0, . . . , K 2 1 for all dimensions, the resultant scoring is equivalent across dimensions
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up to a multiplicative constant. For example, if for a given item j the scoring with respect to

Dimension 1 is 0, a�j1, 2 a�j1, . . . (K 2 1) a�j1, then the scoring with respect to Dimension 2 is the

same vector multiplied by a�j2=a�j1.

This proportionality constraint can also be understood in relation to direction of measure-

ment, where the vector of category slopes is viewed geometrically (see, for example, Ackerman,

1994; Reckase, 1985). The MPCM assumes that the direction of best measurement stays con-

stant across successive score categories, a direction represented by a�j . As for the GPCM, the

thresholds of the MPCM are a function of the category intercepts of the MNRM, that is,

djk = cj, k + 1 � cjk , where dj1 = 0.

Thissen et al. (2010) considered a multidimensional nominal model in which category scor-

ing is estimated as under the unidimensional nominal model, but is assumed to be constant

across dimensions. Like the MPCM, the model assumes that the measurement direction is con-

stant within an item, but with flexibility in terms of the ordering and spacing of the intermediate

score categories. Despite the increased flexibility afforded by the Thissen et al. (2010) model, it

does not address the scenario presented by Reckase (2009) in which a single item distinguishes

between different dimensions or dimensional composites across score categories. This possibil-

ity is considered in the next section.

Dimension-Specific Item Scoring and the Multidimensional Nominal
Response Model

Recent applications of the MNRM (e.g., Bolt & Johnson, 2009; Falk & Cai, 2016) have illu-

strated value in allowing the score category slopes to differ across latent traits. Kelderman and

Rijkes (1994) have also presented a model with dimension-specific scoring in the form of an

MPCM where differences between successive score categories were specified to either measure

or not measure particular proficiency dimensions. In this article, the possibility of empirically

estimating the category slopes within the MNRM is considered, as typically occurs for the

NRM. Importantly, the estimated scoring can vary across dimensions, and is therefore freed

from the proportionality constraint of the MPCM. This type of modeling resembles closely how

optimal scaling can be applied within principal components analysis (see, for example,

Meulman, Van der Kooij, & Heiser, 2004). We discuss some implications of the relationship

with this method in discussion.

Of course, a significant issue related to dimension-specific scoring is the large number of

model parameters introduced. The model may become particularly unwieldy for items having

many score categories and/or dimensions. Category slope parameters may be estimated poorly

unless sample sizes are large. In addition, when applied in a purely exploratory fashion, there is

a similar rotational indeterminacy as occurs in traditional exploratory factor analysis (Bolt &

Johnson, 2009). As a result, restricted versions of the model in Equation 3 would be desirable in

many settings. For example, when a consistent scoring rubric is applied across items, it may be

reasonable to apply equality constraints across items (i.e., a1km = a2km = . . . = aJkm) for each cate-

gory k and each dimension m. To the extent that the resulting estimates might also be viewed as

defining a type of ‘‘average’’ across items scored using a common rating scale, the estimates

may inform how the individual categories of the score scale tend to differentially distinguish

across dimensions, as in the example of Reckase (2009). Another useful form of constraint are

zero constraints, particularly as imposed for a given item j on a particular dimension m (e.g.,

aj1m = aj2m = . . . = ajKm = 0). Zero constraints function in the same way as zero loading con-

straints in confirmatory factor analysis, and can reflect settings in which the dimensions are

defined only by select items. Finally, monotonicity constraints across categories within an item
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for a given dimension m (i.e., aj1m � aj2m � . . . � ajKm) are also considered. Monotonicity con-

straints may be sensible where the score categories possess a known ordering, as in partial credit

scoring. Such an application in a real data example is considered shortly.

Another potential advantage of the more flexible MNRM approach relates to how the result-

ing category estimates can be interpreted. Specifically, the difference in category slopes for

successive score categories along a given proficiency dimension indicates how well the suc-

cessive score categories measure that dimension. Consider, for example, a three-category

item with category slopes of 0, 0.7, 2.0 on Proficiency Dimension 1, and 0, 0.8, 1.0 on

Proficiency Dimension 2 (or equivalently using effects coding, 20.9, 20.2, and 1.1 on

Dimension 1 and 20.6, 0.2, and 0.4 on Dimension 2). When viewed in terms of item dis-

crimination (as in the GPCM), these vectors inform about measurement of the underlying

dimensions both in an absolute and relative sense. In this instance, based on the relative dif-

ferences in the category slope estimates across dimensions, it can be seen that the first pair

of categories measures more Dimension 2 than Dimension 1, specifically, (.8 2 0) / (.7 2 0)

= .8 / .7 = 1.14 times greater, while the second pair of successive categories measures more

Dimension 1 than Dimension 2, specifically, (2.0 2 .7) / (1.0 2 .8) = 1.3 / .2 = 6.5 times

greater. When combined with information provided by the corresponding threshold estimate

(djk = cj, k + 1 � cjk), an item vector representation like that presented by Reckase (1985) and

discussed by Ackerman (1994) can be provided for each pair of successive score categories

within an item, as illustrated below.

Estimation of an MNRM can be implemented using Latent Gold syntax (Vermunt &

Magidson, 2008) through the specification of continuous factors using the Cluster module (see

Supplementary Appendix). The use of Latent Gold for this purpose is discussed in the next

section.

Simulation Illustrations

The purpose of these simulation illustrations is to demonstrate how rubric-related multidimen-

sionality can in fact go undetected when applying traditional psychometric procedures for evalu-

ating multidimensionality. In this article, two examples are considered; additional analyses

reflecting alternative simulation conditions and results are provided in the online Supplementary

Appendix. In the first example, an item response dataset is simulated for 2,000 examinees admi-

nistered 20 items each having three score categories. Two underlying proficiency dimensions

are assumed and responses using Equation 3 are simulated. A two-step process is taken to gener-

ate category slope parameters for each item. An initial item discrimination (slope) parameter for

each item was first generated as sj;Uniform (:8, 1:5), with the corresponding category slope

vectors of Equation 3 then defined as aj1 = (0, sj, sj) for Dimension 1, and as aj2 = (0, 0, sj) for

Dimension 2. This approach constrains the directions of measurement associated with each pair

of successive score categories to be the same across items, while allowing the amount of dis-

crimination to vary across items. Next, for item category intercept parameters, cj1 = 0,

cj2;Uniform (� 2, 2) and cj3;Uniform (� 2, 2) are generated. Finally, person parameters were

generated as bivariate normal, with a mean vector of 0, variances of 1, and a correlation of .3, so

as to make the multidimensionality introduced substantial.

In a second example, data to four-category items are simulated such that the first pair of suc-

cessive categories (1 to 2) reflect Dimension 1, the second pair of categories (2 to 3) an equal

composite of Dimensions 1 and 2, and the third pair of categories (3 to 4) Dimension 2.

Responses for 2,000 examinees to 20 items are again simulated using an MNRM, where

initial item discrimination (slope) parameters for each dimension are generated as

sj;Uniform (:8, 1:5), but now with the corresponding category slopes of Equation 3 defined as
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aj1 = (0, 1.0*sj, 1.71*sj, 1.71*sj) and aj2 = (0,0,.71*sj,1.71*sj). For item category intercept para-

meters, cj1 = 0, cj2;Uniform (� 2, 2), cj3;Uniform (� 2, 2) and cj4;Uniform (� 2, 2) are gen-

erated. Person parameters were again simulated as bivariate normal, with a mean vector of 0,

variances of 1, and a correlation of .3. In contrast to the first simulation example, the second

example simulates a condition in which the distinction between Score Categories 1 and 2 again

reflects Dimension 1, while Score Categories 2 and 3 now reflect an equally weighted compo-

site of Dimensions 1 and 2, and score categories 3 and 4 reflect Dimension 2. (Note that the

use of the coefficients .71 and 1.71 make the multidimensional discrimination provided by the

distinction between Score Categories 2 and 3 equal to the other successive score categories.)

As described earlier, the nature of the multidimensionality simulated in these examples can

also be illustrated graphically (Ackerman, 1994). Figure 1a and 1b illustrates item vector plots

for hypothetical items from each of Simulations 1 and 2. Each item vector corresponds to a pair

of successive score categories, implying each item in the first dataset can be displayed using

two vectors, and each item in the second dataset by three vectors. The tail of the vector is posi-

tioned dj, k + 1 = (cj, k + 1 � cjk) units from the origin, while each vector has a direction and length

defined by the category slope differences (i.e., aj, k + 1, 1 � ajk1, aj, k + 1, 2 � ajk2) for k = 1, . . . ,

K2 1. As the MNRM reduces to a multidimensional two-parameter logistic model (M2PL)

when considering only a single pair of successive score categories, the interpretation parallels

that of the M2PL vectors (Ackerman, 1994; Reckase, 1985), except now it relates to the condi-

tional probability of scoring in the higher of two successive item score categories. Specifically,

the direction of the vector defines the direction in the two-dimensional proficiency space at

which the conditional probability surface maximally increases, and the length of the vector

reflects the rate of increase. The tail of the vector corresponds to that location in the space at

which the maximal increase occurs.

Note that in both simulations, the generated item vectors for the same pair of successive

categories are all oriented in the same directions across items; however, the items vary with

respect to the locations of their vector tails (i.e., thresholds) and vector lengths (magnitude of

discrimination). As illustrated in Figure 1, in the three category items, the first vector for each

item is positioned in the direction of u1 and the second vector in the direction of u2. For the

Figure 1. Item Category Vector Plots, Simulation Datasets 1(a) and 2(b).
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four-category items, the first vector is positioned in the direction of u1, the second vector in

a direction the reflects an equal composite of u1 and u2, and the third vector in the direction

of u2.

As noted above, the two datasets are intended to illustrate how a rubric-based multidimen-

sionality of the kind simulated here can go undetected using traditional factor-analytic and

MIRT-based dimensionality procedures. A common approach to inspecting multidimensional-

ity considers principal component eigenvalues based on an inter-item correlation matrix. For

example, the ratio of first-to-second eigenvalues, or the number of eigenvalues above 1, are

common criteria for evaluating unidimensionality (Hattie, 1985). The first five eigenvalues for

Dataset 1 were 4.933, .988, .913, .910, and .876; for Dataset 2, they were 7.412, 1.039, .870,

.794, and .771. Thus, by both eigenvalue criteria, there would appear to be in both datasets

strong support for unidimensionality. Maximum-likelihood factor loadings based on a single

factor model are between .22 and .57 across variables for Dataset 1 and between .43 and .67 for

Dataset 2. Consequently, applying traditional factor analysis techniques to these data would

appear to quite clearly support the use of unidimensional item response models, and miss the

presence of the multidimensionality simulated.

Datasets 1 and 2 were also analyzed using Latent Gold (Vermunt & Magidson, 2008) which

allows for specification of not only the MNRM but also various comparison models.

Unidimensional (1D), two-dimensional (2D), and three-dimensional (3D) models were fit to

the datasets in which the variables (items) were specified as either ‘‘ordinal’’ or ‘‘nominal’’

and for which the item (category) slopes were or were not constrained to be equal across items.

In Latent Gold, specification of an item variable as ordinal implies fixed equal-interval score

categories, with a potentially varying (item)-specific slope (discrimination) parameter. Models

with an ordinal specification are equivalent to a GPCM, or MPCM in the multidimensional

case. Specification of an item variable as nominal implies estimated item score category slopes

for each category within each dimension using effect coding constraints, equivalent to the

MNRM. For models in which equal item constraints were imposed (referred to as ‘‘Equal

Items’’ models), either the item category slope parameters (in the nominal case) or the item dis-

crimination parameters (in the ordinal case) are constrained to be equal across all items; the

category threshold/intercept parameters always freely vary across both items and categories.

For the nominal models, in each case monotonicity constraints were also imposed on the score

category functions for each item with respect to each dimension, that is, aj, 1, m � aj, 2, m � aj, 3, m

for Dataset 1, and aj, 1, m � aj, 2, m � aj, 3, m � aj, 4, m for Dataset 2. Such constraints allow the

comparison of nominal models against ordinal models to relate only to the spacing of score

categories and not their ordering.

Tables 1 and 2 displays the corresponding log-likelihood values for each the resulting twelve

models fit, and the corresponding log-likelihood-based model comparison criteria for each

model as provided by Latent Gold. These include the Bayesian Information Criterion (BIC), the

Akaike Information Criterion (AIC), the AIC3, and the Consistent version of the AIC (CAIC).

Each criterion introduces a model complexity penalty based on the number of parameters that

permits a more meaningful statistical comparison across models. For each criterion, the model

that performed the best is identified in bold.

Several aspects of the model comparison criteria across analyses provide insight. First,

when making ordinal assumptions regarding the score categories, the presence of multidi-

mensionality is either missed, or appears small/negligible. A comparison of the 1D-ordinal

models (either with or without equality constraints) against the corresponding 2D- and 3D-

ordinal models shows the 1D model to be preferred in Simulation Dataset 1. In Simulation

Dataset 2, the 2D-ordinal model is preferred, but the difference between the 1D and 2D
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solutions is more substantial in the nominal models. Such results appear largely consistent

with the factor-analytic results reported earlier. By contrast, when making nominal-level

assumptions, the superiority of the 2D-nominal models over the corresponding 1D- and 3D-

nominal models is much clearer, a result consistently observed across all four model com-

parison criteria.

As a general tool for exploring rubric-related multidimensionality, the analyses of both data-

sets make clear how the detection of multidimensionality really only emerges under the nominal

models. Moreover, the 2D-nominal models emerge as statistically superior to all of the models

under consideration. Due to the relatively small amounts of between-item variability simulated

in the category slopes (uniform between .8 and 1.5), it is not surprising that the Equal Items

models are at times found to be the best models.

To examine recovery of the simulated category slope estimates, the resulting category

slope estimates and standard errors for the 2D-nominal equal items model for each dataset

are shown in Table 3. The results suggest the ability of the model to effectively recover the

relative spacing across categories of the slope estimates as simulated. In Dataset 1, it is

apparent that Dimension 1 is measured only by the distinction between Categories 1 and 2,

while only Dimension 2 is measured by the distinction between Categories 2 and 3.

Similarly, for Dataset 2, the distinction between Categories 1 and 2 reflects only Dimension

1, while the distinction between Categories 2 and 3 is approximately equally sensitive to

both Dimensions 1 and 2, and the distinction between Categories 3 and 4 is largely sensitive

to only Dimension 2.

Although not shown here, results for the 2D-nominal models without the Equal Item con-

straint in terms of their recovery of the category slopes at the item level were also inspected.

The correlations between the true and estimated category slopes were quite high (.96, .96 for

Datasets 1 and 2, respectively) and the root mean square errors (RMSEs) were reasonably low

(.09 and .12 for Datasets 1 and 2, respectively), suggesting reasonably good recovery.

Taken together, these results illustrate a couple of important considerations in the application

of the MNRM in the possible presence of rubric-related multidimensionality. The first is the

potential for multidimensionality to uniquely emerge when specifying a nominal model. Such a

result can be attributed to the fact that when the nature of the multidimensionality relates to dif-

ferences across score categories (what the authors refer to as rubric-related multidimensional-

ity), the multidimensionality is missed when treating the score categories as fixed equal-interval

values. The second is the potential of a 2D-nominal model to not only identify the correct

dimensionality but also determine the relative spacing of score categories across dimensions.

As the relative spacing of score category slopes determines measurement direction, the model

makes it possible to consider how the item score categories differentially reflect the underlying

proficiencies.

Table 3. Estimates of Two-Dimensional Nominal Category Slopes (âjks), Equal Items Model, Simulation
Datasets 1 and 2.

Dataset 1 Dataset 2

Category Dimension 1 Dimension 2 Dimension 1 Dimension 2

1 20.71 (.02) 20.44 (.01) 21.51 (.04) 20.60 (.02)
2 0.36 (.01) 20.44 (.01) 20.33 (.02) 20.60 (.02)
3 0.36 (.01) 0.89 (.02) 0.76 (.02) 0.09 (.02)
4 1.08 (.04) 1.11 (.03)
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Real Data: Eighth Grade 2007 Trends in Mathematics and Science
Study (TIMSS) Science and Math, United States

Our real data example considers item response data from the TIMSS 2007 assessment adminis-

tered to 7,377 eighth graders in the United States. A total of 214 math items (116 MC, 98 CR)

and 222 science items (104 MC, 118 CR) were administered. In both science and math subject

areas, all multiple-choice items and a portion of the CR items were scored as correct/incorrect

(0/1), while other CR items were scored as partial credit (0,1,2). For math, 22 of the CR items

were partial credit, while for science, 21 were partial credit. Each student was administered two

blocks of items from each subject area; each block is approximately 15 items in length. Overall,

each item from the test is administered to approximately 1,000 respondents, so the data structure

contains a large number of structural missings. However, due to overlap of items across admi-

nistered blocks, a concurrent calibration of items within each subject area was used in the cur-

rent analyses.

We considered a series of two-dimensional models in which all items loaded on a first gen-

eral factor, but only the CR items (both binary and partial credit) loaded onto an orthogonal sec-

ond factor. Therefore, the first factor is interpreted as a content factor (Math or Science) and the

second factor as a CR format factor. The CR format factor might be viewed as reflecting aspects

of performance on CR items, that is, the ability to explain reasoning, to show work, and so on,

that are unique to CR items and how they are scored.

To verify the presence of multidimensionality and to explore different assumptions about the

CR partial credit items, similar models were fit to those considered in the simulation analyses.

The authors considered 1D models in which all items only loaded on a general factor, and a 2D

model of the form described above. The authors also considered models in which the partial

credit items were either treated as ordinal or nominal, and for which the item (category) slopes

were either freely estimated or constrained to be equal across items (Equal Items models). For

each model, the items scored as binary were always specified as nominal, although an ordinal

specification would be statistically equivalent.

Tables 4 and 5 present the model comparison results. Across all eight models, the preferred

models are consistently the 2D models, suggesting a detectable distinction between the CR and

MC items. In this analysis, unlike the simulation illustrations, the multidimensionality is appar-

ent under both ordinal and nominal conditions. The better-fitting models are also clearly those

that allow the slope parameters to vary across items as opposed to the Equal Items models.

However, the model comparison indices are inconsistent regarding a preference for nominal

versus ordinal treatment of partial credit CR items. For Math, the AIC prefers the nominal

model while the BIC, AIC3, and CAIC prefer the ordinal model; for Science, the AIC and

AIC3 prefer the nominal model, while the BIC and CAIC prefer the ordinal model.

Closer inspection of the model parameter estimates under the 2D-nominal models provides

insight into causes of the divergence across criteria. Although it would appear that the ordinal

assumptions are suitable for many items, for a select number of items they are not. To explore

this further, the category slope estimates for the 2D-nominal equal items model are first consid-

ered, as shown in Table 6. For both the math and science datasets, it appears the category

slopes estimates reflect an approximately equal spacing with respect to Dimension 1 (the con-

tent—Math or Science—dimension), but a slightly unequal spacing with respect to Dimension

2 (the CR dimension). For math, it appears there is a slightly larger relative difference between

Categories 1 and 2 on Dimension 2, while for Science the larger relative difference is between

Categories 2 and 3. Consequently, it would seem that on average there is a difference across

content areas in how Dimension 2 functions in relation to the score categories.
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However, the superiority of the 2D-nominal model (without equal items) over the 2D-nom-

inal with equal items model suggests allowing for differences in the category slopes across

items. For illustration, a couple of example items from each content area involving items that

have been released by TIMSS (see http://timssandpirls.bc.edu/timss2007/items.html and http://

timssandpirls.bc.edu/timss2011/international-released-items.html) in examining these results

are considered. In each case, the released information provides not only the items but also a

description of criteria used for assigning partial (1) and full credit (2) to the items. Tables 7 and

8 present estimates from the 2D-nominal models for four example items, two from science and

two from math. Corresponding item vector plots based on the estimates are shown in Figure 2a

and 2b. For the two math items, Item M032757 demonstrates much greater variability in the

angular directions of its two vectors compared with M032755. Item M032757 is an algebra item

involving the presentation of patterns of tiles arranged in the form of squares. The problem itself

involves identifying the sequential pattern that would permit calculation of the number of inter-

nal squares as the overall square increases in size. The problem requires identifying the next

Table 6. Estimates of Category Slopes (âjks) and Standard Errors, 2D-Nominal Equal Items Model,
TIMSS Math and Science Data, Eighth Grade, United States (N = 7,377).

Math Science

Category Dimension 1 Dimension 2 Dimension 1 Dimension 2

1 20.77 (.02) 20.28 (.03) 20.66 (.02) 20.37 (.03)
2 20.00 (.02) 0.07 (.03) 0.03 (.01) 20.08 (.02)
3 0.78 (.02) 0.21 (.03) 0.63 (.02) 0.45 (.03)

Note. TIMSS = Trends in Mathematics and Science Study.

Table 7. Multidimensional Nominal Category Estimates (âjks) and Standard Errors for Example Items
From TIMSS Math and Science Test: Math Items.

M032757 M032755

Category a1 a2 c a1 a2 c

0 20.47 (.09) 20.88 (.15) 20.18 (.10) 21.24 (.11) 20.56 (.10) 1.79 (.11)
1 20.17 (.09) 0.10 (.15) 20.96 (.10) 0.33 (.10) 0.19 (.10) 2.44 (.12)
2 0.64 (.07) 0.78 (.13) 1.15 (.07) 0.91 (.13) 0.37 (.12) 21.35 (.16)

Note. TIMSS = Trends in Mathematics and Science Study.

Table 8. Multidimensional Nominal Category Estimates (âjks) and Standard Errors for Example Items
From TIMSS Math and Science Test: Science Items.

S042310 S022289

Category a1 a2 c a1 a2 c

0 20.45 (.07) 20.61 (.15) 20.41 (.08) 21.09 (.16) 21.26 (.35) 20.47 (.20)
1 20.19 (.06) 0.22 (.11) 0.08 (.06) 0.11 (.08) 0.17 (.20) 1.24 (.15)
2 0.64 (.06) 0.39 (.12) 0.34 (.06) 0.98 (.13) 1.09 (.31) 20.76 (.18)

Note. TIMSS = Trends in Mathematics and Science Study.
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two values in the sequence. Partial credit is awarded if one of the two subsequent values is cor-

rectly provided. The item vectors for this item would suggest that obtaining partial versus no

credit distinguishes mainly with respect to the CR format dimension, while full versus partial credit

distinguishes mainly with respect to the math dimension. A reasonable explanation for this result

is the potential for multiple strategies in solving the item, only one of which actually involves alge-

bra. One likely strategy is to construct (draw) the squares that are next in the sequence and count

the number of squares of each type. The other likely strategy will write out the algebraic equation

and solve it to determine the next two values in the sequence. In the presence of two such strate-

gies, it would seem highly plausible that the first strategy will be more prone to a type of mistake

that would lead to one correct and one incorrect answer in regard to the subsequent two values.

The latter strategy, if implemented correctly, will lead to both answers being solved correctly. It

thus seems very natural that full credit would inform much more about mathematics proficiency

than partial credit, explaining the disproportionate difference between the full and partial credit

scores on the math dimension relative to the format dimension.

By contrast, Item M032755 appears to measure a similar composite of dimensions across

categories. This item, while similarly consisting of two parts and awarding partial credit for

answering correctly one of the two parts, is less integrated, and yields partial credit if one of

the two parts is answered correctly. Consequently, the observation of a similar measurement

direction for both vectors is much more intuitive.

The two science items provide a similar contrast. Item S042310 shows substantial variability

in the direction of its two vectors, while the vectors of Item S022289 are more consistent. As

for M032757, inspection of the item and scoring associated with S042310 provides a likely

explanation for the different directions of its vectors. In Item S042310, a diagram showing two

sets of planted seeds is provided, one of which is planted under conditions of low soil nutrients

and dim light, the other under conditions of high soil nutrients and bright light. The student is

asked which of the two plants will grow taller and to explain why. Partial credit can be obtained

simply for identifying that the latter plant will grow taller but without explanation, a result that

could by random guessing be achieved with 50% probability and absent any scientific knowl-

edge. By contrast, the full credit response must provide the scientific reason, and thus would

seem more aligned with actual measurement of science proficiency.

Figure 2. Item Category Vector Plots, TIMSS Math and Science Items.
Note. Trends in Mathematics and Science Study.
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Item S022289, by contrast, simply asks the student to provide two reasons a human’s heart

beats faster with exercise. Full credit is provided if explanations related to both the physiologi-

cal needs of the body and the role of the circulatory system are identified, partial credit if only

one of the two explanations is provided. Like Item M032755, the sensitivity of the partial credit

to no credit distinction in relation to the substantive content (in this case science proficiency) is

much more apparent, and the consistency of measurement direction for both vectors of this item

would appear consistent with expectations.

Conclusion and Discussion

In contexts of multidimensionality, items scored as partial credit may measure different dimen-

sional composites across score categories (Reckase, 2009). In this article, the authors illustrate

how a multidimensional nominal model can be used for exploratory study of this issue. As

shown in two simulation illustrations, the actual presence of rubric-based multidimensionality

can be missed when applying traditional MIRT models, such as the multidimensional PCM

(Yao & Schwarz, 2006). To the extent that multidimensionality can facilitate meaningful diag-

nostic reports of test performances, the failure to detect it can be consequential. Use of the pro-

posed approach may also be useful in validating individual test items, as well as the scoring

applied to items in partial credit settings.

The primary goal of this article was to illustrate the potential of an MNRM in capturing con-

ditions in which rubric-related multidimensionality may be present, Additional study is needed

regarding the wide range of dimensionality conditions that are likely to be encountered in prac-

tice and the capability of an MNRM under such conditions. In many settings the nature of multi-

dimensionality related to scoring rubrics will not be consistent across items, and will also occur

in the presence of other forms of multidimensionality related to item characteristics. Future

simulation work might also examine the psychometric requirements in terms of sample size and

item score distributions needed for good recovery of the item category slopes.

As noted earlier, there is a close relationship between the form of IRT modeling considered

in this article and optimal scaling applications as are sometimes applied with principal compo-

nents analysis. As the latter methodology is less computationally intensive, a useful practical

strategy may be to use an optimal scaling approach initially to explore whether dimension-

based scoring appears to be important, and to follow-up with a model based approach only if

so. Additional study of the relationship between these methodologies although beyond the

scope of the current article, may be useful.

Further attention to multidimensionality related to item scoring in the study of item format

effects would seem to be warranted. It is possible, for example, that how partial credit items are

scored may play in role in understanding the heterogeneity seen in format effect correlations

observed across studies (Rodriguez, 2003). Applications to other tests would also be useful. In

the current TIMSS tests studied, the use of fixed equal-interval scoring for the PCMs generally

appears appropriate, with a small number of individual items that showed differences. It is con-

ceivable, for example, with tests of reading such as the Progress in International Reading

Literacy Study (PIRLS) that partial credit items may display differential sensitivity to passage-

based versus reading comprehension dimensions across score categories.
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