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Abstract

The construction of assessments in computerized adaptive testing (CAT) usually involves fulfill-
ing a large number of statistical and non-statistical constraints to meet test specifications. To
improve measurement precision and test validity, the multidimensional priority index (MPI) and
the modified MPI (MMPI) can be used to monitor many constraints simultaneously under a
between-item and a within-item multidimensional framework, respectively. As both item selec-
tion methods can be implemented easily and computed efficiently, they are important and useful
for operational CATs; however, no thorough simulation study has compared the performance
of these two item selection methods under two different item bank structures. The purpose of
this study was to investigate the efficiency of the MMPI and the MPI item selection methods
under the between-item and within-item multidimensional CAT through simulations. The MMPI
and the MPI item selection methods yielded similar performance in measurement precision for
both multidimensional pools and yielded similar performance in exposure control and con-
straint management for the between-item multidimensional pool. For the within-item multidi-
mensional pool, the MPI method yielded slightly better performance in exposure control but
yielded slightly worse performance in constraint management than the MMPI method.
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Computerized adaptive testing (CAT) has been widely used in educational and psychological

assessments because it can obtain efficient and precise ability estimation with fewer items than

traditional paper-and-pencil tests. One of the important issues in CAT is the item selection algo-

rithm. Test specifications specify a series of constraints for including items in a test (Swanson &

Stocking, 1993). The constraints can be both statistical (i.e., psychometric) and non-statistical

(i.e., non-psychometric) on item properties. Examples of the statistical constraints include target

item and test information, whereas examples of the non-statistical constraints include content
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specifications and key balancing. Although different algorithms perform item selection sequen-

tially or simultaneously in the test assembly, the item selection in CAT is sequential by nature

(van der Linden, 2005). Therefore, it is challenging, while constructing assessments, to meet the

various constraints in CAT simultaneously.

Many item selection methods have been proposed to handle constraints in CAT; in general,

these methods can be classified into mathematical programming approaches and heuristic

approaches (Cheng & Chang, 2009). The mathematical programming approaches, such as the

network-flow programming method (Armstrong, Jones, & Kunce, 1998) and the shadow-test

approaches (van der Linden, 2000, 2005; van der Linden & Chang, 2003; van der Linden &

Reese, 1998; van der Linden & Veldkamp, 2004, 2007; Veldkamp & van der Linden, 2002,

2008), are very effective in managing constraints, but computation may be intensive when a

large number of constraints are considered. Another important issue is feasibility; the mathe-

matical programming approaches can have a solution only when a test can satisfy all the con-

straints (Timminga, 1998). In addition, the mathematical programming approaches often rely

on external commercial software, such as CPLEX and LINDO (Chang, 2007).

However, the heuristic approaches, such as the weighted deviation modeling (WDM;

Stocking & Swanson, 1993) method and the priority index (PI) approaches (Cheng & Chang,

2009; Cheng, Chang, Douglas, & Guo, 2009; Su, 2015; Su & Huang, 2015; Yao, 2011, 2012,

2013, 2014), can avoid the issues of computational intensity and infeasibility. Because the heur-

istic approaches can be implemented easily and computed efficiently, they are widely used in

operational CAT (Cheng & Chang, 2009). In addition, the heuristic approaches make the item

selection process very fast and the algorithms can always find a solution. A drawback of the

heuristic approaches is that the assembled tests may not be ‘‘optimal’’ nor meet all the con-

straints because items are selected sequentially. In practice, the WDM method can satisfy most

of the non-statistical constraints. To achieve optimal results, the WDM method would need to

adjust the weights for constraints through a remarkably time-consuming process (Leung,

Chang, & Hau, 2005). In contrast, the PI approaches do not require adjusting weights for con-

straints (Cheng & Chang, 2009). The PI approaches can be used to monitor many non-statistical

constraints simultaneously and efficiently in unidimensional CAT (Cheng & Chang, 2009;

Cheng et al., 2009) and multidimensional CAT (Su, 2015; Su & Huang, 2015; Yao, 2011,

2012, 2013, 2014).

Several studies were conducted to compare the performance of some of the methods dis-

cussed above (Cheng & Chang, 2009; He, Diao, & Hauser, 2014; Robin, van der Linden,

Eignor, Steffen, & Stocking, 2005; van der Linden, 2005), but the findings were inconclusive.

Robin et al. (2005) compared the shadow-test approaches and the WDM method, and found

that two methods performed in a comparable manner; van der Linden (2005) also compared

these two methods, but he found that the WDM yielded some violations, larger bias, and inac-

curate ability estimators. Cheng and Chang (2009) compared the PI and the WDM item selec-

tion methods, and found that the PI method yielded fewer constraint violations and better

exposure control than the WDM method while maintaining the same level of measurement pre-

cision. He et al. (2014) compared the shadow-test approaches and three heuristic approaches,

the WDM, the PI, and the weighted penalty model (Shin, Chien, Way, & Swanson, 2009).

They found that the shadow-test approaches yielded the best performance in terms of measure-

ment accuracy and constraint management, and the three heuristic approaches performed in a

comparable manner with one another.

Many educational and psychological tests, such as the Minnesota Multiphasic Personality

Inventory–2 (MMPI-2; Hathaway & McKinley, 1989), have been analyzed with multidimen-

sional models. Multidimensional CAT can provide higher precision and reliability or reduce test

length, compared with unidimensional CAT (Segall, 1996; Wang & Chen, 2004; Yao, 2012).
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However, there are difficulties in the use of multidimensional CAT in practice, one of which is

time-consuming to obtain ability estimates for high dimensional structure. Therefore, more

studies on multidimensional CAT are needed. The multidimensional priority index (MPI; Yao,

2011, 2012, 2013, 2014) method was developed to handle constraints for the Armed Services

Vocational Aptitude Battery (ASVAB), which is a between-item multidimensional CAT test.

Under the between-item multidimensional framework, items in the same battery are assumed to

measure only one distinct latent trait, and the overall assessment is assumed to measure differ-

ent latent traits. In contrast, some other tests might have a within-item multidimensional struc-

ture, such that individual items are intended to assess multiple latent traits. For instance, an

arithmetic item in a mathematics test can be used to assess both symbolic representation and

calculation, that is, this mathematics test has a within-item multidimensional structure.

Su and Huang (2015) argued that the MPI method was not appropriate for item selection in

within-item multidimensional CAT. To extend the MPI method to a within-item multidimen-

sional framework, the modified MPI (MMPI; Su & Huang, 2015) method was proposed to han-

dle various constraints for item selection. In Su and Huang’s study, some items assessed

multiple latent traits and some items assessed single latent traits to form a within-item multidi-

mensional pool. The proposed MMPI method was compared with several item selection meth-

ods, and it could accommodate various non-statistical constraints simultaneously. Since Yao

(2013) found that high-quality items tend to be administered to examinees who take the test

earlier and suggested that a-stratification (Chang & Ying, 1999; Chang, Qian, & Ying, 2001)

can be integrated with the MPI method, administering ‘‘low-information’’ items first. The ratio-

nale is that less discriminating items can be used at the initial stage of testing when the latent

trait estimation is not reliable, and high discriminating items can be used at the later stages of

testing when the latent trait estimation is of greater certainty. Therefore, the MMPI method was

integrated with a-stratification and exposure control (Su & Huang, 2015) to obtain better pool

usage and lower test overlap rates; however, it yielded some slight loss in measurement preci-

sion and constraint management.

The MPI method was developed for item selection in multidimensional CAT and showed its

advantages in between-item multidimensional CAT (Yao, 2011, 2012, 2013, 2014). Because Su

and Huang (2015) argued that the MPI method was not appropriate in within-item multidimen-

sional CAT, the MMPI method was proposed and only investigated under the within-item mul-

tidimensional framework. In practice, the MMPI method can be used for item selection in both

between-item and within-item multidimensional CATs (Su & Huang, 2015). In addition, as the

MPI and MMPI methods can be implemented easily and computed efficiently, they are impor-

tant and useful for operational CAT; however, no thorough simulation study has been done to

compare the performance of these two item selection methods under two different item bank

structures. Therefore, the purpose of this study was to compare the efficiencies of the MMPI

and MPI methods for item selection in between-item and within-item multidimensional CATs.

The MPI Method

Yao (2011) defined the MPI for each item i as

MPIi =
YD
d = 1

f
cid

id , ð1Þ

where cid is the loading information for item i on domain d such that cid = 1 if item i is from

domain d and cid = 0 otherwise. To apply a stopping rule of measurement precision, Yao (2013)
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included the estimated domain score precision, item exposure rate, and content constraints with

upper and lower bounds for each domain to define fid as

fid = max 1� pdbpd
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+ e1
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where pd and p̂d are the required standard error of measurement (SEM) and the SEM estimates

based on the administered items for the domain d ability estimates, respectively; the larger the

SEM, the smaller the precision. The second term in Equation 2 is used to ensure that no item is

selected more than a pre-specified item exposure rate ri. N is the total number of examinees.

For each item selection step, ni is the number of examinees who have seen item i. The third

term in Equation 2 is used to monitor content specifications. The lower and upper bounds of

each domain d are ld and ud , respectively. For each item selection step, xd is the number of

selected items from domain d. To consider item selection criteria or information measures in

multidimensional CATs, the MPI in Equation 1 can be modified by multiplying the minimum

angle (Reckase, 2009), maximum volume or the maximum determinant of the Fisher informa-

tion matrix (MDFIM; Segall, 1996), minimum error variance of the linear combination (van

der Linden, 1999), minimum error variance of the composite score with the optimized weight

(Yao, 2010), or Kullback–Leibler information (Chang & Ying, 1996). Then, an item with the

largest value will be selected for administration. According to the algorithm, no further items

will be selected for a specific constraint if the constraint is met. Here, the smaller the values of

a and b, the larger the weight given to the precision. The terms e1 and e2 are small numbers, so

that the precision of the estimates can be slightly above the required precision, and the mini-

mum required number of items for each domain can be administered first, respectively.

Su and Huang (2015) argued that the MPI method was developed to handle constraints for

the between-item multidimensional test, so it might not be appropriate to be used directly in a

within-item multidimensional framework. When an arithmetic item is used to assess symbolic

representation and calculation, the terms regarding measurement precision, exposure control,

and content balancing in Equation 2 are calculated within each dimension. For the arithmetic

item, the MPI needs to be calculated over symbolic representation and calculation dimensions.

Obviously, an item with within-item multidimensional structure is unlikely to be selected

because many multiplications make the MPI much smaller.

The MMPI Method

Based on the PI framework, Su and Huang (2015) extended the MPI method to a within-item

multidimensional framework. The MMPI for each item i is defined as

MMPIi = Infi3
Yj

k = 1

vk f
cik

k 3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiXK

k = j + 1

vkcik fk½ �2
vuut , ð3Þ

where cik = 1 represents constraint k being relevant to item i and cik = 0 otherwise. Each con-

straint k is associated with a weight wk . Different constraints are given different weights depend-

ing on their importance. The item with the largest MMPI will be selected for administration.

The first term in Equation 3 is the item information criterion, which the determinant of the

Fisher information matrix was used in Su and Huang’s study. The second term in Equation 3
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includes the constraints between dimensions, such as item exposure control and key balancing.

For a unidimensional or between-item multidimensional pool, constraints with regard to content

balancing are included in the second term. When only the first two terms in Equation 3 are

included, it is reduced to the PI item selection method in unidimensional CAT. For a within-

item multidimensional pool, constraints considering within dimensions, such as content balan-

cing, are included in the third term of Equation 3.

When constraints are considered with regard to flexible content balancing, each flexible con-

tent balancing constraint involves a lower bound lk and an upper bound uk . The number of items

to be selected from content area k is denoted as mk . Then, lk � mk � uk and
PK
k = 1

mk = L, where L

is test length. A one-phase item selection strategy can be used by incorporating both upper and

lower bounds. The term fk in Equation 3 can be replaced with f1k f2k , defined as

f1k =
1

uk

uk � xkð Þ ð4Þ

and

f2k =
L� lkð Þ � t � xkð Þ

L� lk
, ð5Þ

where t is the number of items that have already been administered and t =
PK

k = 1 xk . The terms

f1k and f2k measure the closeness to the upper and lower bounds, respectively. When the f2k in

Equation 5 is equal to 0, it indicates that the sum of items from other domains has reached its

maximum. Then, the f1k f2k for constraint k is defined as 1 when f2k = 0. When item exposure

control is considered, the term fk can be calculated as

fk =
1

rmax

rmax �
ni

N

	 

, ð6Þ

where N is the number of examinees who have taken the CAT, and n is the number of exami-

nees who have seen item i. After N examinees have taken the CAT, the ni/N is the provisional

exposure rate of item i.

Method

Item Pool

The multidimensional three-parameter logistic (M3PL; Reckase, 1985) model was used in this

study. The probability of getting a correct response for examinee n with d-dimensional latent

traits u9n = (u1, u2, . . . , ud) is defined as

pni1 = ci + 1� cið Þ exp a9i un � bi1ð Þ½ �
1 + exp a9i un � bi1ð Þ½ � , ð7Þ

where ai is a d31 vector of the discrimination parameter of item i; bi and ci are the difficulty

and the guessing parameters of item i, respectively; and 1 is a d31 vector of 1s.

The item parameters in this study were adapted from Su and Huang’s study (2015). Two

simulated pools were used in the study. The discrimination parameters were drawn from a uni-

form distribution at the interval of real numbers (0.5, 1.5) for each dimension, difficulty para-

meters were drawn from a standard normal distribution, and guessing parameters were drawn

from a uniform distribution at the interval of real numbers (0, 0.4). For the between-item two-

350 Applied Psychological Measurement 40(5)



dimensional pool, one thousand M3PL items were generated, in which 60% and 40% of the

items measured the first and second dimensions, respectively. For the within-item two-dimen-

sional pool, one thousand M3PL items were generated, in which 40% of the items measured

the first dimension, 30% of the items measured the second dimension, and the remaining 30%

of the items measured both dimensions. The numbers of content areas simulated for these two

dimensions were 3 and 2, and items were randomly assigned to these areas with equal probabil-

ity. All 5,000 simulated examinees were drawn from a multivariate standard normal distribution

with correlations .8 and .4, indicating high and low correlation. Item responses were generated

according to Equation 7.

Simulation Conditions

Four item selection methods were considered in this study: two constrained item selection meth-

ods and two control methods. In this study, two constrained methods were the MPI and the

MMPI; two control methods were the MDFIM and the randomized (R) item selection. When

the R method was applied, items were selected randomly for administration. When the MDFIM

method was applied, an item with the maximum determinant of the Fisher information matrix

was selected for administration. The R method selected items randomly, so the performance of

measurement precision was the worst scenario among all the item selection methods. The

MDFIM method selected items with the maximum information criterion, so the performance of

measurement precision was the best scenario among all the item selection methods.

The constraints and weights for the constrained item selection methods in between-item and

within-item multidimensional pools are listed in Table 1. Eleven constraints, including content

balancing, key balancing, item exposure control, and item information, were considered in the

study. For the item exposure control constraint, 0.2 was the target maximum item exposure rate

in the study. For the item information constraint, the determinant of the Fisher information

matrix of unadministered items in the pool was calculated in the study during each item selec-

tion step. As the item information criterion is already included by the MMPI in Equation 3, the

determinant of the Fisher information matrix is multiplied by the MPI in Equation 1 before

item selection. When the MPI or the MMPI method was applied, an item with the maximum

value among unadministered items in the pool was selected for administration. Similar to Yao’s

study (2013), 3 and 1 were used for b and e2 in Equation 2, respectively. The total test length

was 30. The Maximum-a-Posteriori (MAP) estimation with a prior, matching examinees’ ability

distribution, was used to estimate û.

Evaluation Criteria

The results of the simulations were analyzed and discussed based on the following criteria: (a)

measurement precision, (b) exposure control, and (c) constraint management. With respect to

measurement precision, the bias, the root-mean-square error (RMSE), and a measure of relative

efficiency were recorded for each item selection method. The formulas for bias and RMSE are

given as follows:

Bias =
1

N

XN

n = 1

bun � un

	 

ð8Þ

and
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RMSE =
1

N

XN

n = 1

bun � un

	 
2

" #1=2

, ð9Þ

where ûn and un are the estimated and true abilities, respectively. To evaluate the latent trait

recovery, the relative efficiency is defined as the ratio of RMSE of each item selection method

to that of the MDFIM method.

With respect to exposure control, the maximum item exposure rate, the number of overex-

posed items, the number of unused items, and the skewness of the item exposure rate distribu-

tion were recorded. The item exposure rates were recorded for all items, and only the maximum

item exposure rate was reported. The overexposed items were items with item exposure rates

higher than 0.2. The unused items were items that were never exposed. The chi-square statistic

was used to measure the skewness of the item exposure rate distribution (Chang & Ying, 1999).

x2 =
1

L=I

XI

i = 1

ri � L=Ið Þ2, ð10Þ

where ri is the exposure rate of item i and L is the test length; the smaller the chi-square statistic,

the better the item exposure control.

Constraint management is checking whether the tests met the specified constraints for exam-

inees. The number of constraints that were violated in each test (for each examinee) was

recorded, and then the proportion of tests violating a certain number of constraints was calcu-

lated. Finally, the averaged number of violated constraints (�V ) for each item selection method

was calculated by

V =

PN
n = 1

Vn

N
, ð11Þ

where Vn represents the number of constraint violations in the nth examinees’ test.

Table 1. Constraints and Weights for Between-Item and Within-Item Multidimensional Pools.

Between-item pool Within-item pool

Constraints Weight Lower bound Upper bound Weight Lower bound Upper bound

Dimension 1—Content 1 1 3 5 1 5 9
Dimension 1—Content 2 1 5 7 1 7 13
Dimension 1—Content 3 1 4 6 1 6 11
Dimension 2—Content 1 1 5 8 1 6 14
Dimension 2—Content 2 1 6 9 1 7 16
Answer Key-A 1 5 10 1 5 10
Answer Key-B 1 5 10 1 5 10
Answer Key-C 1 5 10 1 5 10
Answer Key-D 1 5 10 1 5 10
Item exposure control 1 0.2 1 0.2
Fisher information 1 1

Note. The Fisher information constraint refers to the determinant of the Fisher information matrix.
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Results

The results of the simulations are summarized according to measurement precision, exposure

control, and constraint management in Tables 2, 3, and 4, respectively.

Measurement Precision

With respect to measurement precision, the bias, RMSE, and relative efficiency of the four item

selection methods for the between-item and within-item multidimensional pools are listed in

Table 2. The MDFIM and R methods were the baselines in this study. Because the MDFIM

method selected items with the maximum information criterion, the MDFIM method’s perfor-

mance of measurement precision is the best scenario among all the item selection methods.

Indeed, among the four item selection methods, the MDFIM method yielded the best measure-

ment precision in terms of the smallest bias and RMSEs for two multidimensional item pools.

When the correlation between latent traits was .8, the RMSEs of two dimensions for the

MDFIM method were 0.24 and 0.27 for the between-item multidimensional pool, and were

0.23 and 0.24 for the within-item multidimensional pool.

Because the R method selected items randomly, the R method’s performance of measure-

ment precision was the worst scenario among all the item selection methods. Indeed, among the

four item selection methods, the R method yielded the worst measurement precision in terms of

the largest bias, the largest RMSE, and the smallest relative efficiency. When the correlation

between latent traits was .8, the RMSEs of two dimensions for the R method were 0.43 and 0.48

for the between-item multidimensional pool, and were 0.43 and 0.44 for the within-item multi-

dimensional pool.

The MPI and the MMPI methods performed very similarly in terms of the bias, RMSE, and

relative efficiency. When the correlation between latent traits was .8, the RMSEs of two dimen-

sions for the MPI method were 0.32 and 0.36 for the between-item multidimensional pool, and

were 0.28 and 0.35 for the within-item multidimensional pool; the RMSEs of two dimensions

for the MMPI method were 0.34 and 0.34 for the between-item multidimensional pool, and were

0.31 and 0.29 for the within-item multidimensional pool.

Compared with the MDFIM method, the relative efficiency of the MPI method ranged

between 0.67 and 0.76 for the between-item multidimensional pools, and ranged between 0.66

and 0.83 for the within-item multidimensional pools. The relative efficiency of the MMPI

method ranged between 0.70 and 0.78 for the between-item multidimensional pools, and ranged

between 0.67 and 0.85 for the within-item multidimensional pools. In general, the measurement

precision of the item selection methods was slightly better in the within-item multidimensional

pool than in the between-item multidimensional pool; was slightly better for correlation .8 con-

ditions than for correlation .4 conditions. With respect to measurement precision, the R method

yielded the worst performance, whereas the MDFIM method yielded the best performance; the

MPI and the MMPI methods yielded similar performance.

Exposure Control

With respect to exposure control, the actual item exposure rates of each item were recorded for

the four item selection methods under the between-item and within-item multidimensional

pools. The maximum item exposure rate, the number of overexposed items, the number of

unused items, and the chi-square statistic measuring the skewness of the item exposure rate dis-

tribution were calculated for each item selection method. The results of exposure control for

the four item selection methods are listed in Table 3. For both multidimensional item pools, the
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MDFIM method yielded the worst exposure control, with the largest values for the maximum

exposure rate, the number of overexposed items, the number of unused items, and the chi-

square statistic. When the correlation between latent traits was .8, the maximum exposure rates

for the MDFIM method were 0.70 and 0.53 (both exceed the pre-specified value of 0.2), the

numbers of the overexposed items were 59 and 53, the numbers of unused items were 779 and

743, and the chi-square statistics were 279.90 and 206.46 for between-item and within-item

multidimensional pools, respectively.

By contrast, for both multidimensional item pools, the R method yielded the best exposure

control, with the smallest values for the maximum exposure rate, the number of overexposed

items, the number of unused items, and the chi-square statistic. When the correlation between

latent traits was .8, the maximum exposure rates for the R method were 0.04 and 0.04 (both less

than the pre-specified value of 0.2), the numbers of overexposed items were 0 and 0, the num-

bers of unused items were 0 and 0, and the chi-square statistics were .20 and .20 for between-

item and within-item multidimensional pools, respectively.

For the between-item multidimensional pool, the MPI and the MMPI methods performed

very similarly. When the correlation between latent traits was .8, the maximum exposure rates

for the MPI and the MMPI methods were 0.08 and 0.08 (both less than the pre-specified value

of 0.2), the numbers of overexposed items were 0 and 0, the numbers of unused items were 0

and 0, and the chi-square statistics were 4.15 and 3.77, respectively. However, for the within-

Table 2. Measurement Precision Results for the Item Selection Methods.

Item selection
methods

bias RMSE Relative efficiency

Dimension 1 Dimension 2 Dimension 1 Dimension 2 Dimension 1 Dimension 2

Between-item pool
Correlation = .8

R 0.026 0.033 0.430 0.479 0.559 0.557
MDFIM 0.007 0.015 0.240 0.267 1.000 1.000
MPI 0.015 0.019 0.317 0.363 0.759 0.734
MMPI 0.016 0.026 0.335 0.344 0.717 0.776

Correlation = .4
R 0.029 0.036 0.444 0.546 0.580 0.503
MDFIM 0.008 0.021 0.258 0.275 1.000 1.000
MPI 0.022 0.035 0.337 0.410 0.764 0.670
MMPI 0.025 0.027 0.367 0.372 0.702 0.738

Within-item pool
Correlation = .8

R 0.019 0.020 0.432 0.442 0.540 0.553
MDFIM 0.002 0.009 0.233 0.244 1.000 1.000
MPI 0.010 0.024 0.282 0.353 0.826 0.691
MMPI 0.011 0.011 0.308 0.288 0.757 0.847

Correlation = .4
R 0.009 0.033 0.451 0.481 0.570 0.551
MDFIM 0.002 0.014 0.257 0.265 1.000 1.000
MPI 0.017 0.038 0.308 0.401 0.834 0.661
MMPI 20.001 0.019 0.377 0.344 0.681 0.770

Note. Four item selection methods in this study were (a) the randomized (R) item selection, (b) the MDFIM, (c) the

MPI, and (d) the MMPI. RMSE = root mean square error; MDFIM = maximum determinant of the Fisher information

matrix; MPI = multidimensional priority index; MMPI = modified multidimensional priority index.
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item multidimensional pool, the MPI method yielded better performance than the MMPI method

because the MPI method obtained a smaller maximum exposure rate, fewer unused items, and a

smaller chi-square statistic. When the correlation between latent traits was .8, the maximum

exposure rates for the MPI and the MMPI methods were 0.08 and 0.10, the numbers of overex-

posed items were 0 and 0, the numbers of unused items were 0 and 138, and the chi-square sta-

tistics were 5.17 and 23.62, respectively.

In general, the R method yielded the best performance in exposure control, followed by the

MMPI and the MPI methods, and the MDFIM method yielded the worst performance for both

multidimensional item pools. The MPI and the MMPI methods yielded better performance in

exposure control for the between-item multidimensional pool than for the within-item multidi-

mensional pool. With respect to exposure control, although the MMPI and the MPI methods

yielded similar performance for the between-item multidimensional pools, the MPI method

yielded better performance than the MMPI method for within-item multidimensional pools. For

both multidimensional pools, four item selection methods yielded slightly better performance

on exposure control in the correlation .8 conditions than in the correlation .4 conditions.

Constraint Management

As the violation was considered at each examinee level, only the first nine constraints in Table

1 were included to evaluate the efficiency of the constraint management. The proportions of

assembled tests violating a certain number of constraints and the average number of violated

constraints for the four item selection methods are listed in Table 4. When the tests were

Table 3. Exposure Control Results for the Item Selection Methods.

Item selection methods Maximum exposure rate Overexposed items Unused items x2

Between-item pool
Correlation = .8

R 0.040 0 0 0.198
MDFIM 0.702 59 779 279.896
MPI 0.078 0 0 4.146
MMPI 0.076 0 0 3.774

Correlation = .4
R 0.039 0 0 0.195
MDFIM 0.774 58 790 297.330
MPI 0.084 0 0 5.313
MMPI 0.079 0 0 4.402

Within-item pool
Correlation = .8

R 0.038 0 0 0.195
MDFIM 0.527 53 743 206.456
MPI 0.081 0 0 5.172
MMPI 0.104 0 138 23.616

Correlation = .4
R 0.038 0 0 0.196
MDFIM 0.573 58 751 239.314
MPI 0.078 0 0 6.224
MMPI 0.102 0 130 21.181

Note. Four item selection methods in this study were (a) the randomized (R) item selection, (b) the MDFIM, (c) the

MPI, and (d) the MMPI. MDFIM = maximum determinant of the Fisher information matrix; MPI = multidimensional

priority index; MMPI = modified multidimensional priority index.
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assembling, the R method yielded the severest violation, followed by the MDFIM method, and

the MMPI and the MPI methods yielded the best constraint management for the between-item

multidimensional pool. For the between-item multidimensional pool, the averaged violations of

the R, the MDFIM, the MPI, and the MMPI methods were 3.31, 2.68, 0.00, and 0.00 when the

correlation between latent traits was .8, respectively. Similar pattern was found for the within-

item multidimensional pool. For the within-item multidimensional pool, the averaged violations

of the R, the MDFIM, the MPI, and the MMPI methods were 2.01, 1.96, 0.06, and 0.00 when

the correlation between latent traits was .8, respectively.

In general, the R and the MDFIM methods yielded better performance in constraint manage-

ment for the within-item multidimensional pool than for the between-item multidimensional

pool; but the MPI and the MMPI methods yielded better performance in constraint management

for the between-item multidimensional pool than for the within-item multidimensional pool.

With respect to constraint management, the MPI and the MMPI methods yielded similar perfor-

mance for the between-item multidimensional pool, but the MMPI methods yielded better per-

formance than the MPI method for the within-item multidimensional pool. For both

multidimensional pools, four item selection methods yielded slightly better performance on

constraint management in the correlation .4 conditions than in the correlation .8 conditions.

In summary, the MDFIM method had the best results in measurement precision, but it lost

some control in exposure control and constraint management. The R method had the best

results in exposure control but lost some control in measurement precision and constraint

Table 4. Constraint Management Results for the Item Selection Methods.

Number of violations

Item selection methods 0 1 2 3 4 5 6 7 8 9 Averaged

Between-item pool
Correlation = .8

R 0.07 0.37 0.40 0.14 0.01 0.00 0.00 0.00 0.00 0.00 3.31
MDFIM 0.17 0.40 0.35 0.08 0.00 0.00 0.00 0.00 0.00 0.00 2.68
MPI 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MMPI 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Correlation = .4
R 0.08 0.38 0.39 0.14 0.01 0.00 0.00 0.00 0.00 0.00 3.27
MDFIM 0.16 0.43 0.34 0.07 0.00 0.00 0.00 0.00 0.00 0.00 2.64
MPI 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
MMPI 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Within-item pool
Correlation = .8

R 0.32 0.42 0.20 0.05 0.01 0.00 0.00 0.00 0.00 0.00 2.01
MDFIM 0.29 0.47 0.23 0.02 0.00 0.00 0.00 0.00 0.00 0.00 1.96
MPI 0.97 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.06
MMPI 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Correlation = .4
R 0.31 0.42 0.20 0.06 0.01 0.00 0.00 0.00 0.00 0.00 2.06
MDFIM 0.31 0.45 0.21 0.03 0.00 0.00 0.00 0.00 0.00 0.00 1.93
MPI 0.94 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.13
MMPI 1.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

Note. Four item selection methods in this study were (a) the randomized (R) item selection, (b) the MDFIM, (c) the

MPI, and (d) the MMPI. MDFIM = maximum determinant of the Fisher information matrix; MPI = multidimensional

priority index; MMPI = modified multidimensional priority index.
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management. The MMPI and the MPI methods obtained similar measurement precision for

both multidimensional pools; and obtained similar exposure control and constraint management

for the between-item multidimensional pool. For the within-item multidimensional pool, the

MPI method yielded better exposure control but yielded worse constraint management than the

MMPI method. When the correlation between latent traits was .8, the four item selection meth-

ods yielded slightly better performance in measurement precision and exposure control, and did

slightly worse performance in constraint management.

Discussion

Today, CAT is making a crucial influence on how people are selected, classified, and diag-

nosed; CAT studies will lead to better assessments, and hence benefit society (Chang, 2015).

One of the main challenges in educational and psychological measurement is to develop item

selection methods for CAT. Assembling tests in CAT usually requires meeting many statistical

and non-statistical constraints simultaneously. The MPI item selection method (Yao, 2011,

2012, 2013, 2014) can be used to handle many constraints for between-item multidimensional

tests, whereas the MMPI item selection method (Su, 2015; Su & Huang, 2015) can be used to

handle many constraints for within-item multidimensional tests. This study compared the per-

formances of the MMPI and the MPI methods for item selection under two different bank struc-

tures through simulations. The results from the study show that both item selection methods

have great potential in operational CAT. The MMPI and the MPI item selection methods

obtained similar measurement precision for both multidimensional pools. These two item selec-

tion methods also obtained similar exposure control and constraint management for between-

item multidimensional pool. However, the MPI method yielded better exposure control but

yielded worse constraint management than the MMPI method for the within-item multidimen-

sional pool.

The research findings from this study will advance our knowledge of item selection in multi-

dimensional CAT. However, there are also some limitations to the current study. First, the test

length was fixed at 30 in the study. When a stopping rule of fixed length is considered, the pre-

cisions vary at different examinee levels, resulting in a high misclassification rate, which might

be costly. To achieve the same measurement precision, it is important to apply the MMPI

method to variable-length CAT. Second, even though both MPI and MMPI methods success-

fully kept all the items from being overexposed, the MMPI method still left some items unused.

As developing items is very expensive, it is important to have the item pool fully utilized. The

a-stratified design (Chang & Ying, 1999; Chang et al., 2001) can be integrated with the MMPI

item selection method; however, because there is more than one discrimination parameter for

the within-item multidimensional items, the method to stratify the pool needs to be investi-

gated. Third, item exposure and test overlap rates are two popular indices to track item expo-

sure in CAT. The item exposure rate is the administered proportion of an item. The test overlap

rate is the proportion of items shared by pairs of exams, averaged across all possible pairwise

comparisons. By considering both indices, item exposure can be monitored at both the item and

test levels (Chen & Lei, 2005). Hence, it is worthwhile to integrate the test overlap rate with

the MMPI item selection method and investigate its performance in a further study. Fourth, the

determinant of the Fisher information matrix was considered one of the constraints in this

study. The item information criterion might play an important role during item selection. It

deserves further study when other selection criteria or information measures are considered,

such as minimum angle (Reckase, 2009), minimum error variance of the linear combination

(van der Linden, 1999), minimum error variance of the composite score with the optimized

weight (Yao, 2010), and Kullback–Leibler information (Chang & Ying, 1996).
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Thanks to an anonymous reviewer, who pointed out that the correlation between latent traits

and the dimensional structure are important factors in CATs. With respect to the correlation

factor, one more level of correlation, .4, was considered as low correlation between latent traits

in the study. The correlation factor showed small effect on the performance of item selection

methods. With respect to the dimensional structure factor, due to space limitation of the current

paper, 80% and 20% of the items measured the first and the second dimensions were consid-

ered for the between-item multidimensional pool; and 70%, 20%, 10% of the items measured

the first, the second, and both dimensions were considered for the within-item multidimensional

pool. The correlation between latent traits was .8. Results from these two multidimensional

pools were similar to those in the simulations. With respect to measurement precision, the

RMSEs of two dimensions for the MPI item selection method were 0.34 and 0.34 for the

between-item multidimensional pool, and were 0.30 and 0.31 for the within-item multidimen-

sional pool. The RMSEs of two dimensions for the MMPI item selection method were 0.36 and

0.32 for the between-item multidimensional pool, and were 0.29 and 0.30 for the within-item

multidimensional pool. With respect to exposure control, for the between-item multidimen-

sional pools, the maximum exposure rates for the MPI and the MMPI item selection methods

were 0.08 and 0.09, the numbers of overexposed items were 0 and 0, the numbers of unused

items were 0 and 0, and the chi-square statistics were 4.17 and 3.85, respectively. For the

within-item multidimensional pools, the maximum exposure rates for the MPI and the MMPI

item selection methods were 0.11 and 0.12, the numbers of overexposed items were 0 and 0,

the numbers of unused items were 0 and 2, and the chi-square statistics were 6.24 and 18.73,

respectively. With respect to constraint management, for the between-item multidimensional

pools, the averaged violations of the MPI and the MMPI item selection methods were 0.00 and

0.00, respectively. For the within-item multidimensional pools, the averaged violations of the

MPI and the MMPI item selection methods were 0.06 and 0.05, respectively. That is, the MMPI

and the MPI item selection methods had similar measurement precision for both multidimen-

sional pools, and had similar exposure control and constraint management for the between-item

multidimensional pool. However, the MPI item selection method had slightly better exposure

control but had slightly worse constraint management than the MMPI method for the within-

item multidimensional pool. The performance of item selection methods might be affected by

bank structure, constraints, administered population, and so on. Future research can be carried

out along this line in a large-scale CAT program. Other interesting research questions include

how to apply the MMPI item selection method to polytomously scored models, and how to

incorporate constraints for testlets (Wainer, Bradlow, & Wang, 2007).
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