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Abstract

Repeatedly using items in high-stake testing programs provides a chance for test takers to have
knowledge of particular items in advance of test administrations. A predictive checking method
is proposed to detect whether a person uses preknowledge on repeatedly used items (i.e., pos-
sibly compromised items) by using information from secure items that have zero or very low
exposure rates. Responses on the secure items are first used to estimate a person’s proficiency
distribution, and then the corresponding predictive distribution for the person’s responses on
the possibly compromised items is constructed. The use of preknowledge is identified by com-
paring the observed responses to the predictive distribution. Different estimation methods for
obtaining a person’s proficiency distribution and different choices of test statistic in predictive
checking are considered. A simulation study was conducted to evaluate the empirical Type I
error and power rate of the proposed method. The simulation results suggested that the Type I
error of this method is well controlled, and this method is effective in detecting preknowledge
when a large proportion of items are compromised even with a short secure section. An empiri-
cal example is also presented to demonstrate its practical use.
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Item preknowledge occurs when test items are exposed to examinees in advance of test admin-

istrations. It is most likely to occur in a continuous testing program, where items are repeatedly

used across test administrations to reduce the cost of item development. Foreseeing the chance

of item repetition, some examinees may attempt to steal items they encounter and share them

directly with future examinees or indirectly through online forums or coaching schools. Due to

the detrimental effect of item preknowledge on test validity, quality control procedures are typi-

cally conducted to identify suspicious individual responses. If there is statistical evidence show-

ing that an examinee is using preknowledge on many items, further investigation can be
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conducted, which could ultimately lead to score cancelation. In addition, by aggregating the

detection results across a group of examinees, the severity of test compromise in such a group

can be evaluated, and remedial actions can be taken to enhance test security.

Review of Methods to Detect Item Preknowledge

As item preknowledge generates a type of aberrant response where examinees give correct

responses to items that they would not have answered correctly based solely on their profi-

ciency, person-fit statistics (e.g., Karabatsos, 2003; Meijer & Sijtsma, 2001) can be applied to

detect item preknowledge. While most person-fit statistics are targeted at general misfit between

the fitted model and a person’s response vector, some effort has been devoted to the detection of

item preknowledge in particular (e.g., McLeod & Lewis, 1999; McLeod, Lewis, & Thissen,

2003). However, there are still limitations to this use of person-fit statistics. First, the calculation

of those statistics, especially statistics based on item response theory (IRT), typically relies on

an estimate of proficiency, but such an estimate is usually biased due to the involvement of

aberrant responses. When there are a large proportion of aberrant responses, the bias in the pro-

ficiency estimate may affect the power of the statistic (Sinharay, 2015). Second, most person-fit

statistics do not have a known reference sampling distribution under the null hypothesis. Even

for those statistics with known asymptotic sampling distributions, such as the well-known likeli-

hood-based statistic lz (Drasgow, Levine, & Williams, 1985), the empirical null distribution

could deviate from their asymptotic distribution (e.g., van Krimpen-Stoop & Meijer, 1999)

when the test is short.

The first problem could be addressed when there exists a subset of items on which examinees

most likely do not have preknowledge; responses to those items could be used to estimate one’s

true proficiency. Several methods have been proposed to detect item preknowledge under the

scenario where a test can be divided into two subsets of test items: one secure subset (denoted

T1) consisting of items with zero or near zero exposure, and the other possibly compromised

subset (denoted T2) consisting of items that have been repeatedly used. Segall (2002) and Shu,

Henson, and Luecht (2013) incorporated a latent variable representing ‘‘cheating ability’’ into

the standard IRT model, and used responses on the two subsets to estimate a person’s true profi-

ciency and ‘‘cheating ability.’’ Despite their effectiveness shown in simulation studies, both

models need to make certain assumptions to characterize an examinee’s response behavior

given item preknowledge. Belov (2013, 2014) used the Kullback–Leibler (KL) divergence to

summarize the difference between the posterior distributions of an examinee’s proficiency esti-

mated from the two subsets, respectively. As the asymptotic distribution for KL divergence

remained unknown, Belov used the empirical distribution of the statistic among a group of

examinees as a reference. Lewis, Lee, and von Davier (2012) as well as Li, Gu, and Manna

(2014) applied a regression-based method to identify unusually large score change between the

two subsets of items. However, a simple linear regression method employed by Li et al. (2014)

was found to be ineffective in a simulation study.

The second problem could be addressed by constructing the empirical distribution of a statis-

tic through simulation (e.g., de la Torre & Deng, 2008). As the true item or person parameters

are unknown, they are often replaced by the corresponding point estimates. However, the use of

point estimates does not take into account the sampling error, especially when the sample size

is small. To account for the estimation error, estimated sampling distributions of the estimated

parameters can be used (Glas & Meijer, 2003; Sinharay, 2015). To address the two problems

above, a predictive checking method is proposed in this study.
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Predictive Checking Method

Mathematical Definition and Properties

Suppose that the test comprises two subsets of items, T1 and T2, and that an examinee performs

consistently on both subsets when no preknowledge exists. To check whether an examinee uses

preknowledge on the possibly compromised subset—T2, a predictive distribution of the exami-

nee’s responses to T2 based on one’s responses to the secure subset is constructed—T1. Let y1,

y2 be an examinee’s responses to T1 and T2, respectively. Let v denote the unknown para-

meter(s) in the model, and p(v j y1) be the posterior distribution of v conditional on responses

to T1. Let ~Y 2 be the responses to T2 items that would have been observed (i.e., predictive data)

if the responses to T2 were generated by the same proficiency parameter that generates y1. Also

let p(~Y 2 jv) be the likelihood function for ~Y 2, given parameter(s) v. By averaging over all pos-

sible values of v, the distribution of ~Y 2 conditional on y1 is obtained:

p ~Y 2 j y1

� �
=

ð
p ~Y 2 jv
� �

p v j y1ð Þdv: ð1Þ

Predictive checking evaluates the model fit by comparing the observed responses y2 to the dis-

tribution of predictive data ~Y 2. Typically, a test statistic T (y) can be used to summarize the data,

so T (y2) is compared with the predictive distribution of T (~Y 2). The fit is assessed by the predic-

tive p value. For instance, the predictive p value in a right-tailed test is given as

Pr T ~Y 2

� �
� T y2ð Þ j y1

� �
=

ð
T ~Y 2ð Þ�T y2ð Þ

p ~Y 2 j y1

� �
d ~Y2: ð2Þ

A p value close to 0 indicates that the observed response pattern is unlikely to be produced by

the fitted model, and thus it indicates model misfit.

In this study, item parameters are assumed to be known. This is a common assumption in

online testing and person-fit analyses. Sinharay (2015) argued that this assumption is reason-

able when a large sample is used for item calibration, such that precise item parameter estimates

can be obtained. Under such an assumption, the only unknown parameter in an IRT model is the

person proficiency u, and the predictive distribution of T2 responses is then p(~Y 2 j y1) =Ð
p(~Y 2 j u)p(u j y1)du. As p(~Y 2 j y1) is hard to derive analytically given a large number of items,

it can be constructed through simulation. Specifically, after obtaining p(u j y1) from T1, N sam-

ples of u (u(1), . . . , u(N )) can be drawn from p(u j y1). Based on each u(k)(k = 1, . . . , N ), a predic-

tive response vector on T2, ~y(k)
2 , can be simulated under the null condition.

This method provides several advantages over existing methods. Compared with methods

that use person-fit statistics or KL divergence, the sampling distribution of the test statistic con-

structed in predictive checking takes into account the sampling variability in the estimation of

u, and it approximates the exact predictive distribution of the test statistic. Compared with mod-

eling the true cheating mechanism, the predictive checking method makes fewer assumptions,

and thus is much easier to implement and more applicable with real data.

Implementation of Predictive Checking

As discussed above, the implementation of predictive checking consists of three key steps: (a)

estimating p(u j y1) from T1, (b) sampling from p(u j y1) to construct the predictive distribution,

(c) choosing a statistic to summarize the predictive dataset. The following three sections deline-

ate the technical details for each step.
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Estimation of p(u j y1)

The distribution of u from T1 items is estimated with two approaches in this study: a Bayesian

posterior distribution and a fiducial distribution from generalized fiducial inference (Hannig,

2009, 2013). The former is used owing to both its popularity and its ease of implementation. A

fiducial distribution is closely related to an empirical Bayesian posterior calculated from a data-

dependent noninformative prior, and it is considered here because it does not need to assume a

prior distribution (Fisher, 1930). Furthermore, its application in IRT parameter estimation sug-

gested that it can lead to better item parameter recovery than Bayesian approach with a nonin-

formative prior when sample size is small (Liu & Hannig, 2016).

Bayesian posterior distribution. According to Bayes’ rule, p(u j y1)} p(u)p(y1 j u), where p(u)

is the prior density and p(y1 j u) is the likelihood of the response pattern on T1. Considering

T1 is likely to be short in practice due to the high cost of developing new items, weakly

informative priors are employed, so that less shrinkage is introduced to the resulting

posterior distribution. Two less informative priors are explored in this study: a normal distri-

bution with a large variance, that is, N(0, 22) and the Jeffreys prior. The Jeffreys prior is con-

sidered here as it has been shown to result in good coverage-efficiency balance for the

binomial proportion (e.g., Brown, Cai, & DasGupta, 2001). If all the item parameters are the

same, that is, the item responses are independent and identically distributed (i.i.d.) Bernoulli

trials, the problem for u estimation is then isomorphic to the problem of binomial proportion

estimation. The Jeffreys prior is proportional to the square root of the Fisher information

for u:

p uð Þ = I uð Þ
1
2 =

Xn

i = 1

P0i uð Þ
� �2

Pi uð ÞQi uð Þ

" #1
2

, ð3Þ

where n is the total number of items, Pi(u) is the probability of a correct response on item i, and

Qi(u) = 1� Pi(u). P0i(u) is the first derivative of Pi(u) with respect to u.

Fiducial distribution. The logic of fiducial inference can be illustrated by a normal location exam-

ple. Suppose X1, . . . , Xn are i.i.d. random variables from N(m, s2) with known s2 but unknown

m. To make an inference about m, as �X;N (m, s2=n), where �X =
Pn

i = 1 Xi=n, �X can be

expressed as �X = m + U � s=
ffiffiffi
n
p

, where U is a random variable from N(0,1). This is equivalent

to m = �X � U � s=
ffiffiffi
n
p

. After observing �X = �x, the fiducial distribution for m is N (�x, s2=n).

In generalized fiducial inference (Hannig, 2009, 2013), the definition of a fiducial distri-

bution starts with defining the data generating equation, which is an expression representing

the association among data (X), parameters in the model (v) and randomness (U) whose dis-

tribution does not depend on v, that is, X = G(v, U ). For instance, in the normal location

example above, the data generating equation is �X = m + U � s=
ffiffiffi
n
p

. Then, the solution set for

v is found from the data generating equation, denoted Q(X , U) = fv : X = G(v, U)g. In the

normal location example, the solution set for m is m = �X � U � s= ffiffiffi
n
p

. The solution set for m is

a singleton set, but sometimes the solution set may contain no solution or more than one solu-

tion. The empty solution case is avoided by conditioning on Q(X , U) 6¼ [. When there are

multiple solutions, one needs to select one according to some possibly random rules, denoted

V (Q(x, U�)). After observing X = x, the generalized fiducial quantity is defined as

V Q x, U�ð Þð Þ j Q x, U�ð Þ 6¼ [f g, ð4Þ
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where U� is an independent copy of U . More details about generalized fiducial inference

can be found in Liu and Hannig (2016), Hannig (2009, 2013), and Hannig, Iyer, Lai, and Lee

(2016).

Take the two-parameter logistic model (2PLM) as an example. The item characteristic func-

tion takes the form of

P Yi = 1 j ai, bi, uð Þ = exp ai u� bið Þð Þ
1 + exp ai u� bið Þð Þ ð5Þ

where ai and bi are item discrimination and difficulty parameters, respectively. The data gener-

ating equation for a person’s response to an item i, Yi, is

Yi =
1 if Ui � P Yi = 1 j ai, bi, uð Þ
0 if Ui.P Yi = 1 j ai, bi, uð Þ

�
, ð6Þ

where Ui represents the randomness and Ui ; Uniform (0,1). Equation 6 is equivalent to

Yi =
1 if Ai � aiu� aibi

0 if Ai.aiu� aibi

�
, ð7Þ

where Ai = log Ui

1�Ui
;Logistic(0,1). Assume that item parameters (ai and bi) are known and

ai . 0. The solution set for u from one single response is

u 2
Ai + aibi

ai
, + ‘

h �
if Yi = 1

�‘, Ai + aibi

ai

	 �
if Yi = 0

8><
>: ð8Þ

Given a vector of responses on n items (Y1, Y2, . . . , Yn), let I0 be the index sets for incorrect

responses, that is, I0 = i : Yi = 0, i = 1, 2, . . . , nf g, and I1 be the index sets for correct responses,

that is, I1 = i : Yi = 1, i = 1, 2, . . . , nf g. Let s =
Pn

i = 1 Yi be the observed total score, and let

m0 = mini2I0
ðAi + aibiÞ=ai and m1 = maxi2I1

ðAi + aibiÞ=ai. The solution set for u based on

(Y1, Y2, . . . , Yn) is

u 2

m1, + ‘½ Þ, if s = n

�‘, m0ð Þ, if s = 0

m1, m0ð Þ, if 1 � s � n� 1

[, otherwise

8>><
>>: ð9Þ

If the solution set is nonempty, it is an interval instead of a single value. So the following selec-

tion rule is applied: If s = n, u = m1; if s = 0, u = m0; if 1 � s � n� 1, u = m0with probability of .5

and u = m1with probability of .5.

Note that Equation 9 combined with the selection rule gives a single point of u for each

fixed vector of (A1, A2, . . . , An). To obtain the fiducial distribution of u, it is necessary to gener-

ate A�1, A�2, . . . , A�n
� �0

s, that is, i.i.d. copies of (A1, A2, . . . , An), subject to the constraint that the

solution set is nonempty, determine the solution set by Equation 9, and apply the selection rule.

In particular, if s = n or 0, A�i ;Logistic(0, 1) and A�i
0s are mutually independent, so

f (A�1, A�2, . . . , A�n) =
Qn

i = 1 f (A�i ). If 1 � s � n� 1, for the solution to be nonempty, A�i
0s should

subject to m1\m0, and each A�i ;Logistic(0, 1), which means A�i
0s should be chosen such that

the value of ðA�i + aibi=aiÞ corresponding to any correct response is smaller than that
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corresponding to an incorrect response. The details of sampling for (A�1, A�2, . . . , A�n) from their

joint distribution are discussed in the next section.

Sampling From p(u j y1)

To sample from the Bayesian posterior distribution of u, the random walk Metropolis algorithm

(Metropolis, Rosenbluth, Rosenbluth, Teller, & Teller, 1953; Sherlock, Fearnhead, & Roberts,

2010) is used. The algorithm starts with drawing a starting point u 0ð Þ in the support of p(u j y1).

Then, a new value u� is proposed as u� = u 0ð Þ + z, with z ~ N(0, s2). The variance s2 determines

the size of the proposed jump, and s2.0. The proposed value u� is accepted as the sample at

time t(t = 1,2,.) with the probability of min(1, p(u� j y1)=p(u(t�1) j y1)); otherwise, u(t�1) is kept

as the tth sample, that is,

u tð Þ =
u� with probability min 1,

p u� j y1ð Þ
p u t�1ð Þ j y1ð Þ


 �
u t�1ð Þ otherwise

8<
:

In this study, s2 is chosen to make the acceptance rate of the algorithm fall in the range between

0.3 and 0.4.

For fiducial inference, it is necessary to draw A� = (A�1, A�2, . . . , A�n) from their joint distribu-

tion conditional on a nonempty solution set. If s = n or 0, at the tth sample of

A�, each element A
�(t)
i is simulated from Logistic(0,1) for all i (i = 1,2,., n), and u(t) simply

takes m1 or m0. If 1 � s � n� 1, the Gibbs sampling (e.g., Gelman et al., 2013) is implemen-

ted. The algorithm starts with arbitrarily selected starting values of (A
�(0)
1 , A

�(0)
2 , . . . , A�(0)

n ),

which satisfies m1\m0. It then proceeds to update each component in A� in turn in one sample.

Specifically, at the tth sample,

A
� tð Þ
1 is drawn from p A�1 jA

� t�1ð Þ
2 , A

� t�1ð Þ
3 , . . . , A� t�1ð Þ

n

	 �
A
� tð Þ
2 is drawn from p A�2 jA

� tð Þ
1 , A

� t�1ð Þ
3 , . . . , A� t�1ð Þ

n

	 �
..
.

A� tð Þ
n is drawn from p A�n jA

� tð Þ
1 , A

� tð Þ
2 , A

� tð Þ
3 , . . . , A

� tð Þ
n�1

	 �
:

Let A�(�i) denote the vector A� excluding component A�i . If Yi = 1, p(A�i jA�(�i)) is the density

of Logistic(0,1) truncated from above at aim0 � aibi, and if Yi = 0, p(A�i jA�(�i)) is the density

of Logistic(0,1) truncated from below at aim1 � aibi.

Test Statistics

Three test statistics are considered in this study: the summed score, the mean, and variance of

the posterior distribution of u from T2 (i.e., p(u j y2)). The mean of p(u j y2) is also known as

the expected a posterior (EAP) score, which is commonly used as a point estimate of u in IRT.

The summed score is easy to calculate, but it only contains partial information from a response

pattern. In contrast, the posterior distribution of u from T2 keeps all the information about a

response pattern on T2. However, as it is visually challenging to compare hundreds of predic-

tive posterior distributions to the observed one, the mean and variance of p(u j y2) are used to

summarize the distribution. Right-tailed tests are conducted for the summed score and EAP, as
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the score increase is of primary concern here. Two-tailed tests are conducted for the posterior

variance, as the variance could be either too large or too small given the item preknowledge.

Simulation Design

A simulation study was conducted to evaluate the effectiveness of the predictive checking

method under four design factors:

1. The number of items in T1. As the number of items in T1 increases, p(u j y1) will be

more concentrated around the true value of u, and accordingly p(T (~Y 2) j y1) will be

closer to the true predictive distribution. Considering that T1 is usually short in prac-

tice, due to the high cost of producing new items, two relatively short test lengths for

T1 were chosen: 10 and 20.

2. The number of items in T2. With fewer items in T2, the test statistic will have fewer

categories, and the discreteness of the predictive distribution may affect the detection

effectiveness. Depending on different exposure scenarios in reality, T2 may consist

of either only a few items (such as items found posted on the Internet or discussed at

a coaching session) or a larger set of items (such as all items that have been repeat-

edly used before). Two test lengths of T2 were explored: 10 and 20.

3. The proportion of truly compromised items in T2. Fewer compromised items result

in a smaller effect on the score increase, and thus power of the summed score or EAP

was expected to decrease. However, the power of testing posterior variance could be

a nonlinear function of the compromise rate. Three proportions were examined, 20%,

50%, and 80%,1 to see the power pattern for different test statistics.

4. Estimation methods for p(u j y1). As discussed above, three methods to estimate

p(u j y1) were considered: Bayesian method with two less informative priors and the

fiducial distribution.

Data Generation

In the null condition, the probability of correctly answering an item was specified by the 2PLM.

The 2PLM was considered here as it demonstrates much better fit than the 1PLM to many

empirical sets of data, and it is used as the calibration model in several operational testing pro-

grams. Dichotomous responses were simulated at five theta levels, that is, u = 22, 21, 0, 1, 2 to

investigate the detection effectiveness at low to high u levels. Data generation at each u was

replicated 1,000 times. For responses in item-preknowledge conditions, the probability of endor-

sing a compromised item was set to be max(0:9, P(Yi = 1 j ai, bi, u)), which is similar in spirit to

the approach used by Sinharay (2017). When the length of T1 or T2 is 10, the item discrimina-

tion parameters for the 10-item subset were randomly sampled from a lognormal distribution

with a mean around 1.1 and a standard deviation around 0.5, that is, log N(0,0.2), truncated to

the interval [0.75, 2], which represented a realistic range adopted in most person-fit studies

(Rupp, 2013). Item difficulty parameters for the 10-item subset were randomly sampled from a

truncated N(0,1) between 22 and 2. The 20-item subset was formed by repeating the item para-

meters in the 10-item subset.

Computations

Statistical software package R (Version 3.2.4; R Core Team, 2016) was used to perform all

computations. After responses were simulated, the following analyses were conducted for each

response vector:
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1. Estimate p(u j y1) based on the three estimation methods and generate 1,000 draws

from p(u j y1). When the two Bayesian methods were used, the starting point of u was

set to 0 in the random walk Metropolis algorithm, and the variance of the proposal

distribution (s2) was set to 2.25 as the starting value. The first 100 iterations were

treated as the burn-in period. After the burn-in period, s2 was tuned to make accep-

tance rate fall into the desired range. Once the desired acceptance rate was reached,

the algorithm was kept running for 10,000 iterations with the fixed s2. To reduce the

auto-correlation between successive iterations, every 10th sample was taken from the

10,000 iterations to use in Step 2. When the fiducial distribution was used, Gibbs

sampling was used to generate 2,000 samples from p(u j y1). The first 1,000 samples

were treated as the burn-in period, and the last 1,000 samples were used in Step 2.

2. For each draw of u in Step 1, generate a response pattern on T2 in the null condition using

the true item parameters. This resulted in 1,000 predictive response patterns on T2.

3. Calculate a test statistic for each predictive and observed response pattern. Compare

the observed statistic with the predictive distribution, and calculate the predictive p

value.

Evaluation Criteria

To evaluate different estimation methods for obtaining p(u j y1), bias and mean squared error

(MSE) were computed to evaluate the recovery of u using different estimation methods. Bias

was computed as
PR

r = 1 (ûr � u)=R, and MSE was computed as
PR

r = 1 (ûr � u)
2
=R, where R is

the total number of replications. ûr is the point estimate for u in the rth replication, which is

EAP in the Bayesian approach and the median in the fiducial approach. To evaluate the detec-

tion effectiveness, the empirical Type I error and power in different conditions using different

test statistics were evaluated at the nominal level a = .05 and a = .01. The Type I error rate

was computed as the proportion of times each T2 was incorrectly flagged as being compro-

mised in the null conditions, and power was computed as the proportion of times each compro-

mised T2 was correctly flagged in the preknowledge conditions.

Simulation Results

Recovery of u by Different Estimation Methods

The bias results in Figure 1 show that when T1 only consists of 10 items, using the Jeffreys prior

results in larger bias at u = 62 than the other two estimation methods; while the three estimation

methods lead to similar results at the three medium u levels, using N(0, 22) results in the lowest

bias among the three estimation methods. When the length of T1 increases to 20 items, the bias

difference between the three methods becomes smaller at all five u levels, while using N(0, 22)

still results in smaller bias at the two extreme u levels. The MSE results demonstrate a similar

pattern: Using the Jeffreys prior results in much larger MSE at u = 62 than the other two esti-

mation methods, especially when T1 is short. Using the fiducial distribution and N(0, 22) leads

to quite similar MSE, with the MSE from N(0, 22) being slightly lower.

Type I Error

Figure 2 presents the Type I error rates for each test statistic in all conditions. Given the nom-

inal level of 0.05 and 0.01, the 95% normal-approximation confidence intervals for the Type I

error out of 1,000 replications are [0.036, 0.063] and [0.004, 0.016], respectively. Results show
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that using the summed score leads to slightly conservative Type I error rates at most u levels at

all lengths of T1 and T2. Using the EAP and the posterior variance tends to result in conserva-

tive Type I error rates at extreme u levels when T1 or T2 only contains 10 items; as T1 and T2

both consist of 20 items, the Type I error for these two statistics tends to fall in the 95% confi-

dence interval at all u levels. The conservative Type I error for the summed score at all u levels

is due to the discreteness of its predictive distribution: The summed score only has 11 and 21

possible values when T2 has 10 and 20 items, respectively. Similarly, the conservativeness for

EAP or posterior variance also relates to the fact that the predictive distribution concentrates on

very few values at the extreme u levels, especially when T2 is short. Regarding the effect of

using different estimation methods, using the Jeffreys prior tends to result in larger Type I error

than the other two methods, while using the fiducial distribution tends to result in smaller Type

I error. In particular, using the Jeffreys prior could result in slight Type I error inflation for EAP

at lower u levels when T2 contains 20 items, but the inflation is not excessive.

Figure 1. Bias and MSE for û under three estimation methods.
Note. The two plots in the first row are the results for bias under two lengths of T1. The two plots in the second row

are the results for MSE under two lengths of T1. MSE = mean squared error.
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Power

Figures 3 to 5 display the power of each statistic in all simulation conditions. Figure A1 in the

appendix shows the receiver operating characteristic (ROC) curve for all three statistics under

the condition where T1 and T2 both contain 20 items and the compromise rate is 50%. The

power for all three statistics increases as the lengths of T1 or T2 increase. When there is only

20% compromised items in T2, there is no sufficient power for any test statistic: Almost none

of them has power above 0.3 when T2 is short; only when T1 and T2 both contain 20 items,

the power of the summed score and the EAP reaches around 0.4 at the lowest u level, given the

Figure 2. Type I error for each test statistic under three estimation methods (F = fiducial, J = Jeffreys,
N = N(0, 22)) in all simulation conditions.
Note. The first to third columns show the Type I error for the summed score, EAP, and posterior variance,

respectively. Each row shows the Type I error under a given length of T1 and T2. The broken lines in each plot show

the empirical Type I error at the nominal level of 0.01, and the solid lines show the empirical Type I error at the

nominal level of 0.05. The two parallel dotted lines represent the 95% normal-approximation confidence interval for

nominal level of 0.01/0.05, respectively. SUM = summed score; EAP = expected a posterior; VAR = posterior variance.
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nominal level of 0.05. As the compromise rate in T2 increases to 0.5, the summed score and

EAP have moderate to large power to detect preknowledge among the lowest two u levels at

the nominal level of 0.05, and the posterior variance has similar but slightly lower power than

the other two statistics. When 80% items in T2 are compromised, the summed score and EAP

have sufficient power to detect preknowledge among u � 0, but the power for posterior var-

iance decreases sharply from that in the 50% compromise condition. The power pattern of the

posterior variance at different compromise rates can be explained by the amount of Guttman

errors2 in a response pattern. When the compromise rate increases from 20% to 50%, the

amount of Guttman error increases in a person’s response vector, hence the u posterior distribu-

tion becomes more flat and thus the posterior variance becomes larger than expected. However,

Figure 3. Power for each test statistic under three estimation methods (F = fiducial, J = Jeffreys, N =
N(0, 22)) with 20% truly compromised items in T2.
Note. The first to third columns show the power for the summed score, EAP, and posterior variance, respectively.

Each row shows the power under a given length of T1 and T2. The broken lines in each plot show the power at the

nominal level of 0.01, and the solid lines show the power at the nominal level of 0.05. SUM = summed score; EAP =

expected a posterior; VAR = posterior variance.
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as the compromise rate increases to 80%, most responses are correct in a person’s response vec-

tor, so there are few Guttman errors and the u posterior distribution becomes similar to that esti-

mated from the response vector by a high-proficiency examinee.

As for the comparison among three statistics, the power difference between EAP and the

summed score is at the second decimal place in most conditions. When T2 is short, EAP could

have slightly larger power than the summed score at low to medium u levels, but the power differ-

ence is around 0.15 on average. When the compromise rate is high, the posterior variance has

much lower power than the other statistics for the reason stated above. At a small or medium com-

promise rate, the posterior variance demonstrates similar but slightly lower power than the other

two statistics, partly because a two-sided test was conducted for it while one-sided tests were con-

ducted for the other statistics. Finally, the three estimation methods lead to very similar power

Figure 4. Power for each test statistic under three estimation methods with 50% truly compromised
items in T2.
Note. SUM = summed score; EAP = expected a posterior; VAR = posterior variance.
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under most conditions. Only when T1 contains 10 items and when the compromise rate is low, the

two Bayesian methods exhibit slightly larger power than the fiducial approach at u = 22.

Real Data Analysis

Data Description

A real data analysis was conducted to demonstrate the practical use of this method. The dataset

came from a state assessment measuring students’ math proficiency. The original dataset con-

sisted of 23,583 examinees’ responses to 63 items. As 21 of 63 items were randomly assigned

to examinees, there were a lot of missing responses in the file. To simplify the analysis, the 21

randomly assigned items were deleted. The remaining items consisted of 38 dichotomous items

Figure 5. Power for each test statistic under three estimation methods with 80% truly compromised
items in T2.
Note. SUM = summed score; EAP = expected a posterior; VAR = posterior variance.
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and four polytomous items, which were scored 0 to 3. In addition, as the analysis was con-

ducted at the person level, instead of using the entire population, a sample of 5,000 was ran-

domly selected to reduce the computation time. Descriptive analyses on the total test score

distribution in the appendix suggest that the selected sample is representative of the population.

Responses to some items were modified to create an artificially compromised dataset.

Specifically, 21 items (19 dichotomous items and two polytomous items) were randomly

selected from the 42 items as T2. Then, 5% examinees were randomly selected from the exami-

nee sample, and their responses to eight randomly selected items (seven dichotomous items and

one polytomous item) in T2 were modified to create the compromised responses. This resulted

in a compromise rate around 0.4. An examinee’s response on a compromised dichotomous item

was modified to be correct, and one’s score on the compromised polytomous item was increased

by 2 points. If the score after manipulation exceeded the maximum possible score, it was set to

the maximum.

Data Analysis

As the first step of the analysis, the person fit of responses on the artificially secure section

(denoted ‘‘T1’’) was evaluated for each examinee. As it has been assumed so far that the

responses to T1 fit the IRT model, only response vectors not identified as having misfit prob-

lems were retained for further analysis. The person fit of responses on T1 was evaluated using

the popular person-fit statistic lz (Drasgow, Levine, & McLaughlin, 1987; Drasgow et al.,

1985; Sinharay, 2015). Previous studies have shown that when û is used in the lz calculation,

the empirical distribution of lz(û) deviates from the asymptotic distribution derived for lz(u).

Sinharay (2015) constructed the null distribution of lz(û) using the Bayesian posterior predictive

checking (PPC; for example, Gelman et al., 2013) approach in a mixed-format test, and found

that it led to a larger power than using the asymptotic distribution, and the PPC p value did not

have the problem of being conservative in the case with lz(û). Therefore, PPC was used to con-

struct the null distribution of lz in the present study. A nominal level of 0.05 was used to iden-

tify misfitting responses.

After removing examinees identified by lz, predictive checking was conducted among the

remaining examinees. N(0,22) was used as the prior distribution as the simulation study showed

that the difference between prior configurations was small, and using N(0,22) led to an easier

computation. The summed score and posterior variance were used as the test statistics. The EAP

was not used here because the simulation showed that it had very similar power to the summed

score when both subsets were long. The three-parameter logistic (3PL) model3 and the graded

response model were used as the scoring models for dichotomous and polytomous items, respec-

tively. The detection rates for each test statistic were calculated, respectively, among examinees

whose responses have been modified (i.e., modified examinees) and unmodified (i.e., unmodi-

fied examinees).

Results

In the first-step analysis of person fit on ‘‘T1,’’ only 1.4% of the sample were detected by lz.

Table 1 summarizes the detection rates among the modified examinees and unmodified exami-

nees by each statistic, as well as the average û (EAP) increase from T1 to T2 among examinees

detected by each statistic. The detection rates among the modified examinees are low, which is

likely due to the fact that the test is relatively easy (the average item difficulty is around

20.32), and the total test score distribution is skewed to the left. The simulation results have

shown low detection rates among high-proficiency examinees when the compromise rate on T2
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is 60%. Among both groups of examinees, the average û increase from T1 to T2 is much higher

for those detected by the summed score than for those detected by the posterior variance.

Figures 6 and 7 display the u posterior distributions on the two subtests for nine individuals

detected by each statistic among modified examinees. For comparison purposes, Figure 7 only

shows examinees with an increase in û from T1 to T2 but not being detected by the summed

score. It is clear that examinees detected by the summed score all show dissimilar posterior

Table 1. Detection Rate (û Increase From T1-T2) Among Modified and Unmodified Examinees.

Modified examinees Unmodified examinees

Summed score 0.18 (1.88) 0.01 (1.72)
Posterior variance 0.09 (.05) 0.10 (2.51)

Note. The number in the parentheses represents the average û increase from T1 to T2 among examinees detected by

each statistic.

Figure 6. Examples detected by the summed score among modified examinees.
Note. The solid line represents posterior distribution of u on T1, and the broken lines represent u posterior

distributions on T2.
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distributions between T1 and T2: The u posterior distribution on T2 shifts to the right to a large

extent, while using the posterior variance is able to detect examinees with only slight changes

between the two posterior distributions. The same pattern is also observed among unmodified

examinees.

Discussion and Conclusion

This study proposed a predictive checking method to detect a person’s preknowledge on

exposed items by using information from secure items. Considering that the posterior distribu-

tion of u estimated from a short secure section might be largely affected by the use of an inap-

propriately specified prior distribution, the performance of two weakly informative Bayesian

priors and the fiducial distribution that does not need to specify a prior distribution was investi-

gated. The u recovery results show that using the Jeffreys prior leads to larger bias and MSE

Figure 7. Examples detected by the posterior variance among modified examinees.
Note. The solid line represents posterior distribution of u on T1, and the broken or dotted lines represent u posterior

distributions on T2. The broken lines indicate that the observed posterior variance is at the right tail of the predictive

distribution, and dotted lines indicate that the observed posterior variance is at the left tail.
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for the point estimate of u, but the detection effectiveness among the three methods is quite

similar.

Regarding the detection effectiveness under different factors, conservative Type I error is

seen among low-ability or high-ability examinees when either section is short, but no Type I

error inflation is observed when the fiducial distribution or the N(0, 22) prior is used. As for the

detection power, it is hard to detect preknowledge among high-ability examinees in all condi-

tions. Although preknowledge will result in less score inflation for high-ability examinees than

for low-ability examinees, it may still affect the decision accuracy if a test’s cut score is set at

the higher end of the ability continuum. In addition, not detecting preknowledge among high-

ability examinees may fail to resolve test security concerns among a high-proficiency examinee

group.

The detection power is largely affected by the proportion of the truly compromised items in

T2. Given a large compromise rate, using just 10 items in either section could lead to sufficient

power for EAP or the summed score among medium- to low-ability examinees. In comparison,

if a large possibly compromised section only contains a small proportion of truly compromised

items, the detection power could reduce significantly. Therefore, to maintain the detection

power, one can apply predictive checking to items that are most likely to be compromised.

Alternatively, one can only include relatively difficult items in the possibly compromised sub-

set, as it is hard to detect preknowledge on easy items by any means. Finally, although the pos-

terior variance exhibits smaller power than the other two statistics in this study, the real data

analysis suggests that using it along with the summed score or the EAP can help detect exami-

nees with a relatively small score increase.

There are several limitations of this study. First, this study assumes that the responses to the

secure items fit the IRT model well. This is unlikely to happen in practice. For instance, those

responses are likely to be affected by some other aberrant response behaviors such as careless

responding and test speededness. Future study should evaluate the performance of the predic-

tive checking method when there is misfit in responses to the secure items. In addition, in real-

ity, as it is never certain whether responses to T1 provide an accurate estimate for u, a reversed

predictive checking can be considered: Besides estimating the u posterior from T1 and conduct-

ing checks on T2, one could use T2 to compute the u posterior and conduct checks on T1. A

response vector can be flagged as suspicious if either direction indicates the inconsistency in a

person’s response behavior between the two sections. Second, true item parameters were used

in conducting person-level analysis, as it was assumed that a large sample would be available

for item calibration. The impact of sampling variability of item parameter estimates and model

misspecifications on the person-level detection can be investigated in future studies. Third, a

simple data generation model was considered to simulate responses in preknowledge condi-

tions, and future studies should explore other models to generate compromised responses.

Future studies could also consider incorporating response time model into the predictive check-

ing and incorporate response times as additional information into detection.
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Appendix

Figure A1. Empirical ROC curve for each test statistic at the compromise rate of 0.5.
Note. SUM = summed score; EAP = expected a posterior; VAR = posterior variance; ROC = receiver operating

characteristic.

Table A1. First Four Central Moments of the Total Test Score Distribution in the Population and the
Selected Sample.

M SD Skewness Kurtosis

Population 37.34 10.64 20.58 2.56
Sample 37.00 10.67 20.54 2.51
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Notes

1. The proportions of 20% and 50% were chosen because one reviewer suggested that a realistic range

for compromise rates may be 5% to 25% of the item bank. As the item bank is partitioned into two

parts: T1 and T2, the authors think it is reasonable to assume the compromise rates in T2 are between

10% and 50%. The proportion of 80% was chosen to cover the full range of compromise rates, so as

to better evaluate the power pattern of each statistic as the compromise rate changes.

2. A Guttman error means a person makes a correct response on a harder item but an incorrect response

on an easier item.

3. The three-parameter logistic model (3PLM) rather than the two-parameter logistic model (2PLM) was

used in real data analysis because the 3PLM was the item calibration model for this dataset. As the real

data analysis was conducted to demonstrate the practical use of this method, using the 3PLM helps

demonstrate that this method could work well with other models.

Figure A2. Total test score distribution at the population (left) and the sample (right) level.
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