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Abstract

Cognitive diagnostic modeling in educational measurement has attracted much attention from
researchers in recent years. Its applications in real-world assessments, however, have been lag-
ging behind its theoretical development. Reasons include but are not limited to requirement of
large sample size, computational complexity, and lack of model fit. In this article, the authors
propose to use the support vector machine (SVM), a popular supervised learning method to
make classification decisions on each attribute (i.e., if the student masters the attribute or not),
given a training dataset. By using the SVM, the problem of fitting and calibrating a cognitive diag-
nostic model (CDM) is converted into a quadratic optimization problem in hyperdimensional
space. A classification boundary is obtained from the training dataset and applied to new test
takers. The present simulation study considers the training sample size, the error rate in the
training sample, the underlying CDM, as well as the structural parameters in the underlying
CDM. Results indicate that by using the SVM, classification accuracy rates are comparable with
those obtained from previous studies at both the attribute and pattern levels with much smaller
sample sizes. The method is also computationally efficient. It therefore has great promise to
increase the usability of cognitive diagnostic modeling in educational assessments, particularly
small-scale testing programs.

Keywords

support vector machine, cognitive diagnosis, small sample size, supervised learning

Introduction

The past decade has seen rapid growth of theoretical development and application of diagnostic

classification models (DCMs), also known as cognitive diagnostic models (CDMs). The popu-

larity of the CDMs has been prompted by increasing pressure in the field of educational assess-

ment to provide fine-grained, formative feedback to test takers. In contrast to item response

theory (IRT) models which assume a continuous latent trait or multiple continuous latent traits,
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CDMs assume a latent cognitive profile that represents mastery status on a set of specific, dis-

crete skills or attributes. An attribute is a task, subtask, cognitive process, or skill involved in

answering an item. Using the CDMs, students can be provided estimates of their latent cognitive

profiles, that is, estimates of their mastery or nonmastery status on these attributes, as opposed

to just a total score or several subscores. This way CDMs enable stakeholders to better under-

stand each student’s strengths and weaknesses.

There is a myriad of CDMs. Most of them can be considered constrained or restricted latent

class models as discussed in Chiu, Douglas, and Li (2009).1 These models require the Q-matrix

(Tatsuoka, 1983), which is a J 3 K matrix, with entry qjk = 1 indicating item j (j = 1, 2, � � � , J )

measures the kth attribute or skill (k = 1, 2, � � � , K), and qjk = 0 otherwise. The Q-matrix is often

determined prior to the analysis by content experts. This is similar to confirmatory factor analy-

sis where the factor loading structure is predetermined before fitting the model. CDMs are also

confirmatory in that certain rules are imposed to combine the latent attributes to yield response

probabilities. Based on these rules, the CDMs can be largely divided into two categories: com-

pensatory and noncompensatory. The compensatory models are those allowing a higher value

on one attribute to compensate lower values on other attributes. In Appendix A (available

online), two models are specifically covered: the Deterministic Input, Noisy ‘‘And’’ Gate

(DINA) model (Haertel, 1989; Junker & Sijtsma, 2001; Macready & Dayton, 1977) and the

Deterministic Input, Noisy ‘‘Or’’ Gate (DINO) model (Templin & Henson, 2006). The DINA

model is a well-known noncompensatory model, whereas the DINO model belongs to the com-

pensatory category.

The ultimate goal of cognitive diagnostic modeling is to estimate the latent cognitive profile

or mastery profile for each test taker, a. Following the notation of McGlohen and Chang

(2008), for the ith examinee, the latent master profile is ai = (ai1, ai2, � � � , aik , � � � , aiK)
0
, where

aik = 1 indicates that the ith examinee masters the kth attribute and aik = 0 otherwise. Given the

CDM and the Q-matrix, one can estimate structural parameters for items and ai for each test

taker from the N 3 J item response matrix, where N is the number of test takers.

As noted in Chiu and Köhn’s (2015) and Köhn, Chiu, and Brusco’s (2015) studies,

likelihood-based estimation has been the predominant method of fitting cognitive diagnosis

models to educational test data. For example, expectation maximization (EM) or Markov Chain

Monte Carlo (MCMC) procedures have been developed to estimate structural parameters in the

CDMs (de la Torre, 2009, 2011; DiBello, Roussos, & Stout, 2007; von Davier, 2008). Köhn et

al. (2015) enumerated a number of challenges of applying these procedures. For example, these

procedures require large sample sizes to reach stable and reliable estimates. In addition, they

are susceptible to model misspecification or misfit. In practice, the underlying true model is

never known. If the model is misspecified, the test takers are likely to be erroneously classified.

In fact, it is difficult to identify the model that best fits the data, and it is not uncommon that a

single parametric CDM is oversimplified and not flexible enough to fit all items on a test (Liu,

2015). Misspecification of the Q-matrix also results in inaccurate estimation of the latent cogni-

tive profiles (e.g., Y. Chen, Liu, Xu, & Ying, 2015; Liu, 2015; Liu, Xu, & Ying, 2012).

Other issues of the likelihood-based estimation approaches include computational complex-

ity, dependence on starting values, and local maxima. These drawbacks pose serious challenges

to the application of CDMs to small-scale testing programs. The AP-CAT system, a National

Science Foundation (NSF)-funded computerized adaptive testing (CAT) program for Advanced

Placement (AP) Statistics that purports to provide formative feedback to high school students,

is an example. The AP classes are typically small. With a sample size of around 300 students

(Whitney, Cheng, Brodersen, & Hong, under review), it is difficult to apply even the simplest

CDMs.
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In light of these drawbacks, researchers have proposed several alternative procedures, gener-

ally falling under the category of unsupervised learning methods, such as K-means clustering

(e.g., Chiu et al., 2009), and supervised learning methods, such as neural networks (e.g., Shu,

Henson, & Willse, 2013). Unsupervised learning methods do not classify examinees into labeled

categories; that is, mastery versus nonmastery. Therefore, the quality of classification is mea-

sured by an indicator of agreement between partitions, for example, the adjusted rand index

(ARI; Chiu et al., 2009), instead of the rate of correct classifications. For the purpose of classify-

ing examinees into masters and nonmasters, supervised learning methods are more suitable.

In this article, the authors propose to use support vector machine (SVM), a supervised learn-

ing approach, to perform cognitive diagnosis for each test taker. To date, little research has

been done using supervised learning methods in cognitive diagnostic assessment except for the

following two studies: Shu et al. (2013), a full research paper on applying neural network to

cognitive diagnosis, and Kuang, Ding, and Xu (2010), a five-page conference proceeding on

applying SVM. The present article differs from both in important ways: First, Shu et al. (2013)

and Kuang et al. (2010) both adopted the attribute hierarchical method (AHM) by Gierl and

colleagues (Gierl, 2007; Gierl, Zheng, & Cui, 2008), so that diagnostic class membership of

examinees in their training datasets was ‘‘determined theoretically’’ rathan than empirically.

Furthermore, in both studies the examinees were not classified attribute by attribute but pattern-

wise. Third, the focus of Shu et al. (2013) is on recovering the structural parameters of items,

and Kuang et al. (2010) on recovering the Q-matrix. In contrast, the primary focus of the cur-

rent study is on classifying examinees on each attribute, and the diagnosis of examinees in the

training dataset can be obtained empirically and not necessarily error free. The mastery profile

of each student may come from expert rating and/or teacher focus group. It is possible to allow

the use of auxiliary data explicitly or implicitly in labeling the training sample. For instance, a

teacher may be very familiar with a student through daily interactions, and his or her labeling

of the student on an attribute may not rely solely on the item response data. Moreover, the pres-

ent method does not rely on a known Q-matrix (Köhn et al., 2015) and would not try to recover

one. Therefore, the current study makes distinct contribution to our understanding of using

supervised learning methods for cognitive diagnosis.

The rest of the article is organized as follows: First, the general idea of SVM will be intro-

duced, and then how to apply SVM to classify examinees in terms of their mastery status on

each attribute will be discussed. Then, a simulation study is carried out to investigate the per-

formance of a linear-kernel SVM in classifying examinees, given very small sample sizes.

Findings and their implications to educational research are discussed at the end.

Method: SVM and Its Application to Cognitive Diagnosis

As mentioned earlier, the goal of cognitive diagnosis was to obtain the mastery profile a of each

student, which is essentially a collection of the mastery status (represented by 0 or 1) on a num-

ber of attributes. By classifying a student in terms of his or her mastery status on each attribute,

one is able to get the mastery profile for him or her. This is the idea underlying the application

of SVM to cognitive diagnosis.

SVM is a well-known supervised classification method that is widely used in data mining

and artificial intelligence research and applications (Boser, Guyon, & Vapnik, 1992; Hastie,

Tibshirani, & Friedman, 2009; Tan, Steinbach, & Kumar, 2005; Vapnik, 1998). The algorithm

tries to find the maximum-margin hyperplane as the classification boundary, by which all data

points in the multidimensional space can be classified into two groups, as they fall on one of the

two sides of the hyperplane. Assume that there is a training sample of M subjects with continu-

ous response data collected on J items. The data can be projected into a J-dimensional space.
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The subject s in the training sample, xs
0 = (xs1, xs2, . . ., xsJ ), s = 1, . . . , M , can be represented as

one point in the J-dimensional space. The subjects belong to two groups, in the present case,

masters and nonmasters, denoted by ys = 1 or ys = � 1, respectively.

Suppose that the two groups are linearly separable; that is, there exists at least one hyper-

plane, such that it clearly bisects two groups of data points. In the case where such multiple

hyperplanes exist, the optimal hyperplane will be one that yields the largest distance to both

groups. This is because a decision hyperplane that is too close to the training data points will

be sensitive to any slight noise or perturbation, and consequently likely to result in a large clas-

sification error.

Suppose a hyperplane, or classification boundary, in the J-dimensional space that clearly

bisects the two groups is

w�0x + b� = 0, ð1Þ

where w� and b� are the parameters to determine the position of the hyperplane.Two margin

hyperplanes that are parallel to the boundary hyperplane can be found, one on each side of the

boundary hyperplane. These margin hyperplanes can be represented as follows:

w�0x + b� = 6c�, ð2Þ

where c� is a constant. With appropriate rescaling of both sides of Equation 2, the margin hyper-

planes can be expressed as follows:

w0x + b = 61, ð3Þ

where w = w�=c� and b = b�=c�. Therefore, the distance between the two margin hyperplanes,

a.k.a. the margin, is

d =
2

k w k : ð4Þ

The optimal decision boundary is one that leads to the largest distance between two margin

hyperplanes, that is, one that maximizes d, while satisfying the constraints that the two margin

hyperplanes clearly bisect the two groups of data points, that is, making no classification error

in the training sample. This is equivalent to maximizing d under the constraints of

w0xs + b =
1, if ys � 1

�1, if ys � �1

�
s = 1, 2, . . . , M : ð5Þ

These constraints could be reexpressed as ys(w
0xs + b) � 1 for s = 1, 2, � � � , M .

In practice, two groups may not be linearly separable, and a soft-margin approach can be

used in this case to allow for some classification errors in the training sample. Even if two

groups are linearly separable, a soft-margin approach is recommended to avoid overfitting.

This is done by introducing positive-valued slack variables j to the constraints:

ys(w
0xs + b) � 1� js: s = 1, 2, . . . , M : ð6Þ

Finding the optimal decision boundary is equivalent to finding the parameters w and b that

maximize the distance d in Equation 4 under the constraint (Equation 6). However, to minimize

prediction error, a parameter C can be imposed to penalize large values of slack variables. The

resulting new objective function becomes
kwk2

2
+ C

PM
s = 1 js, and the optimal hyperplane
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minimizes this function while satisfying Equation 6. The value of C can be chosen based on

the cross-validation.

In this study, instead of relying on the conventional likelihood-based method, the problem of

estimating the latent class of each examinee is converted into finding the best boundary that

separates the two groups, that is, masters versus nonmasters, for each attribute. A test taker’s

responses to a J-item test can be treated as data points in a J-dimensional space. For dichoto-

mous items, the possible value along each coordinate is either 0 or 1. Given the M test takers in

the training sample whose cognitive profiles have been identified by experts, for each attribute,

there are M data points in the J-dimensional space, some identified as ‘‘masters of this attri-

bute’’ or ‘‘non-masters of the attribute’’ by the experts. In total, K SVM models will be built,

one for each attribute. For a new test taker (who is not in the training sample), each one of the

K SVM models will be applied to determine whether he or she masters the attributes or not.

Note that the SVM described above uses a linear kernel (see Equation 1, a linear function),

and the resulting boundary between two classes is a hyperplane. Nonlinear kernels will result in

hypersurfaces, for example, hyperspheres. To select an appropriate tuning parameter C and the

best kernel, one can use cross-validation to minimize prediction error.

A preliminary study is performed to select the kernel and the tuning parameter C through

10-fold cross-validation. In n-fold cross-validation, the entire training sample is divided into n

equal-sized subsets. One subset will be used to validate the model, while the remaining (n� 1)

subsets are used to train the model. Each subset will be used as the validation dataset once. The

overall misclassification rate is calculated as the total classification errors divided by total sam-

ple size. The choice of n is arbitrary, although 10-fold cross-validation is the most common

when the training sample size is large enough. Hence, n = 10 is chosen for this study. If the sam-

ple size is very small, one could use leave-one-out (LOO) cross-validation instead. LOO uses

(M � 1) data points (in the present case, test takers) as the training data and the one data point

left to test the model. In this study, 10-fold cross-validation is used for the model validation.

Through cross-validation, preliminary results of the present study indicate that when using

DINA and DINO as the underlying simulation models, linear-kernel SVM performs better than

some commonly used nonlinear kernels. The C parameter is also varied, and C = :1 found to

work well in most conditions. Hence in the simulation study, to classify each simulee on their

mastery status on an attribute, linear-kernel soft-margin SVM is used with the tuning parameter

C set at .1. It is expected that in some circumstances, nonlinear kernel may perform better than

the linear kernel, and a different C may lead to better prediction accuracy. An additional issue

to consider is the class imbalance problem. Class imbalance problem occurs when one class is

substantially larger than the other; for example, when the masters substantially outnumber non-

masters. In the presence of class imbalance, the model may be biased toward the majority class.

To solve this problem, one could oversample from the smaller class. Another solution is to fac-

tor the class size in the classification algorithm, for instance, using cost-sensitive learning and

boosting (Japkowicz & Stephen, 2002).

Simulation Design and Results

The present study’s research question is whether SVM provides a viable alternative to conven-

tional likelihood-based methods in performing cognitive diagnosis, particularly in situations

where it is challenging to utilize the latter; for example, when the sample size is small and/or

computational resources are scarce. Most research of SVM has to date centered around continu-

ous data. In the context of testing, item response data are often dichotomous. Therefore, another

goal of the current study is to find out whether SVM performs well with dichotomous data.
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A simulation study was therefore conducted to examine the performance of SVM in per-

forming cognitive diagnosis when the training sample size M is small. Item response data are

generated from the DINA and DINO models, respectively. Details of the two models are pro-

vided in Appendix A. Both models relate item responses to the attributes probabilistically, and

both include two structural parameters for each item; that is, ‘‘slipping’’ (sj) and ‘‘guessing’’

(gj) for item j. They represent the probability of getting an item correctly or incorrectly by

chance. The two models differ in the combination rules of the attributes: The DINA model

employs the ‘‘AND’’ rule and the DINO model the ‘‘OR’’ rule.

As indicated earlier, in this simulation study, linear-kernel soft-margin SVM is used with the

tuning parameter C set at .1. The test length J is set at 30, and the number of attributes K is 6.

These two numbers are consistent with previous studies on cognitive diagnosis (e.g., Cheng,

2009; Wang, 2013). The tetrachoric s are 0, .1, or .2. If the correlation is 0, the elements of Q-

matrix will be independent of each other. Each item has a 20% chance of measuring a specific

attribute. If the correlation was nonzero, the Q-matrix is generated using the R package ‘‘bin-

data’’ developed by Leisch, Weingessel, and Hornik (1998), which can generate columns of 0/

1’s with desired correlation.

The slipping parameter s and guessing parameter g under the DINA and DINO models are

set at .05, .1, or .2. Furthermore, experts might not provide perfectly reliable judgments in prac-

tice. Therefore, it is imperative to consider errors in the training data. Errors in the training data

will affect the resulting SVM models. In this study, error rates at 0%, 10%, 20%, or 30% are

simulated. Training data with high expert judgment error rate are expected to lead to less accu-

rate SVM decision boundaries, and subsequently higher misclassification rate.

Five item response matrices, each with N = 5, 000 examinees, are generated based on the a

and the Q under both the DINA and DINO models. The ai (i = 1, 2, � � � , N ) is simulated fol-

lowing Wang (2013) to maintain the correlation among attributes at the same level as in the Q-

matrix; that is, at 0, or .1, or .2. For each item response matrix, M of the 5,000 examinees are

randomly selected to be the training sample. In this study, M is set to be 10, 20, 30, 50, 100, or

150. The numbers are chosen to test small-sample scenarios on purpose, which is one of the

advantages for SVM. The remaining examinees, that is, 5000�M , will be used as the testing

samples. Furthermore, to avoid the class imbalance problem, a constraint is added to the ran-

dom selection process: The number of examinees who master the attribute of interest should be

within the range [M /3, 2M /3]. For each response matrix, the simulation will be replicated 20

times for each M. Therefore, in total, results from 5320 = 100 replications are available for

analysis. The prediction accuracy is calculated by comparing the model-predicted mastery sta-

tus against their true mastery status on each attribute. The average accuracy rate is then calcu-

lated across all attributes.

Overall, there are 432 conditions: 2 (generating models) 3 3 (correlations among attributes)

3 3 (levels of slipping and guessing) 3 4 (levels of error rates) 3 6 (training sample sizes). By

simulating data from both DINA and DINO models, one is able to evaluate the performance of

SVM under different underlying models, compensatory or noncompensatory. This is very

important, because the underlying model is always unknown in practice. If SVM only works

well with one particular type of model, its application would be rather limited. Many past stud-

ies assume that the attributes are uncorrelated. For example, Cheng (2009, 2010) and Wang,

Chang, and Huebner (2011) generated independent attributes in their simulation studies.

However, recent studies have shown increasing awareness of possible covariation among the

attributes and have taken that into account in the simulation design (e.g., Wang, Chang, &

Douglas, 2012; Wang, Zheng, & Chang, 2014). Therefore, correlated attributes are considered

in addition to the case where they are independent. Simulating varying levels of slipping and

guessing is consistent with prior studies, and allows us to examine the performance of SVM in
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the presence of noise. Considering errors in the training sample enables the evaluation of

SVM’s capacity of working with imperfect labeling, which is more realistic than assuming that

training data are error free. An important goal of the current study was to find out whether

SVM provides a viable alternative to conventional likelihood-based methods when the sample

size is small or the ratio of sample size to the number of attributes is small. Hence, varying lev-

els of sample size are included in the simulation study.

To evaluate the performance of SVM under these conditions, the average classification accu-

racy is summarized at both the attribute and the pattern levels for each condition. Figure 1 shows

the average classification accuracy at the attribute level when the generating model is the DINA

model. It contains nine subfigures. From the top to the bottom row, slipping and guessing increase

from .05 to .2. From the left to the right column, the correlation among attributes increases from 0

to .2. Within each subfigure, the horizontal axis represents the training sample size, which goes

from 10 to 150. The vertical axis represents the classification accuracy. Different levels of error

rates in the training sample are reflected in each subfigure by different curves.

In Figure 1, going from top to bottom, it is clear that with the increase of slipping and gues-

sing, the classification accuracy drops, which is expected. Going from left to right, when the

correlation among attributes increases, the change in classification accuracy is fairly small.

Within each subfigure, as the training sample size increases, the classification accuracy

increases. As the error rate in the training sample goes up, the classification accuracy goes

down. In general, the top left subfigures show the highest classification accuracy, whereas the

bottom right subfigure shows the lowest classification accuracy. Within each subfigure, the

classification accuracy is the highest when the training sample is large and contains little error.

The results are very promising. The bottom right subfigure shows that even when the slipping

and guessing parameters are set at .2, and the error rate in the training sample is .2, the classifi-

cation accuracy can reach .8 as long as the sample size is 100 or above. Note that such a sample

size is very small compared with conventional methods that require thousands of subjects to

obtain reliable model parameter estimates. If the slipping and guessing parameters are smaller

than .2 and/or the error rate drops, the sample size requirement can be even further relaxed. For

example, when slipping and guessing parameters are set at .1, and the error rate in the training

sample remains .2, the classification accuracy already exceeds .8 given a training sample size

of 50. In the best scenario, for tests with slipping and guessing parameters of .05 (this require-

ment almost precludes multiple-choice items), and a training sample without error, the classifi-

cation accuracy is higher than .9 for a sample size of 20 (see the top left subfigure). If the

training sample contains 10% of error, a training sample of around 30 students will be needed

to reach classification accuracy higher than .9. This means, if experts can be found to provide

very accurate diagnosis for a very small group of students based on a well-designed test, this

small group can be used to build very accurate SVMs to classify the remaining large number of

students whose cognitive profiles are unknown.

Figure 2 is presented in the same way as Figure 1, for the condition that the underlying model

is the DINO model. The pattern is very similar. When the slipping and guessing parameters are

at a moderate level, and the training sample contains 20% of error, the classification accuracy

still reaches .8 given a sample size of 50 (see the center subfigure). In the best scenario, when

the slipping and guessing parameters are set at .05, and the training sample contains no error,

the classification accuracy can be .9 with a training sample size of 20 (see the top left subfigure).

Comparison between Figures 1 and 2 reveals that SVM works slightly better when the underly-

ing model is the DINA model.

Figures 1 and 2 summarize the classification accuracy at the attribute level. At the pattern

level, a diagnosis is considered accurate only when the mastery status of all six attributes is cor-

rectly labeled. From this perspective, the classification accuracy must be lower than the one at
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the attribute level. Figure 3 shows the classification accuracy at the pattern level when the

underlying model is the DINA model. The top left subfigure shows that when the sample size is

150, the pattern-level classification accuracy reaches around 80% when the error rate in training

sample is low. As slipping and guessing go up, the pattern-level classification accuracy quickly

drops. The lowest pattern-level classification accuracy is between .2 and .4 with a training sam-

ple size of 150, which occurs in the bottom right subfigure, where the guessing and slipping

parameters are set at .2, and the error rate in the training sample can be up to 20%. This is not

surprising, given previous studies with similar conditions (e.g., Cheng, 2009; Wang, 2013). For

example, in Cheng (2009) the pattern-level accuracy was reported to be between .3 and .5 for a

24-item, six-attribute test (Cheng, 2009), when the attribute-level accuracy is mostly between

70s and 90s. It was a computerized adaptive test in which the item selection algorithm was

designed to efficiently make classification decisions. The item parameters were derived from a

calibration sample of 2,000 examinees. Given the results from that study, the pattern-level accu-

racy rate based on the SVM method in the current study is well expected and encouraging, as it

is based on training sample sizes of 150 or lower and a linear test. Figure 4 summarizes the

pattern-level classification accuracy when the underlying model is DINO. The trend is largely

the same as discussed above when the underlying model is the DINA model.

Summary and Discussion

In this article, the utility of the SVM, a widely used supervised learning method, was explored

to perform cognitive diagnosis on each attribute. The SVM approach is particularly helpful

when the sample size is too small for conventional likelihood-based methods to work effec-

tively. A simulation study was designed to examine its performance in terms of classification

accuracy at the attribute level and at the pattern level when the training sample size ranges

between 10 and 150. The simulation study also considers the following factors: the underlying

model, the error rate in the training sample, the item quality (as reflected in the slipping and

guessing parameters), and the correlation among attributes.

Overall, the study finds great potential of using SVM for cognitive diagnosis when the sam-

ple size is small. The performance at the attribute level is impressive. For example, the classifi-

cation accuracy reaches .9 or above with a training sample of only 30 examinees in the

presence of 10% error in the diagnosis of the training sample, and slipping and guessing are set

at .05. Therefore, as long as experts can provide accurate diagnosis for a very small group of

students based on a well-designed test, this small training sample can be used to build SVM

models, one for each attribute, to classify the remaining large number of students whose cogni-

tive profiles are unknown. The classification accuracy is on par with what has been reported in

previous studies given similar test length and number of attributes, but those studies employed

likelihood-based methods where large sample size is required and the estimation of latent pro-

files is computationally intensive.

It is important to note that here SVM is used with dichotomous items. In reality, SVM is

usually used with continuous data. The fact that SVM performs well with dichotomous data is

very encouraging, and it is expected to work better with polytomous items. An interesting and

important follow-up study is therefore to examine the performance of SVM, given polytomous

data. Meanwhile, this study uses SVM to make binary decision on each attribute; that is, mas-

tery versus nonmastery. To address the issue of granularity in the attributes, CDMs allowing

polytomous attributes have been developed, for example, the polytomous Generalized DINA

(pG-DINA) model (J. Chen & de la Torre, 2013), the polytomous log-linear cognitive diagnos-

tic model (LCDM; Templin & Bradshaw, 2014), and the general diagnostic model (GDM) for

polytomous attributes (von Davier, 2008). J. Chen and de la Torre (2013) gave an example of

Liu and Cheng 67



F
ig

u
re

3
.

P
at

te
rn

-l
ev

el
cl

as
si

fic
at

io
n

ac
cu

ra
cy

ra
te

u
n
d
er

th
e

D
IN

A
m

o
d
el

u
si

n
g

SV
M

.
N

ot
e.

D
IN

A
=

D
et

er
m

in
is

ti
c

In
p
u
t,

N
o
is

y
‘‘A

n
d
’’

G
at

e;
SV

M
=

su
p
p
o
rt

ve
ct

o
r

m
ac

h
in

e.

68



F
ig

u
re

4
.

P
at

te
rn

-l
ev

el
cl

as
si

fic
at

io
n

ac
cu

ra
cy

ra
te

u
n
d
er

th
e

D
IN

O
m

o
d
el

u
si

n
g

SV
M

.
N

ot
e.

D
IN

O
=

D
et

er
m

in
is

ti
c

In
p
u
t,

N
o
is

y
‘‘O

r’
’G

at
e;

SV
M

=
su

p
po

rt
ve

ct
o
r

m
ac

h
in

e.

69



three classes for each attribute: nonmastery, Level 1 mastery, and Level 2 mastery. Thus far,

the authors of the present study have been unaware of any development in using SVM to make

multiclass decisions for cognitive diagnosis, and it will be another interesting direction to pur-

sue. The use of SVM for such multiclass decisions has been well documented in the literature

(e.g., Mayoraz & Alpaydin, 1999), so the extension can be rather straightforward.

In addition to these exciting directions, several limitations of the current study that can be

addressed in follow-up studies can be pointed out: First, albeit showing promises in this study,

SVM is not without its limitations. The choice of a kernel function (e.g., linear vs. nonlinear),

the tuning parameter in a soft-margin SVM, and the cross-validation method, as well as possi-

ble overfit under a small sample size, can all influence the outcome. The authors of the present

study caution against blindly applying SVM without examining the default options or perform-

ing appropriate cross-validation.

Second, in this study training errors are introduced in a completely random fashion, meaning

that even if an examinee answers all questions correctly, there is still a certain probability (e.g.,

20% if the error rate is .2) for him or her to be classified as a nonmaster of an attribute and vice

versa. Obviously, training points with such errors will have a substantial impact on the decision

boundary. With a more realistic error generating mechanism, the proposed method is expected

to work even better.

Furthermore, there exist numerous other classifiers that can perform classification in the con-

text of cognitive diagnosis; for example, logistic regression. One logistic regression model can

be fit for each attribute to the training data. The dependent variable is the master/nonmaster diag-

nosis provided by the teachers. The independent variables are the item responses. The model

derived from the training sample can then be used on new test takers to determine if they are

masters or nonmasters of an attribute. The present simulation study did include logistic regres-

sion for comparison. Logistic regression is chosen for two reasons: First, it is widely known and

applied in social sciences. Second, it is closely linked to SVM, as both can be viewed as taking a

probabilistic model and minimizing certain loss functions based on the likelihood ratio.2 Results

are annexed in Appendix B for brevity of the article (Figures B1-B4). The results indicate that

the performance of logistic regression is inferior to SVM at the same sample size, particularly

when the training sample contains error. It is also important to note that logistic regression

requires a sample size at least larger than the number of parameters, in this case J + 1. For this

reason, logistic regression is not used with very small sample sizes such as M = 10 or 20 or 30.

The performance of other classifiers remains to be investigated in the future.

Last but not the least, in this study, it is showed that SVM provides a viable option to per-

form cognitive diagnosis when the sample size is inadequate for CDM fitting and calibration.

Data are generated from two CDMs with small sample sizes. But what if CDMs do not fit? In

the presence of model misspecification, even if the sample size is adequate, the resulting item

parameter estimates would be biased and would subsequently lead to classification errors. SVM

may provide a solution when the CDM is misspecified, as it bypasses CDM fitting. These are

certainly worthy directions to pursue in future studies.
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Notes

1. General cognitive diagnostic models (CDMs) that combine latent trait(s) and latent classes, for exam-

ple, the higher order model proposed by de la Torre and Douglas (2004), are exceptions.

2. As a reviewer kindly pointed out, the soft-margin support vector machine (SVM) is theoretically con-

nected to regularized logistic regression (Hastie, Tibshirani, & Friedman, 2009). Limited by the space

and scope, that comparison will be left to another study.
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