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Abstract

In educational and psychological testing, individuals are often repeatedly measured to assess the
changes in their abilities over time or their latent trait growth. If a test consists of several subt-
ests, the latent traits may have a higher order structure, and traditional item response theory
(IRT) models for longitudinal data are no longer applicable. In this study, various multilevel
higher order item response theory (ML-HIRT) models for simultaneously measuring growth in
the second- and first-order latent traits of dichotomous and polytomous items are proposed. A
series of simulations conducted using the WinBUGS software with Markov chain Monte Carlo
(MCMC) methods reveal that the parameters could be recovered satisfactorily and that latent
trait estimation was reliable across measurement times. The application of the ML-HIRT model
to longitudinal data sets is illustrated with two empirical examples.
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In educational and psychological tests, individuals are often repeatedly measured on multiple

occasions to determine how their abilities change over time (e.g., Andersen, 1985; Embretson,

1991). Item responses that are collected on multiple occasions comprise longitudinal data, and

traditional estimation methods are not applicable to these data because the assumption of local

item independence does not hold. In the factor analysis model literature, latent growth in exam-

inee ability can be assessed using multilevel extensions for continuous and discrete outcomes

(Muthén & Muthén, 2007). In these latent growth models, a single latent trait is measured using

multiple indicators, and random effects are included to incorporate individual differences in

both the initial status and the rate of growth. The diversity of item response functions imposes

a serious constraint on the existing multilevel factor models (e.g., the Mplus computer program)

because these models can only be applied to a limited number of specific functions. For exam-

ple, the three-parameter logistic model (3PLM; Birnbaum, 1968) and other novel models (see

De Boeck & Wilson, 2004) are not incorporated in the popular Mplus computer program. In

item response theory (IRT), in contrast, a multilevel IRT model can accommodate a variety of
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item response functions for measuring latent trait changes in examinees (Hung & Wang, 2012).

However, the existing multilevel IRT models have not been adapted to assessing latent trait

growth in multiple latent traits.

A common assumption inherent to multilevel factor models and multilevel IRT models is

that the latent trait intended to be measured is univariate. Multiple latent traits measured by mul-

tidimensional tests are very common in real testing situations, and measuring latent growth in

multiple latent traits becomes increasingly interesting in longitudinal surveys. Several studies

have proposed latent growth models for multidimensional tests (e.g., Bianconcini, 2012; Bollen

& Curran, 2006; Raykov, 2007). However, these models require the consideration of a large

number of random effects, use continuous indicators, and do not consider the higher order struc-

ture of latent traits.

Measuring changes within the framework of higher order latent traits is a complex task with

multilevel IRT models because the extent to which each subtrait (i.e., first-order latent trait)

contributes to the overall latent trait (i.e., second-order latent trait) is unknown. Accordingly, if

simultaneous measurements of the latent growth in the first-order latent traits and the second-

order latent trait are desired, then the weights of the second-order latent traits must be assigned

to the first-order latent traits, and a higher order latent trait structure is necessary. In the context

of IRT modeling, the incorporation of higher order latent traits into IRT models leads to higher

order item response theory (HIRT) models that can accommodate a variety of item response

functions (e.g., Huang, Wang, Chen, & Su, 2013). However, few of these HIRT models have

been adapted to incorporate ability changes using multilevel extensions that fit longitudinal data.

A new model that combines a higher order latent trait model with a multilevel model is therefore

required to measure the growth in multiple latent traits with increased estimation efficiency.

In this study, a general class of multilevel higher order item response theory (ML-HIRT)

models for longitudinal data is proposed in which the second- and first-order latent traits can be

estimated simultaneously, the ability changes can be reliably assessed, the item response func-

tions can be flexibly specified for dichotomous and polytomous items, and a linear or nonlinear

latent growth model is plausible. This new class of ML-HIRT models not only integrates all of

the existing HIRT models and multilevel IRT models but also provides new directions for future

research.

This article is organized as follows. First, ML-HIRT models for dichotomous and polyto-

mous items are developed and discussed. Second, simulations that were performed to assess the

efficiency of parameter estimation in the ML-HIRT models are presented. Third, the applica-

tion of ML-HIRT models to longitudinal surveys is demonstrated through two empirical exam-

ples involving dichotomous and polytomous items. Finally, conclusions are drawn concerning

the new models, and suggestions for future research are provided.

The ML-HIRT Model

A ML-HIRT model consists of (but is not limited to) three levels, with each level constituting a

specific model: a within-occasion model (Level 1), a within-person model (Level 2), and a

between-person model (Level 3). The within-occasion model describes item responses for spe-

cific occasions, the within-person model addresses variations in latent traits over a single per-

son’s measurement occasions, and the between-person model specifies the variations in growth

trajectories between persons.

For simplicity, a two-order structure with one common second-order latent trait is assumed.

In this structure, each item is governed by a first-order latent trait. At Level 1, a specified item

response model can be formulated. For example, the three-parameter multilevel higher order

IRT (3P-ML-HIRT) model can be expressed as follows:
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Pnti1v ¼ piv þ 1� pivð Þ3
exp aiv u

ð1Þ
ntv � div

� �h i

1þ exp aiv u
ð1Þ
ntv � div

� �h i ; ð1Þ

where

u
ð1Þ
ntv ¼ lvu

ð2Þ
nt þ eð1Þntv ; ð2Þ

aiv is the slope (discrimination) parameter; div is the location (difficulty) parameter; piv is the

asymptotic (pseudo-guessing) parameter for item i in test v; u
ð2Þ
nt and u

ð1Þ
ntv are the second-order

and the vth first-order latent traits, respectively, for person n at time t; lv is the regression weight

(factor loading) specifying the relationship between the second-order latent trait and the vth

first-order latent trait; and eð1Þntv is the residual of time t in test v for person n and is assumed to be

normally distributed with a mean of zero and to be independent of the other es and us. Note that

the factor loadings and the item parameters do not have the subscript t, indicating that these

parameters do not change over time. For model identification, one of the regression weights is

set to a fixed value (of one), and one of the discrimination parameters in test v is set to one to

allow for different tests using a common metric.

The within-person model can be formulated at Level 2, and a latent growth model is defined

by

u
ð2Þ
nt ¼ vntbn þ cnt; ð3Þ

with

cnt;N 0;s2
cðtÞ

� �
; ð4Þ

where b0n ¼ ½bn0;bn1; . . . ;bnh� is a vector of length h + 1 for the growth factors for person n that

specify initial statuses and growth rates; vnt ¼ ½1;v1
nt;v

2
nt; . . . ;vh

nt� is a vector of time-based

loadings; h can be specified for the polynomial growth curve (h ¼ 1 for a linear latent growth

model); and cnt is the regression residual for person n at time t, which is assumed to be indepen-

dent of the other es and cs.

Finally, to specify the variation in the growth trajectories of individuals, the coefficients in

Equation 3 can be regressed against another set of personal background variables (the number

of predictors is set to m) to formulate the Level 3 model, which is defined by

bnd ¼ kngd þ §nd; ð5Þ

with

§n[ §n0; §n1; . . . ; §nh½ �;N 0;S§ð Þ; ð6Þ

where kn is a set of observed predictors for person n; g0d ¼ ½gd0; gd1; . . . ; gdm� is the regression

coefficient parameter vector (including the intercept term) for the dth coefficient at Level 2;

d ¼ 0; 1; . . . ; h; §n is the vector of Level 3 regression residuals (which are assumed to be

mutually independent of the Level 2 and Level 1 residuals); and S1 is a variance–covariance

matrix of dimension h + 1. For model identification, the intercept term in vector g0, with bn0

as the criterion variable, is set to zero. When more than three levels are involved, the proposed

model can be readily extended; an example of a four-level two-order IRT model is provided in
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the Online Appendix A. To simplify the situation, this study focused only on the three-level

HIRT model and the linear growth model.

Other dichotomous IRT models can be extended to a multilevel approach in a straightfor-

ward manner. If a two-parameter logistic model (2PLM) or a one-parameter logistic model

(1PLM) with higher order latent traits is used as the item response function at Level 1, then a

two-parameter multilevel higher order IRT (2P-ML-HIRT) model and a one-parameter multile-

vel higher order IRT (1P-ML-HIRT) model can be formulated.

Huang et al. (2013) developed the polytomous HIRT model and proposed four commonly

used item response models for use with polytomous items in the presence of higher order latent

traits. In the framework of ML-HIRT models, for a polytomous item measuring a first-order

latent trait (as in the generalized partial credit model [GPCM], Muraki, 1992, for example) at

Level 1, the log odds can be defined by

log
Pntijv

Pntiðj�1Þv

� �
¼ aiv u

ð1Þ
ntv � hiv � tijv

� �
; ð7Þ

where Pntijv and Pnti(j21)v are the probabilities of scoring j and j21 on item i in test v at time t

for person n, hiv is the overall difficulty of item i in test v, tijv is the jth threshold parameter of

item i in test v, and the other parameters are as defined above. Combining Equations 2 and 7

leads to the GPC-ML-HIRT. If the overall difficulty parameter and the threshold parameter for

item i and threshold j in test v are combined, the dijv location parameter arises. Similarly, if the

item response function follows the partial credit model (PCM), the rating scale model (RSM),

and the graded response model (GRM), then the corresponding ML-HIRT models are denoted

by PC-ML-HIRT, RS-ML-HIRT, and GR-ML-HIRT, respectively.

In the formulation of the ML-HIRT model described above, it is assumed that a test is repeat-

edly administered to individuals and that all of the item parameter values are identical over time

(i.e., these item parameters do not have t subscripts). Over time, however, it is possible for a

new set of items that were not present in the earlier tests to include parts of items that earlier

tests may have excluded. In such cases, a test measuring the same latent trait consists of differ-

ent items on different occasions. As long as a sufficient common set of items are used as an

anchor over time (four common items between any two occasions; see Wang, 2004), the ML-

HIRT model can calibrate all of the item parameters with respect to the common metric, and the

notation of the ML-HIRT item parameters can be incorporated into the subscript t to indicate

that the items were not administered on all of the occasions.

Method

Simulation Design

Two simulations were performed in this study: one for dichotomous items and the other for

polytomous items. In both cases, the simulation design and generated values were chosen to be

consistent with the two empirical studies (Chang, 2007; Wu, Tsai, & Siao, 2010), and the details

of the design of the empirical study are described in the Online Appendix F. Three first-order

latent traits (i.e., three tests) and one second-order latent trait (overall ability) were assumed.

Note that different measurement occasions may have different items and that a sufficient set of

anchor items were used to build the common metric.

The 3P-ML-HIRT model with linear growth was used to generate simulated data, with each

data set consisting of 4,000 individuals (2,400 individuals residing in an urban region and 1,600

individuals residing in a rural region). A smaller data set of 1,000 (600 urban examinees and
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400 rural examinees) was also simulated to assess the effect of sample size on the parameter

estimation. The regions of students were used as the predictors at Level 3. A MATLAB com-

puter program was written by the author to generate item responses. The true values for the

model parameters are summarized in Table 1, and the simulation process is documented in the

Online Appendix B. Thirty replications were performed to assess the dichotomous parameter

recovery in the ML-HIRT model. Note that all of the items were assumed to share a common

pseudo-guessing parameter because of the uncertainty in this parameter.

In the second simulation, the GPC-ML-HIRT model with linear growth was used to generate

item responses for the polytomous items. The simulation design was based on the following

empirical polytomous item example using a linear growth model with Level 3 predictors, as

shown in the Online Appendix F. Three tests measuring a first-order latent trait were generated,

and a common second-order latent trait was assumed to govern these three first-order latent

traits. The values generated are summarized by their ranges or are listed as their true values in

Table 4. Thirty replications, each with 565 simulated individuals, were conducted. In addition,

two groups of local children (278 students, coded as 1) and immigrant children (287 students,

coded as 21) were used as the predictors at Level 3 to determine the difference between the

growth trajectories of these two groups.

Analysis

Because of the high dimensionality of the model, the WinBUGS freeware program

(Spiegelhalter, Thomas, & Best, 2003) with Markov chain Monte Carlo (MCMC) methods was

used to calibrate the model parameters. The prior settings and parameter convergence evalua-

tion are present in the Online Appendix C. The WinBUGS commands for the proposed models

are available upon request. The Bayesian deviance information criterion (DIC; Spiegelhalter,

Best, Carlin, & van der Linde, 2002) was used to assess the fit of the model to the data. A

smaller DIC value indicates a better fit of the model to the data.

For each estimator, the bias and root mean square error (RMSE) were computed to assess the

parameter recovery in the simulations. The absolute value of relative bias (ARB) was also com-

puted. If ARB is close to zero, the estimator is considered acceptable (Hoogland & Boomsma,

1998). In addition, the square root of the ratio of the mean error variance to the sampling var-

iance was computed to assess the accuracy of the estimated standard errors for each parameter

estimate. If the estimated standard error was close to the empirical standard error, then the ratio

would approach unity, and the estimated standard error was considered appropriate for statistical

hypothesis testing. It was expected that the model parameters could be recovered well for the

proposed models, that the estimated standard errors would be appropriate, and that these models

could be successfully applied to measuring latent growth or ability changes in real data.

Results

Parameter Recovery for Dichotomous Items

Table 1 summarizes the parameter recovery for the dichotomous items and the 3P-ML-HIRT

model for the sample size of 4,000, which corresponds to the within-occasion model (Level 1)

for the 3P-HIRT item response function. The bias magnitudes were quite small, but the factor

loadings were slightly overestimated. Most of the mean RMSE values for the different types of

parameters were less than 0.1, and the parameter recovery was acceptable. Most estimators had

ARB values between 0 and 0.1, suggesting that the parameter recovery was marginally satisfac-

tory. Several estimators had ARB values greater than 0.1 because of the parameters’ near-zero

366 Applied Psychological Measurement 39(5)



true values (e.g., d = 0.002 corresponded to the greatest ARB value of 2.550). Parameter values

were estimated with considerably less accuracy for certain items included in the set of items that

were unique over time. The parameter recoveries for different times and for the unique and com-

mon items are shown in the Online Appendix D. In addition, the estimated standard errors were

appropriate because most of the square roots of the ratios of estimated error variances to sam-

pling variances were close to unity. Most of the estimates yielded symmetric distributions, with

computed skewness values close to zero.

The quality of the parameter recovery was slightly lower when the sample size was decreased

to 1,000. As shown in Table 2, a smaller sample size led to larger bias and RMSE values.

Although the larger ARB statistics were associated with near-zero true values, all the estimators

had larger ARB values for the sample size of 1,000 than for the sample size of 4,000. The

Table 1. Parameter Recovery for the 3P-ML-HIRT Model With a Sample Size of 4,000.

Parameter True Bias RMSE ARB Ratio Skewness

Difficulty
M 0.257 0.016 0.117 0.095 0.988 0.006
SD 1.297 0.089 0.082 0.210 0.163 0.427
Maximum 3.367 0.261 0.461 2.550 1.386 1.043
Minimum 24.224 20.229 0.029 0.001 0.655 21.320

Slope
M 1.001 20.053 0.090 0.054 0.977 0.058
SD 0.428 0.042 0.048 0.031 0.139 0.418
Maximum 2.371 0.039 0.275 0.108 1.339 1.447
Minimum 0.244 20.154 0.019 0.000 0.730 20.628

Pseudo-guessing 0.147 0.001 0.003 0.003 1.242 20.241
Residual variance at Level 1

M 0.246 0.043 0.066 0.191 0.936 0.280
SD 0.263 0.049 0.056 0.175 0.178 0.436
Maximum 1.069 0.181 0.216 0.693 1.228 0.950
Minimum 0.015 20.003 0.016 0.012 0.681 20.646

Residual variance at Level 2
c1 0.028 0.001 0.009 0.025 0.853 0.163
c2 0.036 0.002 0.006 0.042 1.148 20.314
c3 0.046 0.000 0.012 0.002 0.741 0.231
c4 0.021 0.007 0.015 0.324 0.759 1.019

Residual variance at Level 3
Intercept (b0) 0.428 0.003 0.034 0.006 0.812 0.174
Slope (b1) 0.039 0.002 0.005 0.046 0.874 0.301
Covariance 0.073 0.003 0.009 0.045 0.756 0.501

Regression weight at Level 3
Intercept of b0 0 NA NA NA NA NA
Slope of b0 0.190 0.003 0.012 0.015 1.116 20.151
Intercept of b1 0.396 0.006 0.017 0.015 0.794 20.356
Slope of b1 0.032 0.002 0.005 0.059 1.116 1.146

Factor loading
l1 1 NA NA NA NA NA
l2 1.129 0.124 0.181 0.110 0.663 0.613
l3 1.494 0.104 0.135 0.069 0.964 0.856

Note. The number of estimated difficulty parameters and estimated slope parameters and the estimated Level 1

residual variances are 105, 102, and 12, respectively. 3P-ML-HIRT = three-parameter multilevel higher order item

response theory; True = true values; RMSE = root mean square error; ARB = absolute value of relative bias; NA =

not applicable because of model constraints.
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estimated standard errors for the smaller sample size were slightly less accurate than those for

the larger sample size. The skewness patterns of the estimates across replications differed little

between the two sample sizes; most of the skewness values were between 21 and 1, suggesting

that the estimates followed a symmetric distribution. In summary, the sample size was associ-

ated with both the quality of the parameter recovery and the accuracy of standard error estimates

but had little impact on the skewness of the estimates.

Table 3 lists the mean RMSE values for the person parameter estimates for the four testing

occasions across replications for the second-order latent trait and for the three first-order latent

traits. As Table 3 shows, for the larger sample size of 4,000, the second-order latent trait could

be recovered better than the three first-order latent traits, and person parameter estimation

became poor as time progressed because a large number of individuals with extremely atypical

Table 2. Parameter Recovery for the 3P-ML-HIRT Model With a Sample Size of 1,000.

Parameter True Bias RMSE ARB Ratio Skewness

Difficulty
M 0.257 0.031 0.228 0.502 1.215 20.114
SD 1.297 0.210 0.156 3.536 0.314 0.451
Maximum 3.367 0.593 0.701 44.70 2.393 1.046
Minimum 24.224 20.569 0.056 0.001 0.678 21.223

Slope
M 1.001 20.111 0.152 0.115 1.278 0.121
SD 0.428 0.087 0.081 0.062 0.355 0.581
Maximum 2.371 0.111 0.370 0.246 3.419 1.915
Minimum 0.244 20.344 0.031 0.000 0.642 21.219

Pseudo-guessing 0.147 0.004 0.008 0.024 0.991 20.935
Residual variance at Level 1

M 0.246 0.110 0.149 0.512 1.105 0.118
SD 0.263 0.122 0.126 0.565 0.337 0.465
Maximum 1.069 0.438 0.480 2.207 1.625 0.985
Minimum 0.015 0.003 0.026 0.034 0.577 20.817

Residual variance at Level 2
c1 0.028 0.008 0.021 0.039 2.028 20.728
c2 0.036 0.007 0.011 0.197 0.889 0.580
c3 0.046 0.018 0.036 0.185 0.788 0.407
c4 0.021 20.001 0.007 0.852 0.674 1.842

Residual variance at Level 3
Intercept (b0) 0.428 0.028 0.056 0.066 1.212 20.538
Slope (b1) 0.039 0.004 0.011 0.113 1.381 20.589
Covariance 0.073 0.004 0.007 0.049 1.173 20.523

Regression weight at Level 3
Intercept of b0 0 NA NA NA NA NA
Slope of b0 0.190 0.003 0.019 0.015 1.399 0.326
Intercept of b1 0.396 0.017 0.026 0.043 1.225 20.033
Slope of b1 0.032 0.004 0.011 0.131 1.001 20.488

Factor loading
l1 1 NA NA NA NA NA
l2 1.129 0.287 0.309 0.254 1.431 0.298
l3 1.494 0.171 0.182 0.114 2.580 0.595

Note. The number of estimated difficulty parameters and estimated slope parameters and the estimated Level 1

residual variances are 105, 102, and 12, respectively. 3P-ML-HIRT = three-parameter multilevel higher order item

response theory; True = true values; RMSE = root mean square error; ARB = absolute value of relative bias; NA =

not applicable because of model constraints.
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abilities were observed on later occasions. Patterns similar to those for the large sample size

were observed for the small sample size of 1,000, although the small sample size resulted in

slightly inferior person parameter recovery, as shown in the bottom of Table 3. The poor esti-

mation for the later occasions may have occurred because the ranges of the item difficulty para-

meters did not correspond exactly to the levels of the examinees’ abilities; the extreme ends of

the ability range could not be recovered well. An additional test of the hypothesis that the

ranges of the item parameter values affect the estimation precision for the examinees is shown

via simulation in the Online Appendix E. In summary, the 3P-ML-HIRT model yielded margin-

ally acceptable estimates of both the second-order and first-order latent traits, and the estimation

was improved when a wider range of item difficulty parameters was adopted. This improvement

can be achieved through the involvement of testing and content experts in the further develop-

ment of the tests.

Parameter Recovery for Polytomous Items

The parameter recovery results for the polytomous items using the GPC-ML-HIRT model, cor-

responding to the within-occasion model of the GPC-HIRT item response function, are pre-

sented in Table 4. All of the bias values were so close to zero and the RMSE values were so

small that the GPC-ML-HIRT model yielded good parameter estimation. Most of the estimators

had marginally acceptable ARB statistics, with values below 0.1. The largest ARB value for

item difficulty (1.495) corresponded to a near-zero true value (0.019). The estimated standard

errors were judged appropriate because most of the ratios were very close to unity. The assess-

ment of the skewness of the parameter estimates across replications showed that the estimates

yielded a symmetric pattern and that the distribution was not severely skewed. In summary, the

parameter recovery for the polytomous items using the GPC-ML-HIRT model appeared to be

good, and the standard errors obtained by MCMC estimation were appropriate.

The assessment of the latent trait parameter recovery for the GPC-ML-HIRT model for the

three occasions showed that the mean RMSE values were 0.529, 0.496, and 0.527, respectively,

for Test 1; 0.555, 0.515, and 0.564, respectively, for Test 2; 0.512, 0.504, and 0.501, respec-

tively, for Test 3; and 0.472, 0.434, and 0.467, respectively, for the second-order latent trait.

The estimation for the second-order latent trait outperformed the estimation for the three first-

order latent traits in terms of the recovery of person parameters. The principal reason for the

slightly higher RMSE values for both orders was that the number of test items was not

Table 3. Mean RMSE of Person Parameter Estimates for the 3PL-ML-HIRT Model.

Condition Occasion 1 Occasion 2 Occasion 3 Occasion 4

Sample Size of 4,000
First-order latent trait in Test 1 0.269 0.354 0.431 0.438
First-order latent trait in Test 2 0.510 0.498 0.584 0.632
First-order latent trait in Test 3 0.416 0.423 0.571 0.762
Second-order latent trait 0.245 0.246 0.300 0.362

Sample size of 1,000
First-order latent trait in Test 1 0.274 0.359 0.437 0.450
First-order latent trait in Test 2 0.556 0.575 0.701 0.810
First-order latent trait in Test 3 0.436 0.460 0.623 0.830
Second-order latent trait 0.248 0.252 0.309 0.374

Note. RMSE = root mean square error; 3P-ML-HIRT = three-parameter multilevel higher order item response theory.
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sufficiently large to provide precision estimates for person parameters. Compared with the

results for dichotomous items, the GPC-ML-HIRT model yielded relatively consistent estimates

for the three occasions; the range of ability levels was more consistent with that of the item

location parameters for the polytomous items than with the range for the dichotomous items. In

summary, the GPC-ML-HIRT model yielded marginally acceptable person parameter estimates

for both orders over time. The applications of the ML-HIRT model to empirical data with

dichotomous and polytomous items are shown in the Online Appendix F.

Discussion and Conclusion

In this study, a multilevel extension of the HIRT model (the ML-HIRT model) was developed

for longitudinal data, and the efficiency of the new model was evaluated through simulation

Table 4. Parameter Recovery for the GPC-ML-HIRT Model With a Sample Size of 565.

Parameter True Bias RMSE ARB Ratio Skewness

Location
M 20.875 0.003 0.125 0.068 1.131 20.241
SD 1.114 0.040 0.044 0.200 0.144 0.347
Maximum 1.846 0.093 0.246 1.495 1.639 0.675
Minimum 22.834 20.087 0.051 0.000 0.924 21.066

Slope
M 0.970 20.031 0.083 0.031 1.054 0.341
SD 0.330 0.025 0.032 0.016 0.159 0.422
Maximum 1.816 20.001 0.173 0.066 1.477 1.026
Minimum 0.412 20.101 0.033 0.001 0.788 20.273

Residual variance at Level 1
M 0.662 0.051 0.130 0.082 1.069 0.378
SD 0.253 0.022 0.041 0.038 0.161 0.340
Maximum 1.310 0.087 0.226 0.151 1.328 0.907
Minimum 0.417 0.024 0.072 0.035 0.850 20.117

Residual variance at Level 2
c1 0.361 0.030 0.118 0.082 0.880 20.588
c2 0.241 0.030 0.062 0.124 1.203 20.053
c3 0.093 0.023 0.064 0.242 1.169 1.023

Residual variance at Level 3
Intercept (b0) 0.407 0.052 0.119 0.127 0.868 0.278
Slope (b1) 0.060 0.006 0.026 0.107 1.204 1.009
Covariance 0.014 0.001 0.040 0.071 0.992 20.724

Regression weight at Level 3
Intercept of b0 0 NA NA NA NA NA
Slope of b0 0.112 0.013 0.051 0.113 0.886 20.164
Intercept of b1 20.148 0.008 0.026 0.052 1.081 0.001
Slope of b1 0.010 20.006 0.030 0.560 0.889 20.229

Factor loading
l1 0.807 20.011 0.072 0.014 1.086 0.409
l2 1.123 20.037 0.103 0.033 1.006 0.305
l3 1 NA NA NA NA NA

Note. The number of estimated location parameters and estimated slope parameters and the estimated Level 1

residual variances are 18, 15, and 9, respectively. GPC-ML-HIRT = generalized partial credit–multilevel higher order

item response theory; True = true values; RMSE = root mean square error; ARB = absolute value of relative bias; NA

= not applicable because of model constraints.
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studies and empirical analyses. The results of a series of simulations using WinBUGS with

MCMC methods indicated that the model parameters can be recovered fairly well, that the stan-

dard errors were estimated appropriately, and that both orders of individual latent traits can be

estimated satisfactorily over time. As the sample size increases, the item parameter estimation

becomes more precise. The use of higher and lower difficulty parameters improved the precision

of the estimation of the person parameters for the later measurement occasions. In practice, apart

from the simulation study, it is difficult to know a priori how wide a range of item difficulty

parameters the tests require unless a pilot survey is conducted; sequential testing and input from

content experts can be used to adjust the setting. In addition, prior information from other sur-

veys (e.g., the large-scale assessment of the Programme for International Student Assessment

[PISA]) can assist psychometricians and testing writers to design substantially more difficult or

easier items to yield a wider range of item difficulty parameters. Note that the performance of

the estimators was poor (to a slight extent) for certain items and that improved parameter esti-

mates can be obtained by including more common items to serve as an anchor over time (dis-

cussed below) and by increasing the sample size, as demonstrated in the simulation. Although

the simulations were designed to resemble empirical settings, the manipulation of other factors,

such as the test length and the number of subtests, deserves further investigation.

It is not uncommon in longitudinal surveys for different sets of items to be used to measure

the same latent trait in tests administered on different occasions. In this case, identifying the

anchor items is a prerequisite for linking different metrics over time to estimate model para-

meters precisely. In the dichotomous-item simulation described in this article, common items in

each test were used as anchors across time, and most of the parameter recovery was acceptable,

although the factor loadings were slightly overestimated. In an additional simulation whose

topic was the use of the tests for Occasion 1 for the other three occasions (i.e., simulating the

administration of the same tests on all four occasions) for a sample size of 4,000, the parameter

estimation was improved. More common items are therefore recommended; however, the effect

of practice when the same test is administered multiple times is inevitable, especially in achieve-

ment assessment.

The ML-HIRT model is quite flexible and can easily accommodate more than three levels or

a polynomial growth curve model. As described in this article, a between-class model (Level 4)

and a between-school model (Level 5) can be embedded in the multilevel structure, and the use

of a polynomial growth curve model in place of a linear latent growth model can incorporate

the latent growth trajectories. As for the higher order latent trait model, more than two orders of

latent traits or two (or more) second-order latent traits can be introduced, and the relationship

between the second- and first-order latent traits can be nonlinear (e.g., quadratic). The analo-

gous extension of the ML-HIRT model is left for future research.

For decades, the detection of differential item functioning (DIF) or measurement invariance

over groups has been the focus of the development of new tests. In the ML-HIRT model, item

parameters and factor loadings may be different between groups, and these parameters may

shift as time progresses. An ML-HIRT model with fewer constraints may provide a promising

approach to the detection of possible violations of measurement invariance or the assessment of

DIF in the development of tests for longitudinal surveys. How to extend the ML-HIRT model

to address this concern requires further investigation.
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