Skip to main content
. 2015 Jan 15;39(5):362–372. doi: 10.1177/0146621614568112

Table 4.

Parameter Recovery for the GPC-ML-HIRT Model With a Sample Size of 565.

Parameter True Bias RMSE ARB Ratio Skewness
Location
M −0.875 0.003 0.125 0.068 1.131 −0.241
SD 1.114 0.040 0.044 0.200 0.144 0.347
 Maximum 1.846 0.093 0.246 1.495 1.639 0.675
 Minimum −2.834 −0.087 0.051 0.000 0.924 −1.066
Slope
M 0.970 −0.031 0.083 0.031 1.054 0.341
SD 0.330 0.025 0.032 0.016 0.159 0.422
 Maximum 1.816 −0.001 0.173 0.066 1.477 1.026
 Minimum 0.412 −0.101 0.033 0.001 0.788 −0.273
Residual variance at Level 1
M 0.662 0.051 0.130 0.082 1.069 0.378
SD 0.253 0.022 0.041 0.038 0.161 0.340
 Maximum 1.310 0.087 0.226 0.151 1.328 0.907
 Minimum 0.417 0.024 0.072 0.035 0.850 −0.117
Residual variance at Level 2
ψ1 0.361 0.030 0.118 0.082 0.880 −0.588
ψ2 0.241 0.030 0.062 0.124 1.203 −0.053
ψ3 0.093 0.023 0.064 0.242 1.169 1.023
Residual variance at Level 3
 Intercept (β0) 0.407 0.052 0.119 0.127 0.868 0.278
 Slope (β1) 0.060 0.006 0.026 0.107 1.204 1.009
 Covariance 0.014 0.001 0.040 0.071 0.992 −0.724
Regression weight at Level 3
 Intercept of β0 0 NA NA NA NA NA
 Slope of β0 0.112 0.013 0.051 0.113 0.886 −0.164
 Intercept of β1 −0.148 0.008 0.026 0.052 1.081 0.001
 Slope of β1 0.010 −0.006 0.030 0.560 0.889 −0.229
Factor loading
 λ1 0.807 −0.011 0.072 0.014 1.086 0.409
 λ2 1.123 −0.037 0.103 0.033 1.006 0.305
 λ3 1 NA NA NA NA NA

Note. The number of estimated location parameters and estimated slope parameters and the estimated Level 1 residual variances are 18, 15, and 9, respectively. GPC-ML-HIRT = generalized partial credit–multilevel higher order item response theory; True = true values; RMSE = root mean square error; ARB = absolute value of relative bias; NA = not applicable because of model constraints.