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Abstract

Concurrent calibration using anchor items has proven to be an effective alternative to separate
calibration and linking for developing large item banks, which are needed to support continuous
testing. In principle, anchor-item designs and estimation methods that have proven effective with
dominance item response theory (IRT) models, such as the 3PL model, should also lead to accu-
rate parameter recovery with ideal point IRT models, but surprisingly little research has been
devoted to this issue. This study, therefore, had two purposes: (a) to develop software for con-
current calibration with, what is now the most widely used ideal point model, the generalized
graded unfolding model (GGUM); (b) to compare the efficacy of different GGUM anchor-item
designs and develop empirically based guidelines for practitioners. A Monte Carlo study was
conducted to compare the efficacy of three anchor-item designs in vertical and horizontal linking
scenarios. The authors found that a block-interlaced design provided the best parameter recov-
ery in nearly all conditions. The implications of these findings for concurrent calibration with
the GGUM and practical recommendations for pretest designs involving ideal point computer
adaptive testing (CAT) applications are discussed.
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Pretesting large pools of items with large samples of respondents is time-consuming, expensive,

and may be seen as so burdensome by respondents that data quality is jeopardized. A common

pragmatic solution is to divide item pools among pretest groups and use concurrent calibration

strategies (e.g., Bock & Zimowski, 1997) with anchor items to put parameter estimates on a

common scale. Concurrent calibration using anchor items has proven to be an effective alterna-

tive to separate calibration and linking for developing large item banks based on its parameter

estimation accuracy (e.g., Hanson & Béguin, 2002; Kim & Cohen, 2002). In principle, estima-

tion methods that have proven effective with dominance item response theory (IRT) models,
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such as the three-parameter logistic (3PL) model, should also lead to accurate parameter recov-

ery with ideal IRT point models, but surprisingly little research has been devoted to this issue.

Unlike dominance models, ideal point models allow non-monotonic item response functions

(IRFs) because they assume a respondent endorses or agrees with an item only if he or she is

located ‘‘near’’ an item on the trait continuum. That is, the probability of endorsement decreases

as the distance between a respondent’s location (i.e., trait level) and an item’s location increases.

The generalized graded unfolding model (GGUM; Roberts, Donoghue, & Laughlin, 2000) is

perhaps the most widely used ideal point model in research and practice settings (e.g., Carter,

Guan, Maples, Williamson, & Miller, 2015; Drasgow et al., 2012; Stark et al., 2014). Previous

studies examining parameter recovery with the GGUM have exclusively focused on single-

group estimation (e.g., de la Torre, Stark, & Chernyshenko, 2006; Roberts et al., 2000; Roberts

& Thompson, 2011), and multi-group data have been dealt with only using separate calibration

and linking strategies (e.g., Carter & Zickar, 2011; Koenig & Roberts, 2007; Seybert, Stark, &

Chernyshenko, 2013). The authors questioned whether concurrent calibration would be an alter-

native strategy for multi-group analysis with the GGUM, given the ‘‘tradeoffs’’ that sometimes

occur between delta and tau parameters due to indeterminacies (Seybert & Stark, 2012).

Moreover, the authors wanted to know what would be the most effective anchor-item design for

GGUM multi-group estimation if software could be developed.

The current study describes research leading to the development of Markov chain Monte

Carlo (MCMC) concurrent calibration software for the GGUM and a simulation study that

examined the accuracy of item and person parameters recovery under various conditions,

including different anchor-item designs and respondent subpopulations in horizontal and verti-

cal linking scenarios. MCMC estimation was chosen because it does not require the compli-

cated derivatives associated with marginal maximum likelihood (MML) methods, and standard

errors can be computed readily from MCMC output across iterations (e.g., Patz & Junker,

1999). Before describing the MCMC algorithms and the simulation study, the GGUM ideal

point IRT model and concurrent calibration with various anchor-item designs are reviewed.

GGUM

Roberts et al. (2000) developed the GGUM for dichotomous and ordered polytomous responses.

Like other ideal point models, the GGUM assumes the probability of a positive (agree) response

decreases as a function of the distance between a person and an item. Letting ui represent a

respondent’s trait level or standing on the trait continuum and dj represent the location or extre-

mity of an item on that continuum, then the probability of respondent i endorsing item j is high-

est when ui = dj, and the probability decreases as ui � dj

�� �� increases. More specifically, GGUM

response probabilities are given by the following equation:

P Zj = zjui

� �
=

exp aj z ui � dj

� �
�
Pz
k = 0

tjk

� �	 

+ exp aj Mj � z

� �
ui � dj

� �
�
Pz
k = 0

tjk

� �	 


PCj

w = 0

exp aj w ui � dj

� �
�
Pw
k = 0

tjk

� �	 

+ exp aj Mj � w

� �
ui � dj

� �
�
Pw
k = 0

tjk

� �	 
 ,

ð1Þ

where

Zj = an observed response to the jth item with z = 0, 1, 2, . . ., Cj

ui = the location of the ith respondent’s location on the latent continuum

aj = the discrimination of jth item
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dj = the location of jth item on the latent continuum

tjk = the location of the kth subjective response category threshold of the jth item

z = 0 represents the strongest level of disagreement

z = Cj represents the strongest level of agreement for the jth item

Mj = 2 Cj + 1, and w is a convenient index of summation.

The reader is referred to Roberts et al. (2000) for more details about the GGUM.

For illustration, Figure 1 presents GGUM IRFs (i.e., expected value functions) for two four-

option polytomous items. The first item has a discrimination parameter a = 2, location parameter

d = 0, and category threshold parameters, t1 = 21.8, t2 = 21.1, t3 = 20.5. The second item has

the same delta and tau parameters but a = 0.5. The location of the peak on the latent trait conti-

nuum is determined by the location parameter d. In this example, d = 0 for both items, indicating

that the items reflect intermediate or moderate levels of the latent trait. In accordance with ideal

point assumptions, respondents possessing intermediate trait levels have the highest probability

of agreement. That is, the IRFs peak at u� dj j, which leads to unimodal, bell-shaped curves.

Note also that Item 1 has a taller and more peaked IRF than Item 2. As explained by Roberts

et al. (2000), the steepness or flatness of IRFs depends on the item discrimination parameter as

Figure 1. Item response functions (IRFs) of the generalized graded unfolding model (GGUM) for
polytomous four-option items.
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well as the distance between subjective response category thresholds (Roberts et al., 2000).

Here, Item 1 has a larger discrimination parameter (a = 2 vs. a = 0.5), which leads to a steeper

IRF.

Concurrent Calibration and Anchor-Item Designs

Over the past few decades, various data collection methods and statistical methods have been

proposed to equate tests. The non-equivalent group with anchor test (NEAT) design is widely

used in large-scale assessment. Under a NEAT design, two forms are administered in two dif-

ferent populations, and the forms are ‘‘linked’’ via a common set of anchor items. Several pos-

sible anchor-item designs have been proposed (Garcı́a-Pérez, Alcalá-Quintana, & Garcı́a-Cueto,

2010; Petersen, Kolen, & Hoover, 1989; Vale, 1986). Three anchor-item designs considered in

this research are shown in Figure 2. The situation demonstrates three groups with set(s) of

anchor items. In a standard anchor design, as displayed in Figure 2(a), each pair of forms admi-

nistered to groups of respondents is separately anchored. In other words, two different sets of

anchor items are administered to Groups 1 and 2 and Groups 2 and 3, respectively. Figure 2(b)

displays a common-item anchor design. In this design, a single set of anchor items is adminis-

tered to all three groups. Finally, as shown in Figure 2(c), block-interlaced anchor design sets

the scale of measurement using a cyclical approach involving three distinct sets of anchor items

for Groups 1 and 2, Groups 2 and 3, and Groups 3 and 1.

In concurrent calibration, item parameters are estimated simultaneously using a combined

data set, with responses to the items that were unique to each group treated as missing for

respondents that did not receive them. The anchor items establish the metric and eliminate the

need for a subsequent linear transformation to put all the parameters on a common scale and

make the forms interchangeable. Latent trait difference among the groups receiving the differ-

ent forms can be examined by designating one group as a reference group, which is typically

Figure 2. Sketch of data array for three anchor-item designs: (a) two sets of anchor items administered
to Groups 1 and 2 and Groups 2 and 3, respectively, (b) a single set of anchor items administered to all
groups, (c) similar to (a), except Groups 1 and 3 have an additional set of anchor items.
Note. Highlights are anchor items.
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assumed to have a standard normal trait distribution, and freely estimating the mean and var-

iance of the trait distributions in the groups receiving the other forms.

To date, researchers have examined the performance of concurrent calibration under domi-

nance IRT models (e.g., Hanson & Béguin, 2002; Kim & Cohen, 1998; Petersen, Cook, &

Stocking, 1983). However, for ideal point IRT models, no multi-group estimation software has

been developed and released. Consequently, options for concurrent calibration have been lim-

ited for practitioners and applied researchers seeking to develop large item banks or alternate

forms. The purpose of this research, therefore, was to develop an MCMC concurrent calibration

program for the GGUM and evaluate the effectiveness of different anchor-item designs, via a

Monte Carlo study, to provide guidance and recommendations. The next section describes the

simulation study details and estimation procedures.

Method

Simulation Conditions

A simulation study was conducted to examine parameter recovery with different anchor-item

designs and respondent subpopulations in horizontal and vertical linking scenarios. Four inde-

pendent variables were manipulated: three anchor-item designs (standard, common-item, and

block-interlaced); four samples size per group (100, 200, 400, and 800); two subpopulation trait

distributions—three equivalent groups with N(0, 1), a base group with N(0, 1), and two non-

equivalent groups with N(20.5, 1); and two data types (dichotomous and polytomous four-

option). There were a total of 3 3 4 3 2 3 2 = 48 conditions, with 50 replications per condi-

tion. (Note that for the conditions involving a sample size of 800 per group, only 30 replications

were run due to long runtimes.)

Anchor-item design. Concurrent calibration with respondents from different subpopulations

requires anchoring items to establish a common metric for the parameter estimates (Garcı́a-

Pérez et al., 2010; Kolen & Brennan, 2014). In this study, it was assumed that three groups of

respondents were administered unique 20 items with subsets of items in common (anchor

items). As shown in Figure 2, five items were used for anchoring between two groups. In the

standard design conditions, the last five items for Group 1 were the same as the first five items

for Group 2 and similarly for Groups 2 and 3. In the common-item design conditions, the first

five items were common to each group. Finally, the block-interlaced design incorporated a

‘‘circular’’ anchoring approach, where the last five items for one group served as the first five

items for the next group, with the last five items for Group 3 being the same as the first five

items for Group 1, thus completing the circle 1-2-3-1. Note that total numbers of anchor items

for the block-interlaced, standard, and common-item designs are 15, 10, and 5, respectively.

Sample size. Each form was administered to a different subpopulation of respondents, with the

number respondents per group set at 100, 200, 400, or 800; thus the total sample sizes for con-

current calibration were 300, 600, 1,200, and 2,400, respectively. Note that a total sample of

300 is small for the GGUM, considering that previous single-group GGUM estimation studies

have suggested that 400 or more respondents are required for accurate item parameter recovery

(e.g., de la Torre et al., 2006; Roberts & Thompson, 2011). The large-sample conditions were

included in this study because GGUM single-group MML item parameter estimation has been

shown to improve substantially as sample size increases to 750 (Roberts, Donoghue, &

Laughlin, 2002). Moreover, in the large-sample conditions, the efficacy of the various anchor-

item designs should be most apparent.
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Subpopulation trait distribution. Two subpopulation scenarios were considered in this study

(equivalent groups vs. non-equivalent groups). In the equivalent groups scenario, the respon-

dents were sampled from the same population distribution, which was assumed to be N(0, 1).

In the non-equivalent groups scenario, it was assumed that the respondents from Group 1 were

sampled randomly from a N(0, 1) population, but the respondents from Groups 2 and 3 were

sampled from a different subpopulation having a N(20.5, 1) trait distribution. It is generally

known that non-equivalent group conditions pose greater challenges for item parameter estima-

tion (Kolen, 2003).

Data type. Parameter recovery was examined using dichotomous and polytomous four-option

responses. Both formats were examined here because research by Roberts and Thompson

(2011) showed that bias and standard error decrease as the number of response categories

increases.

Data Generation

Generating parameters. True item parameters for the simulation study were generated as in pre-

vious single-group GGUM estimation studies (e.g., Roberts et al., 2002; Roberts & Thompson,

2011). The location parameters (dj) were generated using an equal-spacing strategy reflecting

the Thurstonian principle of attitude scale construction (Thurstone, 1928). The generating dj

parameters ranged from 22.0 to 2.0, equally spaced on the trait continuum. The discrimination

parameters (aj) were randomly chosen from a uniform distribution ranging from 0.5 to 2. In the

equivalent groups scenario, the true person parameters (ui) for all three groups were randomly

sampled from a N(0, 1) distribution. In the non-equivalent groups scenario, the parameters for

Group 1 (the base group) were randomly sampled from a N(0, 1) distribution, but the person

parameters for Groups 2 and 3 were randomly sampled from a N(20.5, 1) distribution. The true

threshold parameters (tjk) were generated with a recursive equation as follows:

tjk�1 = tjk � 0:25 + ejk�1, for k = 2, 3, . . . , C ð2Þ

where ejk�1 represents a random error generated from a N(0, .04) distribution, and C represents

the total number of response categories. This equation was applied independently for each item,

using C = 2 and C = 4 for the dichotomous and polytomous four-option conditions, respectively.

Starting values (tjC) for the recursion involving each item were randomly generated from a uni-

form distribution (21.5, 20.5). This recursive equation produces practical threshold parameters,

and it has been used in subsequent GGUM studies (Roberts et al., 2002).

Response data generation. Using the generating item parameters described above, response data

were simulated as follows. In dichotomous conditions, a response was scored 1 if the GGUM

probability exceeded a randomly sampled uniform (0, 1) number and 0 otherwise. In the polyto-

mous conditions, a response was scored 3 if a randomly sampled uniform (0, 1) number

exceeded the sum of the GGUM probabilities for Categories 0, 1, and 2. If the random number

was less than the sum of the GGUM probabilities for Categories 0, 1, and 2 but greater than the

sum for Categories 0 and 1, then the response was scored 2, and so forth. A C++ program was

developed for this GGUM data generation.

Parameter Estimation

A multi-group MCMC algorithm was developed for GGUM concurrent calibration. Prior distri-

butions for the item parameters (aj, dj, tjk) were based on a four-parameter beta distribution,
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Beta (n, v, a, b). The four-parameter beta was selected for its flexibility; it can mimic widely

used distributions, such as the normal or lognormal, by modifying its shape (a, b) and range (n,

v) parameters (Zeng, 1997). As in de la Torre et al. (2006), the four-parameter beta priors for

alpha, delta, and tau, respectively, were {1.5, 1.5, .25, 4}, {2, 2, 25, 5}, and {2, 2, 26, 6}. For

the person parameters (ui), a N(0, 1) prior was used.

On each replication, item and person parameters were estimated using Metropolis–Hastings

within Gibbs sampling (Patz & Junker, 1999), implemented in an Ox (Doornik, 2009) computer

program. The initial values were generated separately for each parameter. The initial alphas

were fixed at 1 across all items and groups of respondents. The initial deltas were generated

using the method described by Roberts and Laughlin (1996). Applying that method separately

for each respondent group produced three sets of deltas for the anchor items, which were aver-

aged to obtain a single initial delta for each item to start the concurrent calibration. The initial

values for tau parameters were randomly selected from a uniform (22, 21) distribution. For

person parameters, the initial values were randomly sampled from a N(0, 1) distribution. A C++

program was developed to generate the initial parameter values as described above.

Item and person parameters were estimated by averaging the posterior samples after a burn-

in period. Standard errors of parameter estimates were obtained by computing the standard

deviation of the posterior samples. A total of 20,000 samples were drawn from each of five

independent chains after a burn-in period of 10,000 iterations. The number of iterations and

burn-in period were determined based on a convergence check by Gelman–Rubin’s R̂ statistics

(Gelman & Rubin, 1992). R̂ statistics were computed for item parameters, and R̂ values less

than 1.2 were viewed as a practical indication of convergence (de la Torre, Ponsoda, Leenen, &

Hontangas, 2012).

Examining Estimation Accuracy

For GGUM item parameters, root mean square error (RMSE) and bias statistics were computed

to investigate the accuracy of parameter estimates across simulation conditions. RMSE and bias

statistics were calculated as follows:

RMSE =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
i

m̂i � mið Þ2

I

vuut
, ð3Þ

Bias =

P
i

m̂i � mi

I
, ð4Þ

where, mi is the generating parameter, m̂i is the estimated parameter, and I is the total number

of items or respondents. RMSE and bias were computed for each replication, and then averaged

across replications. In addition, posterior standard deviations (PSD) for each parameter estimate

were computed for item parameters. PSD estimates were calculated by taking the square root of

the variance of the posterior samples after burn-in. For person parameters, correlations (CORR)

between generated and estimated latent trait parameters in addition to RMSE and bias were

calculated.

Results

Table 1 presents the average RMSEs, and biases for the individual simulation conditions to

allow an examination of overall GGUM parameter recovery with the three anchor-item designs.
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In addition, Figure 3 shows histograms for average PSD estimates of the GGUM concurrent

calibration with three anchor-item designs, organized by levels of simulation conditions. For

the polytomous four-option data type, note that tj1, tj2, and tj3 were averaged to allow direct

comparisons with the dichotomous findings.

The detailed results in Table 1 and graphical representations in Figure 3 show that the block-

interlaced design consistently produced better parameter recovery in all conditions. For instance,

the block-interlaced design yielded marginal RMSEs for alpha, delta, and tau were .28, .40, and

.44, respectively, across conditions, whereas the corresponding values were .31, .41, and .47 for

the standard design and .31, .49, and .48 for the common-item design. Moreover, as shown in

Figure 3, results by levels of simulation conditions indicate that the block-interlaced design

yielded smaller PSD than the other two anchor-item designs. As expected, the accuracy of para-

meter estimation with GGUM concurrent calibration increased as sample size increased. The

results for anchor-item design were the same across sample sizes, with the block-interlaced

design performing slightly better in each case. Overall, parameter estimates of the GGUM were

recovered well with sample sizes of 800 per group (e.g., RMSEs for alpha, delta, and tau were

.13, .18, and .24 for the block-interlaced design in the equivalent group polytomous condition).

Between the equivalent and non-equivalent group conditions, the non-equivalent group showed

relatively higher RMSEs and Bias of parameter estimates as shown in Table 1. The effect of

anchor-item designs, described above, was observed in both cases. Furthermore, as shown in

Table 1, polytomous data led to better concurrent calibration results, a finding which is consis-

tent with single-group estimation research by Roberts et al. (2002) and Roberts and Thompson

(2011). Although not shown in Table 1 due to space limitations, the CORR of theta parameters

ranged from .97 to 1 across simulation conditions.

Table 2 displays the extent to which the mean and standard deviation of the subpopulation

trait distributions were recovered. The reported values are the estimated subpopulation means

and standard deviations for Groups 2 and 3 and their corresponding RMSEs. Note that by

Figure 3. Average PSD estimates of GGUM concurrent calibration with three anchor-item designs.
Note. PSD = posterior standard deviation; GGUM = generalized graded unfolding model.
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reporting the actual parameter estimates, the bias results are apparent. Overall, all anchor-item

designs produced results close to the expected values, N(0, 1) for equivalent group conditions

and N(20.5, 1) for non-equivalent conditions. For example, in the non-equivalent dichotomous

400 per group condition, population means averaged across Groups 2 and 3 were 2.34, 2.51,

and 2.52 for the common-item, standard, and block-interlaced designs, respectively; and the

corresponding standard deviations were .93, .97, and .93.

Discussion

This study sought to expand the options available to practitioners by developing an MCMC

program for the GGUM concurrent calibration and exploring the efficacy of different anchor

designs in conjunction with subpopulation trait distributions, sample sizes, and data types. The

key findings were as follows. First, parameters of the GGUM were estimated well with samples

of 800 per group, which is consistent with previous studies (e.g., Roberts et al., 2002). Second,

block-interlaced design performed best—yielding the smallest RMSE, bias, and PSD values

across conditions. Because block-interlaced design involves the largest total number of anchor

items, this finding suggests that using more sets of anchor items can yield more accurate para-

meter estimates with multiple forms. Third, means and standard deviations of trait distributions

in Groups 2 and 3 were well-recovered with all anchor designs, which indicates that the algo-

rithm developed for this study provides an effective alternative to separate calibration and link-

ing with the GGUM (the program may be obtained from the authors upon request).

Given that existing software (GGUM2004; Roberts, Fang, Cui, & Wang, 2006) also allows

for limited concurrent calibration, the authors additionally compared the performance of con-

current calibration for GGUM2004, which performs MML estimation, and the developed

MCMC program. Because GGUM2004 is limited to a maximum of 2,000 respondents, a three-

group concurrent calibration with a sample size of 400 per group (N = 1,200) was initially con-

ducted. However, GGUM2004 did not converge due to missing values, so a two-group concur-

rent calibration using a sample size of 800 per group (N = 1,600) was conducted. The results

are presented in Table 3. The authors found that the developed MCMC program outperformed

MML for the conditions where distributions of multiple groups were different and data were

coded dichotomously. For example, for the dichotomous non-equivalent group conditions,

RMSEs of alpha, delta, and tau parameters were .18, .76, and .73 for MML, whereas the corre-

sponding values were .16, .32, and .35 for MCMC. This occurs primarily due to the absence of

prior distributions in the MML. In general, dichotomous data often yield ‘‘trade-off’’ estimates

of delta and tau parameters using MML. That is, the response probability of the GGUM is vir-

tually unchanged even though the parameters have drifted away from their true values. More

extreme dichotomous items and smaller sample sizes yield more substantially biased estimates

using MML (Roberts & Thompson, 2011). MCMC generally performs better than MML with

dichotomous data for this reason. However, as was shown by Roberts and Thompson (2011),

marginal maximum a posteriori (MMAP) estimation may outperform MCMC. In addition,

GGUM2004 assumes the population trait distribution is N(0, 1) for all respondent groups, and

this could lead to biased estimates with concurrent calibration when the trait distributions differ

across groups. The current MCMC program provides a more general alternative for estimation

that allows means and standard deviations of trait distributions to vary across groups receiving

alternate forms, in addition to allowing a user to manipulate the prior distributions on all

GGUM item parameters.

This study had some limitations. Only 50 replications were run in most conditions (and 30

in some) due to long MCMC runtimes. In this study, one replication with 30,000 iterations took

90 min with a total sample size of 300 and 50 items on a 3.0-GHz personal computer, and
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longer runtimes can be expected if substantially larger samples or more items are used. At pres-

ent, MML or MMAP concurrent calibration methods would be much more time efficient

(Roberts & Thompson, 2011). In addition, this study did not manipulate the standard deviation

of theta in the non-equivalent group conditions. Future studies could examine the effects of dif-

ferent standard deviations of respondent groups, which is perhaps more common in work or

educational settings. Finally, the concurrent calibration method may not be an ideal approach

for some practical situations. For example, in a situation where a researcher can access an item

parameter bank, but not the responses used to calibrate items for that bank, it is more efficient

to calibrate new items in a single sample along with a few anchors from the bank.

Nonetheless, the results of this study provide valuable information about how to structure

pretest data collections with the GGUM, and possibly other ideal point IRT models, which are

being considered for large-scale testing programs. The authors hope the concurrent calibration

software developed for this study will prove useful to applied researchers and expand research

possibilities with ideal point IRT models.
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