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Abstract

When tests consist of a small number of items, the use of latent trait estimates for secondary
analyses is problematic. One area in particular where latent trait estimates have been
problematic is when testing for item misfit. This article explores the use of plausible-value impu-
tations to lessen the severity of the inherent measurement unreliability in shorter tests, and
proposes a parametric bootstrap procedure to generate empirical sampling characteristics for
null-hypothesis tests of item fit. Simulation results suggest that the proposed item-fit statistics
provide conservative to nominal error detection rates. Power to detect item misfit tended to
be less than Stone’s x2� item-fit statistic but higher than the S�X 2 statistic proposed by
Orlando and Thissen, especially in tests with 20 or more dichotomously scored items.
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Item response theory (IRT) is a model-based statistical analysis paradigm useful for understand-

ing response data in educational and psychological tests (Hambleton & Swaminathan, 1985).

Models are constructed based on prior knowledge about the theoretical response processes that

the items are expected to follow. These hypothesized IRT models are then fitted to suitable sam-

ple data, drawn from the population from which the test should be calibrated, to obtain estimates

of the respective population parameters. However, as with all statistical models, the degree to

which IRT models are useful for drawing inferences is contingent upon the degree of fit with

the data. Misfitting models will generally lead to biased parameter estimates or inappropriate

inferences, which may be especially bad in IRT applications because models are often formed

so that subsequent latent trait estimates can be obtained more accurately than traditional scoring

methods (Lord, 1980). Therefore, it is important to investigate goodness-of-fit techniques to

evaluate whether the selected models adequately reflect the observed data.

Evaluating the goodness-of-fit for IRT models can take on many different forms. For

instance, models may be evaluated based on whether residual covariation (i.e., local depen-

dence) exists between item pairs both locally (e.g., Chen & Thissen, 1997) and globally (e.g.,

Maydeu-Olivares & Joe, 2005). Because pairwise covariation is the focus of local dependence–

based measures, these IRT-based fit statistics have similar interpretations to the fit statistics and
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residual diagnostic methods common in structural equation modeling (Bollen, 1989).

Alternatively, and arguably more importantly, individual items may be tested to determine

whether the select item response functions appropriately reflect the underlying functional rela-

tionship with the latent traits (e.g., Bock, 1972; Orlando & Thissen, 2000; Yen, 1981). This

class of fit statistics evaluates whether a given item response function is underfitting the func-

tional form present in the response data, thereby misrepresenting the true functional variability.

In this article, the authors propose a simple yet novel procedure that addresses the inherent

measurement imprecision when computing the two-step item-fit statistics proposed by Bock

(1972), Yen (1981), and McKinley and Mills (1985). The proposed statistics use plausible-value

(PV) imputations (Mislevy, 1991) and parametric bootstrap techniques (Hope, 1968) to account

for uncertainty in the latent trait estimates and sampling variability present in shorter tests and

smaller sample sizes. Monte Carlo simulations are used to evaluate the Type I error rates under

a variety of testing conditions to determine whether the error rates are influenced by sample

size, test length, and complexity of IRT models fitted to dichotomous response data. Finally,

power rate estimates are compared with the existing Q1 (Yen, 1981), S � X 2 (Orlando &

Thissen, 2000), and x2� (Stone, 2000) statistics by investigating simulation conditions adapted

from the Monte Carlo simulation conditions investigated by Orlando and Thissen (2000, 2003)

for dichotomous IRT models.1

Item-Fit Statistics for IRT Models

Determining how well an item response model fits the sampled data generally requires the com-

parison between model-implied expected values and observed item response characteristics for

each item of interest. To accomplish this task, researchers such as Bock (1972), Yen (1981),

and McKinley and Mills (1985) have proposed a family of two-step methods for investigating

item misfit. These two-step approximations involve the computation of individual estimates of

the latent trait values (u) to be used to construct expected counts of responses. These expected

counts are then compared with commensurate counts of observed data, and the discrepancy

between the values is typically compared with a theoretical x2 distribution.

Before introducing further details regarding the family of two-step item-fit statistics, it is first

important to understand how û estimates are typically obtained in practice. For each response

pattern y containing J elements (one element for each item), the posterior probability of u is

defined as

P ujy, ĉ
� �

=
P yju, cð ÞP uð ÞR
P yju, cð ÞP uð Þ , ð1Þ

where ĉ represents a vector of item parameters, P(yju, c) is the likelihood function implied by

the IRT probability functions and observed response pattern, and P(u) is the prior distribution of

u (in many IRT applications, this is typically based on a N (0, 1) density function). Computing

the mean of Equation 1 (using numerical integration techniques) leads to the expected a poster-

iori (EAP) estimate of u, while locating the mode provides a maximum a posteriori (MAP) esti-

mate (Bock & Mislevy, 1982). When the prior distribution of u is not assumed to be known,

then P(u) = 1 for all u values, and maximizing Equation 1 leads to the maximum-likelihood

(ML) estimate of u. Finally, the associated sampling variability of the estimates is typically

expressed as the standard deviation (or, less formally, the standard error) of Equation 1 for EAP

estimates and as (� ∂2

∂2u
ln½P(ujy, c)�)�1=2 for the ML or MAP estimates (Bock & Mislevy,

1982).
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Turning now to the two-step item-fit statistics for IRT models, the process required to obtain

observed and expected item response counts is as follows:

1. Fit the select IRT models to an N3J matrix of response data, typically with ML or

MAP estimation techniques (e.g., Bock & Aitkin, 1981), to obtain a vector of item-

parameter estimates ĉ.

2. Obtain estimates of ûi for each of the N item response patterns by setting c = ĉ in

Equation 1. The collection of these estimates can be expressed as the vector bu.

3. Rank all the bu elements from lowest to highest and partition the sorted vector into B

discrete subgroups with nb participants in each subgroup. Analogously, the associated

item responses for the jth item of interest are assigned to their subgroup according to

where the associated ûi values were assigned.

4. For each distinct bundle b, the number of individuals who answered the kth response

category is obtained for all K categories (Obk). The expected count for the bth bundle

and kth category (Ebk(bu)) is obtained by computing nb times the item probability

function given a u location representing the central tendency of the bth bundle of ûi

terms (typically the mean or median of the latent trait estimates).

This procedure generates B discrete sets of observed and expected response counts for each bun-

dle and response category combination for a given item under investigation. When testing multi-

ple items in the sample data, the computation and sorting of bu, as well as the sorting of the rows

in the sampled data, need only be performed once.

Bock (1972), Yen (1981), and McKinley and Mills (1985) have argued that the discrepancy

between Obk and Ebk(bu) can be evaluated with Pearson’s and likelihood-ratio-based x2 tests.

For example, Yen’s Q1 item-fit statistic can be expressed as

Q1 = Q1
bu� �

=
X10

b = 1

XK�1

k = 0

Obk � Ebk
bu� �� �2

Ebk
bu� � , ð2Þ

which is a variant of Pearson’s x2 test. The Q1 statistic fixes the number of subgroups to 10 and

uses the mean of the û estimates within each subgroup as a representation of the bundle’s central

tendency. Bock’s version of this fit statistic slightly differs from Q1 in that it allows the size of

B to vary by constructing the subgroups according to fixed nb sizes, and uses the median of the

û estimates instead of the mean. In this article, we will only focus on the Q1 variant of Pearson’s

x2 test; however, the methods presented will also be applicable to Bock’s implementation, as

well as McKinley and Mills’s (1985) likelihood-ratio-based G2 statistic.

Limitations of Item-Fit Statistics Based on û Estimates

Several authors have emphasized that caution should be used when interpreting the two-step

family of item-fit statistics. The two-step item-fit statistics are generally influenced by the

number of subgroups that have been constructed (Reise, 1990), the precision with which the

item-parameter estimates are obtained (Orlando & Thissen, 2000), whether the model-implied

expected values are too small (Agresti, 2002), and the consequences of replacing expected val-

ues with values implied by prediction estimates (i.e., using Ebk(bu) as a proxy for Ebk(u);

Agresti, 2002). Furthermore, the question of which û estimator to use also influences the results

(Chalmers, 2016a; Chalmers, Counsell, & Flora, 2016). Using prior distributions to obtain

Bayesian estimates introduces a bias toward the mode of the prior distribution, particularly at
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the extreme ends of the latent trait distribution (Bock & Mislevy, 1982), while omitting a prior

distribution (e.g., ML estimation) will tend to have the exact opposite effect.

Most importantly, however, Stone and Hansen (2000) stressed that ‘‘the problem with the

goodness-of-fit statistics [based on u estimates] may be due to the precision or uncertainty with

which u is estimated’’ (p. 986). To elaborate on this statement, and assuming for the moment

that ĉ = c, the precision with which û values are obtained is intimately related to the accuracy

with which individuals are correctly classified into their population-based subgroups. This result

implies that the larger the imprecision in û, the less likely the individuals will be correctly clas-

sified. A subtle consequence of this feature is that individuals are classified more accurately as

the number of items in the test increases; in the limiting case, where lim
J!‘

û = u, each participant

will be correctly classified in their respective population subgroup. Clearly, however, this prop-

erty is not useful if the length of the test is too small or if ĉ is an inaccurate representation of c.

The simulation study investigated by Orlando and Thissen (2000) highlights the severity of

using these two-step item-fit statistics in shorter tests. In their simulation study, the authors

investigated Type I error rate estimates (at a = :05) for G2 and Q1 when studying the 1-, 2-, and

3-parameter logistic models (1PLM, 2PLM, and 3PLM, respectively; Hambleton &

Swaminathan, 1985) for tests of length 10, 40, and 80 with N = 1, 000. The authors reported that

when the test length was 10, the Type I error rate estimates for G2 and Q1 were all greater than

0.95, regardless of the IRT model studied. Furthermore, even when the test length was

increased to 40 items, the error rates were still unacceptably liberal (ranging from 0.14 to 0.37,

where rates were higher for G2). Only when the test length reached 80 items were the error

rates reasonably close to the nominal a for the Q1 statistic; however, G2 still tended to demon-

strate liberal error detection rates.

Generating Uncertainty With PV Imputations

As is clear from the previous section, sampling variability of the û estimates is not included in

the computations of the two-step item-fit statistics. However, the imprecision in û estimates for

secondary analyses is not a new concept in the psychological measurement literature. In particu-

lar, measurement precision issues have been emphasized in large-scale assessment applications,

such as National Assessment of Educational Progress (NAEP), where a smaller number of items

are often administered. For these types of data, analysts are often interested in drawing infer-

ences regarding the distribution of u by using bu as a suitable proxy (Mislevy, 1991).

However, inferences that utilize the bu values—even those as simple as estimating the var-

iance of u—will necessarily lead to biased estimates when bu is unreliable (for further discus-

sion and examples, see Mislevy, Beaton, Kaplan, & Sheehan, 1992).

To account for the inherent measurement uncertainty in bu, Mislevy (1991) recommended

sampling from the posterior probability functions directly to obtain filled-in datasets containing

PV instantiations of the missing data elements. After complete datasets are filled in, Rubin’s

(1987) imputation methodology can be used to aggregate the sampling variability due to the

missing data components. More specifically, after M complete datasets are constructed via

imputation methods, these datasets can be used within M identically formed secondary analy-

ses, and the variance components can be combined using Rubin’s data aggregation formulae.

Mislevy’s (1991) important insight in the development of PV imputations in IRT applica-

tions was to use the model-implied posterior response functions directly as a means to quantify

uncertainty about the parameter estimates. Adopting this methodology for the û estimates, suit-

able samples can be obtained from Equation 1 to obtain M independent PV sets from the poster-

ior distribution. Although there are several algorithms that can be used to obtain samples from
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these posterior distributions, the sampling form can be greatly simplified if the posterior distri-

butions can be reasonably approximated by a Gaussian distribution (e.g., see Chang & Stout,

1993). If this assumption is viable, then PVs can be obtained by drawing from all N response

patterns to obtain a complete set of PVs, u�.

PV Imputations for Item-Fit Statistics

Returning now to the topic of item misfit, Stone and Hansen (2000) have asserted that ‘‘. . . if

the uncertainty with which u is estimated can be accounted for, a chi-square goodness-of-fit sta-

tistic could be used with shorter tests’’ (p. 986). As is clear from the description above, the use

of PV imputations has been introduced precisely to account for measurement uncertainty in each

û estimate for secondary analyses. Therefore, PV imputations may provide a simple but effec-

tive means to improve the two-step item-fit statistics, particularly in shorter tests.

After obtaining M-PV sets of latent trait estimates u�1, u�2, . . . , u�M , the PV version of Q1 can

be expressed as

PV� Q1 =
Q1 u�1
� �

+ Q1 u�2
� �

+ � � � + Q1 u�M
� �

M
: ð3Þ

The df associated with PV� Q1 has a similar form, where dfPV = (df1 + df2 + � � � + dfM )=M .

This measure represents the average of the Q1 statistic and their associated df given the M-inde-

pendently drawn u� sets. An average df estimate is used to control for instances where the Q1

statistic has model-implied expected values that are too small, resulting in bundles that should

be collapsed or omitted. According to these equations, as M ! ‘, the associated sample esti-

mates will converge to the population statistic expressed in Equation 3 with degrees of freedom

dfPV. When investigating this measure empirically, it has been found that as few as 30 imputa-

tions are required to obtain sufficient stability in the p values; however, more imputations can

be drawn, if desired.

The benefit of the PV imputation variant of Q1 is that it explicitly includes the imprecision of

the û estimates as a source of variation in the computations. In practice, there are two scenarios

that make PV� Q1 appealing for detecting item misfit. First, when the test length approaches

‘, all associated cSE(û)! 0; hence, each draw will be exactly equal to their expected value

(i.e., are equal to the corresponding EAP values). This implies that PV� Q1 will have the same

asymptotic conclusions reached when using point estimates of u in longer tests when the item-

parameter estimates are accurate. Next, in situations where y contains few responses, the PV

imputations will accommodate for the measurement uncertainty because the imputed values

have a larger amount of sampling variation, thereby forcing the individuals to be stochastically

classified into a wider number of subgroups. This feature is important because the upward bias

borne from using point estimates of u can be largely avoided.

In theory, the PV� Q1 item-fit statistic should perform better at controlling Type I error

rates than Q1 in shorter tests due to averaging over multiple samples with comparable misclas-

sification accuracies. Unfortunately, however, the distribution of PV� Q1 will not be exactly

x2 with degrees of freedom dfPV in smaller sample sizes and shorter tests. While PV imputa-

tions generally address the issue of measurement precision in the û estimates within a given

sample, they do not address the problem of treating the ĉ estimates as the population para-

meters c (Tsutakawa & Johnson, 1990). The next section focuses on one possible method to

account for sampling variability in the item-parameter estimates.
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Parametric Bootstrap to Approximate the Sampling Distribution

To obtain a more appropriate sampling distribution for PV� Q1, a parametric bootstrap tech-

nique (also known as Monte Carlo sampling; Hope, 1968) is adopted to approximate the null

sampling distribution (Efron & Tibshirani, 1998). The parametric bootstrap involves construct-

ing independent random samples implied by the population generating functions, computing the

statistic of interest on each respective sample, and comparing the empirical distribution of this

statistic with the value obtained from the original dataset.

For the current application regarding PV� Q1, the parametric bootstrap algorithm is imple-

mented as follows:

1. Fit the select IRT models to the original dataset and obtain the associated p value for

the PV� Q1 statistic. Call this value pPV�Q1
.

2. Next, draw N independently distributed u values (where N is the sample size of the

original dataset) from the latent trait distribution that matches the original modeling

assumptions (typically, u;N (0, 1)).

3. Using the parameter estimates from the original fitted model, as well as the newly

drawn u values, generate a new sample dataset.

4. Using the new dataset, fit the same IRT models to obtain new parameter estimates.

5. Compute PV� Q1 and the associated p value for this new model, and store the p

value into the vector pPV�Q1
.

6. Repeat Steps 2 to 5 R times until a sufficient number of simulated datasets have been

analyzed.

After the parametric bootstrap scheme is complete, the pPV�Q1
vector can be compared with

pPV�Q1
to determine how likely the original p value was compared with an empirical sample of

values where the null hypothesis is exactly true. Specifically, the empirical p value estimate is

obtained with the formula:

PV� Q�1 =
1 + I pPV�Q1

.pPV�Q1

� �
1 + R

,

where I(:) is an indicator function that computes the frequency with which pPV�Q1
is greater

than the Monte Carlo simulated p values (Davison & Hinkley, 1997). Note that the proposed

parametric bootstrap procedure uses the p values rather than the observed PV� Q1 values. The

authors recommend using p values to account for the possibility of omitting bundles with small

expected values within the simulated datasets (as well as in the original observed statistic).

When bundles are removed, the magnitude of PV� Q1 will vary as a function of the number of

bundles remaining, while the p values will be implicitly adjusted through the changes in the df.

Similarity to Stone’s x2� Statistic

The proposed PV imputation statistics share some similarity to the x2� measure described by

Stone (2000). Stone argued that the uncertainty in û can be addressed by comparing a model-

implied table of pseudo-counts created in the ‘‘Expectation’’ step of the Expectation–

Maximization (EM; see Bock & Aitkin, 1981) algorithm with similarly constructed expected

values at the associated quadrature nodes. By integrating over the latent trait distribution to

compute pseudo-count terms over a range of quadrature nodes, and comparing these values

with model-implied expected values at the same quadrature node locations, a variant of
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Pearson’s x2 measure (termed x2�) could be computed. Stone (2000) further noted that the val-

ues in the expected table of pseudo-counts are unfortunately not independent; therefore, the dis-

tribution of x2� is not strictly x2 distributed with the usual df. To account for this effect, Stone

(2000) implemented a Monte Carlo simulation strategy to obtain the empirical sampling varia-

bility of the observed x2� values.

The PV� Q1 statistic has a similar purpose to x2� in that it is developed to account for

uncertainty in the û estimates by utilizing information from the posterior probability functions.

Both approaches also require Monte Carlo sampling techniques to better approximate the

respective sampling distributions, and therefore tend to be more computationally demanding.

However, where these approaches differ is the manner in which the posterior information about

û is captured. PV� Q1 focuses on information from the N independent posterior probability

functions for each sampled response pattern to account for the associated measurement uncer-

tainty in each response pattern. The x2� statistic, on the contrary, compares model-implied

expected values with information at different quadrature locations in the table of correlated

pseudo-counts, thereby avoiding the need to classify individuals to population subgroups.

These approaches are indeed quite different because the goal of PV� Q1 is to stochastically

classify the N individuals into the population subgroups while the goal of x2� is to avoid the

need for classification altogether.

Unfortunately, one negative consequence when using quadrature nodes across a range of u

values is that small expected values are likely to arise. To avoid this issue, Stone (2000) sug-

gested that smaller ranges of u should be used to reduce the likelihood of small expected values

(e.g., between �2 � u � 2); hence, the full range of u is not used to detect the item misfit. In

practice, this property could be problematic because item misfit may only be detected based on

the information at the extreme ends of the u distribution (e.g., when fitting a 2PLM to data gen-

erated from a 3PLM; cf. Orlando & Thissen, 2000). In addition, the range of u may require fur-

ther modifications to avoid sparse categories, depending on the total sample size or distribution

of the response patterns. Unfortunately, however, the range of the u quadrature nodes must be

selected a priori and cannot be varied within each Monte Carlo sample.

Monte Carlo Simulations

To investigate the properties of PV� Q1 and PV� Q�1, and to contrast these statistics with Q1,

x2�, and the S � X 2 statistic, Monte Carlo simulations based on the designs investigated by

Orlando and Thissen (2000, 2003) were constructed. The reason for basing the simulations on

these two studies in particular was to reinvestigate whether Q1 can be improved by using the

proposed augmented schemes under similar design conditions. However, certain modifications

were made to make the presentation slightly more consistent. In particular, the completely

crossed simulation design presented by Orlando and Thissen (2000) was not utilized because

the power conditions were less realistic (for a discussion of this, see Orlando & Thissen, 2003).

Instead, we investigated only the Type I error conditions from their stimulation study where the

IRT models were generated and fitted using the same 1PLM, 2PLM, and 3PLM. In addition,

we explored the item-fit statistics when the test length contained 20 items, investigated Type I

error and power rates with sample sizes of 500, and in the following power analysis simulations

we removed the N = 2, 000 conditions used by Orlando and Thissen (2003) because the authors

reported that detection rates were at or very close to 1.

Item response data were generated and analyzed using the mirt package (Version 1.17.1;

Chalmers, 2012) and customized R functions (R Core Team, 2016) while the Monte Carlo simu-

lation code was organized with the SimDesign package (Chalmers, 2016b; Sigal & Chalmers,

2016). Models were estimated using marginal MAP with the EM algorithm and terminated
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when all parameter estimates were less than |.0001| across successive EM iterations. To be con-

sistent with Orlando and Thissen (2000, 2003), EAP estimates of û were obtained for Q1 where

the prior distribution was assumed to be N (0, 1). To ensure that the Ebk(bu) values were not too

small to distort Q1 and PV� Q1, subgroups with any Ebk(bu)\2 were omitted from the computa-

tions and the df were adjusted accordingly. S � X 2 was also adjusted when expected values

were less than 1 by implementing the collapsing method described by Orlando and Thissen

(2000). With respect to PV� Q1 and PV� Q�1, 100 sets of PVs were drawn from a Gaussian

distribution with the mean and standard deviation values equal to their respective EAP and pos-

terior standard deviation estimates for each response pattern. For Stone’s x2� measure, 11 quad-

rature nodes, evenly spaced across the range �2 � u � 2 (cf. Stone, 2000), were used to

compute the table of expected pseudo-counts. Finally, a total of 1,000 parametric bootstrap sam-

ples were constructed for each of the PV� Q�1 and x2� statistics to adequately approximate the

empirical sampling distributions.

Type I Error Rates

Type I error rates were obtained by simulating and fitting data to the correct 1PLM, 2PLM, and

3PLM response functions. The 3PLM was generated using the slope-intercept form:

P y = 1ja, d, gð Þ = g +
1� g

1 + exp � au + dð Þð Þ , ð4Þ

where P(y = 0ja, d, g) = 1� P(y = 1ja, d, g). The 3PLM reduces to 2PLM when g = 0 and further

reduces to 1PLM when the a terms are constrained to be equal across all J items. In the follow-

ing simulations, all a parameters were drawn from a log-normal (0, 0:5) distribution (for 1PLM,

only one slope parameter was drawn and used for all J items), d’s from a normal (0, 1) distribu-

tion, g’s from a logit-normal (� 1:1, 0:5) distribution, and u’s from a normal (0, 1) distribution.

To ensure that models converged within a reasonable number of EM iterations, parameters

were estimated with the prior distribution functions: N (0, 1:5) for the d parameter (all models),

N (1:1, 0:6) for the a parameters (2PLM and 3PLM only), and N (� 1:1, 0:5) for the logit of

the g parameters (3PLM only).

Type I error rates were estimated by simulating each condition 200 times and obtaining the p

values for the first 10 items. Each p value was then compared with the nominal a level, and the

average number of p values less than a was computed to represent the estimated error detection

rate. Type I error rate estimates for all 24 simulation conditions are displayed in Table 1.

Simulation results. Beginning with Q1 and S � X 2, the Type I error rate estimates largely agreed

with the simulation results presented by Orlando and Thissen (2000). Tests with more items

resulted in better rates for Q1, while Q1 was influenced by sample size; specifically, smaller

sample sizes resulted in lower Type I error rates. The S � X 2 statistic also behaved relatively

well across the simulation conditions. In addition, and as noted in Orlando and Thissen’s (2003)

simulation study, S � X 2 performed inconsistently when only 10 items were fitted. We observed

the same phenomenon in our simulations, particularly when fitting the 1PLM when N = 500 and

with the 3PLM when N = 500 or 1,000. In general, the S � X 2 statistic has a tendency to be

slightly liberal in tests with only 10 items, though this effect appears to be moderated by sample

size and may disappear in larger samples.

Regarding PV� Q1 and PV� Q�1, these fit statistics were consistently either conservative or

close to the nominal a and were influenced by the type of IRT models and test length studied.

The general trend was that longer tests resulted in rates closer to the nominal a, and more com-

plex IRT models led to more conservative error rates. PV� Q�1 was much closer to the nominal
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a compared with PV� Q1 and was able to achieve reasonable error rates around 40 or more

items for all IRT models studied (according to Bradley’s, 1978, ‘‘liberal’’ Type I error criteria).

For simpler IRT models, Bradley’s (1978) criteria were achieved by PV� Q�1 using 10 items

with 1PLMs and 20 items with 2PLMs. Overall, PV� Q1 demonstrated very conservative

detection rates that will likely have a negative consequence on the power to detect item misfit,

especially in shorter tests.

Finally, x2� demonstrated Type I error rates close to the nominal a level in all conditions

studied. Based on Type I error control alone, it appears that x2� would provide the most consis-

tent performance in practice, especially compared with the competing item-fit statistics that

were investigated in this study.

Power Rates

To determine the power for detecting item misfit, the authors reinvestigated the three atypical

IRT models studied by Orlando and Thissen (2003). The respective items are labeled BAD1,

BAD2, and BAD3, where response data were generated from the models:

BAD1 =
c

1 + exp 1:7a u� b� dð Þ½ �ð Þ +
1

1 + exp �1:7a u� b½ �ð Þ ,

Table 1. Estimated Type I Error Rates for Data Generated and Fitted by the 1PLM, 2PLM, and 3PLM.

n IRT model Test length S� X2 Q1 PV� Q1 PV� Q�1 x2�

500 1PLM 10 0.083 0.798 0.004 0.037 0.044
20 0.062 0.362 0.007 0.038 0.054
40 0.059 0.140 0.008 0.039 0.055
80 0.046 0.077 0.014 0.042 0.047

2PLM 10 0.054 0.773 0.000 0.013 0.060
20 0.040 0.188 0.000 0.013 0.060
40 0.038 0.070 0.000 0.038 0.053
80 0.043 0.050 0.006 0.042 0.060

3PLM 10 0.093 0.896 0.000 0.008 0.056
20 0.065 0.422 0.001 0.020 0.062
40 0.059 0.155 0.001 0.037 0.055
80 0.050 0.080 0.003 0.050 0.064

1,000 1PLM 10 0.066 0.968 0.004 0.032 0.046
20 0.067 0.590 0.004 0.033 0.055
40 0.059 0.206 0.012 0.045 0.045
80 0.053 0.106 0.022 0.045 0.053

2PLM 10 0.043 0.913 0.000 0.017 0.061
20 0.050 0.434 0.000 0.033 0.060
40 0.052 0.103 0.000 0.050 0.053
80 0.041 0.055 0.002 0.047 0.057

3PLM 10 0.087 0.962 0.000 0.005 0.049
20 0.063 0.686 0.000 0.021 0.054
40 0.054 0.237 0.000 0.037 0.049
80 0.047 0.086 0.001 0.038 0.060

Note. 1PLM = 1-parameter logistic model; 2PLM = 2-parameter logistic model; 3PLM = 3-parameter logistic model;

IRT = item response theory.
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where a = 2:5, b = 1, c = 0:25, and d = 1:5;

BAD2 =
d

1 + exp �1:7a u� b½ �ð Þ ,

where a = 2, b = 0:5, and d = 0:7; and

BAD3 =
x

1 + exp �1:7a u� b½ �ð Þ +
y

1 + exp �1:7a u� b + dð Þ½ �ð Þ ,

where a = 3:5, b = � 1, d = 3, x = 0:55, and y = 0:45.

Each atypical response curve can be seen in Figure 1 along with fitted 3PLM probability func-

tions generated from parameters corresponding to an MAP discrepancy function within the

range, u = ½�4, 4�. See the discussion by Orlando and Thissen (2003) for further details regard-

ing these models and selected parameter values.

The simulation conditions investigated contained four test lengths (10, 20, 40, and 80) with

two sample sizes (500 and 1,000) and three atypical items. Tests were generated such that J2 1

items were 3PLMs while one item was generated according to one of the atypical response

functions. Each item was fitted using the 3PLM using the same prior parameter distributions

described at the beginning of this section. Power rates estimated from 500 Monte Carlo simu-

lated datasets are located in Table 2. Finally, to facilitate interpretation based on the informa-

tion from the previous section, power rates that were paired with Type I error rate estimates

greater than 0.075 are presented in bold font.

Simulation results. As expected, increasing the sample size from 500 to 1,000 increased the

detection rates for all statistics investigated. As well, the detection rates in Table 2 demonstrate

that Q1 generally has the highest power to detect item misfit. However, given the liberal Type I

error rates for the Q1 statistic, this behavior is to be expected and unfortunately cannot be relied

upon. Q1’s power tended to decrease as the test length increased largely because the liberal

nature of the statistic progressively was less prevalent as measurement precision improved.

That being said, our simulation results agree with Orlando and Thissen’s (2003) conclusion that

Q1 is only a reliable fit detection statistic for dichotomous response models when u is estimated

from more than 80 observed dichotomous item responses.

With respect to the S � X 2 statistic, there was no systematic trend according to test length;

estimated power rates could either increase or decrease with different test lengths. These results

were likely caused by the necessity for collapsing small expected values in the associated

number-correct response tables because of the likelihood of observing small expectations in

longer tests. For BAD2, this has particularly negative consequences because the discrepancy

between the population generating model and the fitted 3PLM mainly occurs in upper and

lower u locations (see Figure 1); hence, when high and low sum scores are collapsed toward

the center of the distribution, there is less information to detect this particular type of misfit.

The effect of varying test length requires further investigation because there is a mixed consen-

sus regarding whether S � X 2 is positively (Orlando & Thissen, 2003), negatively (Glas &

Suárez-Falcón, 2003; LaHuis, Clark, & O’Brien, 2011; Wells & Bolt, 2008), or unaffected

(Kang & Chen, 2008; Orlando & Thissen, 2000) by different test lengths.

Finally, PV� Q�1 almost universally demonstrated higher power rates than S � X 2, despite

its slightly conservative Type I error rates in shorter tests, while x2� demonstrated the highest

power rate estimates of all the statistics studied. Regarding PV� Q�1, only for BAD1 with 10

items was the S � X 2 statistic more powerful than PV� Q�1. However, given the slightly

inflated Type I error rates for this condition, the S � X 2 statistic may not be the most optimal
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choice when testing goodness-of-fit in 10 item tests. PV� Q1, PV� Q�1, and x2� demonstrated

higher power rates as the test length and sample size increased; however, the more conservative

nature of PV� Q1 was reflected in the power to detect misfit. In general, the PV� Q1 statistic

likely will be of little use when only 10 items are modeled, especially in smaller sample sizes.

When 20 or more items are fitted, PV� Q1 will achieve reasonable power that is often higher

than S � X 2, especially in larger sample sizes. These fit statistics results generally indicate that

focusing on the item response functions directly provides more information about item misfit

compared with expected values generated from conditional sum scores.

Discussion

In this article, the authors explored the use of PV imputations in the context of testing IRT

models for goodness-of-fit in individual items. PV imputations were implemented to improve

the inherent measurement imprecision in the û estimates required for the Q1 fit statistic (Yen,

Figure 1. Three types of misfitting items studied in the power analysis simulation (solid) with a fitted
3PLM response function (dashed).
Note. 3PLM = 3-parameter logistic model.
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1981), which the authors termed PV� Q1. To further account for using item-parameter esti-

mates as a proxy for the respective population parameters, we adopted a parametric bootstrap

procedure to generate an empirical sampling distribution for the proposed PV� Q1 statistic and

termed this detection statistic PV� Q�1. The two proposed item-fit statistics, as well as the pre-

viously proposed Q1, x2�, and S � X 2 fit statistics, were investigated in a Monte Carlo simula-

tion study based on the conditions investigated by Orlando and Thissen (2000, 2003). These

simulations were used to determine how well the PV imputation technique improved upon the

Q1 statistic, and, relative to previously established item-fit statistics, how effective the PV� Q1

family of item-fit statistics was at detecting true item misfit.

Simulation results revealed that the Type I error rates were reasonably close to the nominal a

for PV� Q�1. One potential reason why PV� Q�1 demonstrated more conservative Type I error

rates for the 2PLM and the 3PLM, particularly in shorter tests, may be due to the Gaussian

approximation of the posterior response functions used to generate the PVs. While Chang and

Stout (1993) have noted that the standard error of the u estimates will be asymptotically suffi-

cient to approximate the sampling variability of each estimate, this approximation may not be as

effective in shorter tests. Hence, in shorter tests, the PV-based item-fit statistics may benefit

from more intensive Markov chain Monte Carlo sampling techniques to obtain better samples

from the posterior distribution. However, this topic was outside the scope of this article and

should be investigated in future simulation studies.

The simulation results also showed that the error detection rates for PV� Q1 were highly

conservative. In practice, however, conservative detection statistics still have their uses if they

demonstrate sufficient power rates and are easy to obtain. For example, if in practice an analyst

were to observe a p\:05 result with the PV� Q1 statistic, then they can be confident that the

Table 2. Power Rate Estimates for Three Types of Misfitting Items.

n Item Test length S� X2 Q1 PV� Q1 PV� Q�1 x2�

500 BAD1 10 0.770 0.998 0.016 0.406 0.882
20 0.940 1.000 0.490 0.972 0.996
40 0.914 1.000 0.926 1.000 1.000
80 0.844 0.996 0.988 1.000 1.000

BAD2 10 0.484 1.000 0.404 0.890 1.000
20 0.330 0.970 0.272 0.996 1.000
40 0.254 0.842 0.678 0.998 0.998
80 0.254 0.806 0.834 0.992 1.000

BAD3 10 0.248 0.988 0.042 0.588 0.804
20 0.358 0.952 0.390 0.942 0.968
40 0.414 0.972 0.828 0.986 0.990
80 0.362 0.988 0.986 1.000 1.000

1,000 BAD1 10 0.946 1.000 0.166 0.688 0.984
20 0.998 1.000 0.886 0.998 1.000
40 1.000 1.000 1.000 1.000 1.000
80 0.998 1.000 1.000 1.000 1.000

BAD2 10 0.704 1.000 0.638 0.928 1.000
20 0.584 1.000 0.880 0.996 1.000
40 0.634 0.998 0.988 1.000 1.000
80 0.516 0.984 0.996 1.000 1.000

BAD3 10 0.482 1.000 0.314 0.878 0.976
20 0.690 1.000 0.890 0.998 1.000
40 0.800 1.000 0.996 1.000 1.000
80 0.778 1.000 1.000 1.000 1.000
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item is truly misfitting; compared with the original Q1 statistic, this type of interpretation is

clearly not possible due to the uncontrollably high false detection rates. Results suggested that

the PV� Q�1 statistic has more favorable Type I error control than Q1, thereby demonstrating

more interpretable (and often higher) power to detect item misfit across a variety of conditions.

Of the statistics that PV� Q1 and PV� Q�1 were compared with, x2� demonstrated the best

Type I error control and power in every simulation condition studied. This suggests that the

most optimal approach to detect item misfit may be to use the IRT probability functions

directly, along with a method to account for uncertainty in u, while avoiding the need for a bin-

ning technique to create suitable observed and expected frequency tables. However, both x2�

and PV� Q�1 require parametric bootstrapping to be adopted to draw adequate inferences, mak-

ing efficient use of these statistics more difficult, while the use of PV� Q1 alone does not

require parametric bootstrapping and is therefore considerably easier to compute.

This study demonstrated that combining PVs and a parametric bootstrap technique will gen-

erally improve the inferences drawn by the two-step item-fit statistics. In particular, Type I

error rates will be improved to be either highly conservative when using PVs alone (PV� Q1)

or closer to the nominal rate when parametric bootstrapping is used (PV� Q�1). As was demon-

strated, power to detect item misfit is often considerably higher than the competing S � X 2 sta-

tistic when the IRT functions are directly used to determine misfit (excluding Q1, due to its

problematic Type I error rates), and, unlike S � X 2, these fit statistics do not show any signs of

liberal detection rates or decreases in power as the test length increases. In fact, PV� Q1 and

PV� Q�1 tended to dramatically increase in their efficiency to detect misfit as sample size

and test length increased. Based on these results, we recommend using PV� Q1 and S � X 2

when the test length contains 20 or more items for a quick but less powerful test of item misfit,

and x2�, followed by PV� Q�1, when parametric bootstrapping is computationally feasible (i.e.,

when the computational demands are not too high, the likelihood of obtaining local minimums

in the bootstrap samples is small, etc.).

General Benefits of the PV Item-Fit Statistics

In addition to the improved Type I error control and effective power to detect misfit, there are

other practical benefits to using these PV-based item-fit statistics. First, fit statistics that are

based on two-step estimates are generally efficient to compute in datasets that contain large

degrees of missing data. This feature is particularly appealing in datasets where missingness is

included by design, such as when multiple test forms are administered for vertical linking

designs (Kolen & Brennan, 2004). Because each item is tested independently, it is only a matter

of plugging the values into the suitable formula after the û values (or sets of PVs) are obtained.

Compared with S � X 2, which currently requires that the total scores are suitable representa-

tions of all response patterns (and therefore require datasets with no missing responses), the

PV-based item-fit statistics provide the desirable feature of being effective in datasets with

large amounts of missing data. This important property is shared by the x2� statistic as well.

Another practical benefit to the PV augmented versions of Q1 is that a number of commer-

cial (e.g., BILOG-MG; Zimowski, Muraki, Mislevy, & Bock, 2003) and open-source (e.g., mirt;

Chalmers, 2012) IRT software already support the computation of EAP estimates, their associ-

ated standard errors, and the Q1 fit statistic. Because these subroutines have been previously

constructed, all of the necessary tools are readily available to implement the proposed measures.

The only missing element required to compute PV� Q1 and PV� Q�1 from these IRT software

packages is a suitable function that (a) imports the results from these IRT software packages,

(b) generates the PVs and associated parametric bootstrap samples, and (c) passes the PVs and
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sampled datasets back to the respective estimation software to collect the necessary item-fit sta-

tistic information.

Limitations and Future Directions

With respect to the computational considerations required, PV� Q�1 and x2� are more time-

consuming to compute than the simpler PV� Q1 and Q1 statistics, and also require that the

respective Monte Carlo samples are well behaved (i.e., no local minimum or nonconvergence

issues). However, given that parametric bootstrap samples are completely independent across

replications, the required computational time can be greatly decreased by capitalizing on mod-

ern multicore architecture systems. By implementing the parametric bootstrap draws in parallel

across available computing cores, the total time required to obtain the required empirical sam-

ples can be decreased at a rate proportional to the number of cores available. In addition, it may

be possible to adopt a strategy similar to Stone’s (2000) parametric bootstrap approximation to

obtain a suitable df estimate for the observed PV� Q1 values, thereby also reducing the compu-

tational time.

We anticipate that PV� Q1 will generally demonstrate conservative Type I error rates across

a wide variety of empirical settings, while PV� Q�1 will provide error rates that are reasonably

close to the nominal a, particularly when the distribution of u is correctly specified. However,

if the distribution of u is misspecified (e.g., the latent trait values are from a bimodal instead of

a normal distribution), the outlined parametric bootstrap procedure may not behave as optimally

as demonstrated in this article. While determining the robustness of item-fit statistics to misspe-

cification was outside the purpose of this article, this area of research is nevertheless important

and should be considered in future studies (see Stone, 2003, for an example of this type of

analysis).

Finally, several questions remain regarding the detection properties of item misfit statistics

for IRT models, especially for the newly proposed PV� Q1 and PV� Q�1 statistics. Future

research should investigate how these statistics perform when fitting polytomous IRT models,

the consequences of including multiple items that contain misfit, the effects of temporarily

removing misfitting items to improve the u� imputations (specifically for power conditions),

the effects of varying the shape of the latent trait distribution used to generate the data, how

improving the precision of û by including fixed-effect covariants (Adams, Wilson, & Wu,

1997; Chalmers, 2015) affects the power to detect misfit and Type I error control, and so on.

These and other research areas should also be investigated for competing item-fit statistics to

determine their general robustness and efficiency so that practitioners can make informed deci-

sions regarding which statistics they should adopt in their item analysis work.
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Author Note

1. Although polytomous item response theory (IRT) model generalizations of these measures have

appeared in the literature, this study focuses exclusively on dichotomous response models for

simplicity.
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