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Abstract

Researchers are commonly interested in group comparisons such as comparisons of group
means, called impact, or comparisons of individual scores across groups. A meaningful compari-
son can be made between the groups when there is no differential item functioning (DIF) or dif-
ferential test functioning (DTF). During the past three decades, much progress has been made in
detecting DIF and DTF. However, little research has been conducted on what researchers can
do after such detection. This study presents and evaluates a confirmatory multigroup multidi-
mensional item response model to obtain the purified item parameter estimates, person scores,
and impact estimates on the primary dimension, controlling for the secondary dimension due to
DIF. In addition, the item response model approach was compared with current practices of DIF
treatment such as deleting and ignoring DIF items and using multigroup item response models
through simulation studies. The authors suggested guidelines for DIF treatment based on the
simulation study results.
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Introduction

Many psychological studies involve group comparisons such as cultural, ethnic, gender, or

treatment group comparisons. The group comparisons can be made between group means or

individual scores across groups. To make meaningful group comparisons, the measurement of a

construct or set of constructs is assumed to be equivalent across the groups, which is called

measurement invariance (e.g., Meredith & Millsap, 1992). Measurement invariance implies that

the distribution of the test score, conditional on a given value of the construct or the latent vari-

able, is invariant across groups. If the measurement invariance does not meet at the test level or
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at the item level, the test or the item is said to present differential test functioning (DTF) or dif-

ferential item functioning (DIF), respectively, in the item response theory (IRT) approach.

When a test is intended to be unidimensional, DTF or DIF can be viewed as the consequence

of one or more dimensions not explained by the primary dimension to be measured and the fail-

ure to account for the secondary dimension can result in DTF or DIF (e.g., Ackerman, 1992;

Bolt & Stout, 1996; Shealy & Stout, 1993). Specifically, Shealy and Stout (1993) pointed out

that DTF occurs when there are secondary dimension(s) and the reference and focal groups do

not have an equal number of secondary dimension(s) (i.e., the two groups have different

means).

Procedures for detecting DIF items are by now well established in psychometric research

using item response models (see Millsap & Everson, 1993, for an overview of DIF detection

methods). However, little attention has been paid to how one can treat DIF items for valid group

comparisons. In the item development stage, a larger number of items than is needed is created,

and the detected DIF items can be revised or removed. When researchers cannot get involved in

item development and have to use developed tests for their own research purposes, it may be a

rare case in which they can revise detected DIF items and then recollect data with the revised

items. Furthermore, deleting DIF items in the developed tests may result in lowering test relia-

bility and content validity.

Lord (1980) cited a solution (suggested by Gary Marco) to purify a test by deleting DIF items

and then scoring only based on non-DIF items. When a large portion of items in a test (e.g.,

above 50%) are detected as DIF items, using a separate scale for each group is often recom-

mended (Bolt, Hare, Vitale, & Newman, 2004). However, when a portion of test items (e.g., less

than 30% of test items) is known as DIF, an IRT purification method can be used to estimate the

item parameters, person scores, and group mean difference (called impact1 hereafter) on the pri-

mary dimension. De Boeck, Cho, and Wilson (2011) presented a secondary dimension modeling

approach to obtain purified item parameter estimates using a confirmatory mixture multidimen-

sional item response model when DIF items are known and groups of interest are unknown (i.e.,

latent classes or mixtures).

The purpose of this article is to present an IRT purification method for item calibration and

scoring in the presence of DIF after a subset of items is detected as DIF items and to compare

the performance of the method with that of other current DIF item treatments. The importance

of DIF item treatment may differ depending on the purposes of the test used (e.g., Borsboom,

2006). The authors of the current study consider the use of test scores to detect impact and indi-

vidual differences in the construct being measured. Unlike in De Boeck et al. (2011), this article

focuses on manifest groups such as gender and ethnicity (instead of latent classes) using confir-

matory multigroup multidimensional item response model and evaluates the secondary dimen-

sion modeling approach to obtain purified IRT item parameter estimates and person scores via

a simulation study. The multigroup multidimensional item response model has been used in

DIF detection contexts (e.g., Oshima, Raju, & Flowers, 1997). Novel presentation of the model

in the current study is to specify a dimension structure to model a secondary dimension due to

DIF. The specified methods can easily be extended to include a number of primary and second-

ary dimensions; however, for the sake of simplicity, this article focuses on the two dimensional

models, one primary dimension and one secondary dimension.

The article is organized as follows. First, survey results about the practices of DIF treatment

are presented. Subsequently, the purification method for item calibration and scoring in the

presence of DIF items using a confirmatory multigroup multidimensional item response model

are described. In addition, other DIF item treatments are described using item response models,

based on the survey results of current practice for DIF items. Next, a simulation study was
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conducted to evaluate the proposed method with a comparison with current practices to treat

DIF items. Finally, the article concludes with a summary and discussion.

Examples of DIF Item Treatment

To report how researchers treat DIF items in practice, 27 articles published in five American

Psychological Association journals were reviewed. For review results and details, see Table 1

in Online Appendix A. It was observed that there are five distinct practices to deal with DIF

items: (a) delete DIF items (30%), (b) no further action (33%; i.e., a specific DIF treatment was

not mentioned), (c) ignore DIF items (26%; i.e., all items including DIF items were calibrated),

(d) calibrate items for each group (7%; i.e., multigroup analysis), and (e) model DIF (4%).

There was one article, Nye and Drasgow (2011), which showed modeling DIF approach.

However, they did not model a secondary dimension separate from a primary dimension imply-

ing that the group difference and individual scores in their model may not be meaningful for

group comparisons.

Below, the modeling DIF approach is presented with a two-parameter confirmatory multigroup

multidimensional item response model. For the comparison with the modeling DIF approach, two-

parameter unidimensional item response models for deleting DIF, ignoring DIF, and multigroup

analysis were shown in Online Appendix B. Multigroup approach (Bock & Zimowski, 1997)

allows for separate item parameter estimates for each group regarding DIF items, but through non-

DIF items connects the estimates between groups to a common latent metric.

Modeling DIF Using a Multigroup Multidimensional Item Response
Model

In the modeling DIF approach, it is assumed that DIF items are known after DIF detection meth-

ods are used. In addition, it is assumed that there are shifts with the DIF magnitudes on item

parameters for the items suspected of DIF for a focal group. A secondary dimension is modeled

to explain individual differences in endorsement probabilities for the focal group and DIF items

(see a section of ‘‘DIF items and multidimensionality’’ for details in Online Appendix C). The

logic of the method is to estimate item parameters, person scores, and impact on a primary

dimension from all persons and items, and controlling for the secondary dimension from persons

in the focal group and for DIF items. That is, the reference group has one dimension (u1j), as an

interaction between all items and persons in the reference group. The focal group has two

dimensions where the first dimension (u1j) as a primary dimension is applied for all items as in

the reference group and the second dimension (u2j) as the secondary dimension is from an inter-

action between DIF items and persons in the focal groups. This structure of dimensionality

between the two groups can be imposed with a design matrix to map an item to a dimension,

specified as qig for an item i and a group g. Below, the structure is specified using an equation.

A confirmatory multiple-group multidimensional item response model can be described as

follows:

logit P yjig = 1ju1jg, u2jg

� �� �
= a1ig � q1i:gu1jg + a2ig � q2i:gu2jg � big, ð1Þ

where a1ig is a group-specific item discrimination for a primary dimension, a2ig is a group-

specific item discrimination for a secondary dimension, big is a group-specific item location

(e.g., item difficulty), u1jg is a group-specific primary dimension to be measured, u2jg is a

group-specific secondary dimension, q1i:g is a group-specific element of a design matrix to map

an item to the primary dimension, and q2i:g is a group-specific element of a design matrix to
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map an item to the secondary dimension. Figure 2 in Online Appendix D depicts the modeling

DIF approach, Equation 1.

For the reference group (g = 1), q1i:1 for the primary dimension and q2i:1 for secondary

dimension can be specified as follows for a subset of DIF items and a subset of non-DIF items:
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For the focal group (g = 2), q1i:2 for the primary dimension and q2i:2 for the secondary dimen-

sion can be specified as follows for a subset of DIF items and a subset of non-DIF items:
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In the reference group, all items load on only the primary dimension. In the focal group, all

items load on the primary dimension, and only DIF items load on the secondary dimension.

To identify the model, the following constraints are imposed: uj11;N (0, 1), uj22;N(0, 1),

and cov(uj11, uj22) = 0. In addition to the three constraints to identify the model, more constraints

are required to reflect the structure specified in the matrices above. First, the equality constraint

between the reference and focal groups is imposed on item discriminations loaded on the pri-

mary dimension and on item locations (i.e., a1i1 = a1i2 and bi1 = bi2 for all items). This indicates

that there is the same (purified) primary dimension, u1j, across the two groups. Second, in the

reference group, the mean and variance of the secondary dimension are 0, respectively, and the

covariance between the primary dimension and the secondary dimension is 0 because the
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secondary dimension is modeled only for the focal group. Third, item discriminations for non-

DIF items on the secondary dimension are set to 0 in the focal group.

Each item discrimination parameter for the primary dimension (a1ig with the equality con-

straint) can be a purified parameter. Because the DIF magnitude for each item is explained by

the secondary dimension weighted by a2ig (i.e., a2ig � q2i:gu2jg), an item location parameter, and

bi, a purified parameter. A score for u1j is a purified score. The mean and variance of the pri-

mary dimension in the focal group (i.e., uj12;N (m, s2)) can be estimated because of a1i1 = a1i2

and bi1 = bi2. The mean, m, is an impact on the primary dimension, which can be used for the

meaningful group comparison.

Comparisons Among Four DIF Treatment Practices

Online Appendix B shows the summary of the four DIF treatment approaches, as specified in

the earlier section. An example was provided in Online Appendix E to illustrate the four DIF

treatment approaches, deleting, ignoring, multigroup, and modeling. In this section, the advan-

tages and disadvantages of each DIF treatment approach in terms of estimating the item para-

meters for all items (a , b ), impact (m), and person scores (u) from a primary dimension are

explained.

In the deleting DIF items, only non-DIF items can be calibrated. This results in lowering test

reliability and content validity, especially when the DIF magnitude is high and the number of

DIF is large. The impact parameter cannot be estimated simultaneously with the item para-

meters, unless it is calculated based on the person scores as a subsequent analysis.

In DIF study literature, the degree of DIF is mainly characterized with respect to DIF magni-

tudes and the number of DIF items (e.g., Kim & Cohen, 1992; Oshima et al., 1997). Thus, ignor-

ing DIF approach may not be problematic when the DIF magnitude is low and the number of

DIF items is small. However, in the presence of non-ignorable DIF (e.g., high DIF magnitudes

or the large number of DIF items), item parameter estimates and person scores can be biased.

As in the deleting DIF approach, the impact parameter cannot be estimated simultaneously with

the item parameters.

In the multigroup DIF approach, because item parameters without DIF magnitudes are esti-

mated only with the reference group for DIF items, the standard errors of item parameter esti-

mates for DIF items can be larger than those with the reference and the focal groups (as in the

multigroup DIF approach with two-step and in the modeling DIF approach). In the presence of

DIF, the impact and person scores from the multigroup DIF approach with one step are from

different dimensions between the two groups. As explained earlier, the reference group has the

primary dimension, and the focal group has the primary and the secondary dimension. Thus, in

the multigroup DIF approach, the impact is not meaningful, and the person scores cannot be

compared on the same scale. These limitations in the one-step approach can be overcome with a

multigroup DIF approach with two steps, where the first step is to have the same item parameter

estimates between the two groups (using item parameter estimates from the reference group) and

the second step is to obtain the impact and person scores. However, this requires the additional

step (compared with the modeling DIF approach). In addition, the uncertainty of item parameter

estimates can be ignored in estimating the impact because item parameters are considered known

parameters in the second step. Thus, the standard error of the impact estimate can be smaller than

that of the impact estimate (compared with the modeling DIF approach).

In the modeling DIF approach, comparable item parameter estimates and person scores

between the reference and focal groups are obtained using all items, by controlling for the sec-

ondary dimension due to the DIF items. In this regard, the modeling DIF approach does not hurt

content validity, which is not the case for the deleting DIF approach. Furthermore, because item
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parameters on the primary dimension are estimated with the equality constraints on the item

parameters between the reference group and the focal group, the standard errors of the item

parameter estimates can be smaller (compared with the multigroup DIF approach with one

step). The item parameters and impact parameter on the primary dimension are estimated simul-

taneously, such that the uncertainty of the item parameter estimates can be incorporated in the

estimation of the impact parameter. However, the number of parameters is larger than the multi-

group approach (with two steps) because of the simultaneous modeling for the primary and sec-

ondary dimensions. Accordingly, the sampling variability in the modeling DIF approach can be

larger than that in the multigroup DIF approach, especially when the number of DIF items

increases (because the number of item discriminations of the secondary dimension increases).

Simulation Study

The main interests in the simulation study are the following two questions, assuming the pres-

ence of DIF (a) Does the modeling approach perform well in explaining the secondary dimen-

sion due to DIF to have purified IRT item parameter estimates and person scores? (b) What are

the consequences of deleting and ignoring DIF items (as the two common current practices

according to survey results presented in Online Appendix A) in item parameter estimates and

person scores? To answer these two questions, DIF and impact were generated based on the

two-group (two-parameter) item response model as a population data-generating model (a spe-

cial case of the multigroup analysis [Equation 2 in Online Appendix B] when some portions of

the items are non-DIF items). The model was chosen over the confirmatory multigroup multidi-

mensional item response model (Equation 1) as a population data-generating model because the

interest is in how the secondary dimension modeling approach can perform to obtain purified

IRT item parameter estimates and person scores, not in parameter recovery of the model.

For the first research question in the simulation study, item parameters and person scores in

the population model were compared with the item parameter estimates and the predicted person

scores from the primary dimension in the modeling DIF approach using the confirmatory multi-

group multidimensional item response model. In comparison with the modeling DIF approach,

multigroup DIF approaches with one step (for item parameters) and two steps (for impact and

person scores) were fit to the same generated datasets. For the second question, the models for

deleting and ignoring DIF practices were fit to the same generated datasets.

Simulation Designs

As the focus of this article was on investigating the effect of DIF items on item parameter esti-

mates and person scores, varying conditions were considered for different patterns of DIF. The

simulation conditions include the number of DIF items (10%, 30%, or 50%), magnitude of DIF

(low or high), and type of DIF (uniform or nonuniform). In addition, the sample size design (a

balanced group design or an unbalanced group design) was considered a varying condition that

affects IRT item parameter estimation. As shown in Table 1 in the Online Appendix, item

response theory–likelihood ratio–differential item functioning (IRT-LR-DIF) is the most com-

monly used IRT DIF detection method. Woods (2008) reported a literature review regarding

the number of persons and items in 16 papers in which IRT-LR-DIF was applied). The mean

number of examinees in the reference group was 1,081, and the mean number of items (exclud-

ing a few outliers) was 20. Furthermore, the 20-item test was also chosen in other measurement

invariance studies (e.g., Clark & LaHuis, 2012; Finch, 2005; Flowers, Oshima, & Raju, 1999;

Meade & Bauer, 2007). For these reasons, fixed conditions were chosen in this study for the

two groups (i.e., the reference group and the focal group), 20 items and 2,000 persons in total,
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as used in Woods. Fully crossed conditions defined by the four varying conditions resulted in

24 ( = 3323232) conditions. Five hundred replications were simulated for each of the 24

conditions.

All DIF items were introduced against the focal group. Namely, first, the item parameters

for the reference group were generated and then the item parameters for the focal group were

manipulated by introducing DIF magnitudes in designated DIF items.

A latent variable for the reference group, uj1, was generated following uj1;N (0, 1) (for

j = 1, . . . , 1000) and a latent variable for the focal group, uj2, was generated following

uj2;N (� 0:5, 1) (for j = 1001, . . . , 2000). A value of �0:5 was the impact, indicating the mean

of the focal group was 0.5 lower than that of the reference group. The generated person scores

for all persons ( j = 1, . . . , 2000) were from the primary dimension (uj) and the impact was on

the primary dimension, although the item responses generated with DIF magnitudes (d
(a)
i and

d
(b)
i ) cannot be explained fully by the primary dimension. Accordingly, the generated person

scores and impact were compared with the person scores and impact estimate in the modeling

DIF approach. However, as explained earlier, each group had its own dimensionality in the

presence of DIF items in the multigroup DIF approach so that person scores from the different

groups cannot be compared on the same scale and the impact was not meaningful. Thus, the

person scores from the two-step approach in the multigroup DIF approach were compared with

the generated person scores. To investigate the consequences of deleting and ignoring DIF

items, the generated person scores were compared with the person scores from the deleting and

ignoring DIF approaches.

For the reference group, item discriminations were generated from a log-normal distribution

with a mean of 0 and a variance of .25 used as a prior distribution in the BILOG-MG program

(Zimowski, Muraki, Mislevy, & Bock, 1996). Item locations were generated from a standard nor-

mal distribution. Table 5 in Online Appendix F presents the generated item parameters for 10%

number of the DIF items, nonuniform DIF, and high magnitude to illustrate the generation of DIF

conditions to be explained in the following. Item parameters for the reference group in the popula-

tion data-generating model (ai and bi) were those without DIF magnitudes, and these item para-

meters were compared with purified item parameter estimates from the modeling DIF approach.

They were also compared with item parameter estimates from a reference group in the multigroup

DIF approach. In addition, the population item parameters for the reference group were compared

with the item parameter estimates in the deleting DIF treatment for non-DIF items and in the ignor-

ing DIF treatment for all items. Below, each simulation condition is described in more detail.

Number of DIF items. The 10%, 30%, and 50% DIF items (two items, six items, and 10 items,

respectively) were considered the number of DIF items. In the DIF study literature, 30% DIF is

considered a large number of DIF (e.g., Oshima et al., 1997). As indicated in the introduction,

the purification method may not be recommended over having a separate scale for each group

when there is a large portion of DIF items. Reise, Widaman, and Pugh (1993) noted that partial

measurement invariance may hold when less than half of the items had significant modification

indices (MIs) for factor loadings of the common factor model. The 50% DIF item condition was

included to investigate the relative performance of the different DIF treatment in the presence of

larger DIF items. The first 18 items, 14 items, and 10 items in Table 5 of Online Appendix F

were used as for anchor items (i.e., non-DIF items) for 10%, 30%, and 50%, respectively.

DIF magnitudes and type of DIF items. The DIF items were simulated under each of the four DIF

conditions: low and high levels of uniform DIF and low and high levels of nonuniform DIF con-

ditions. The DIF magnitudes were chosen to coincide with other DIF studies (e.g., Oshima et

al., 1997; Suh & Bolt, 2011).
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For the uniform DIF type, the item location parameters for DIF items increased by 0.5 for the

focal group, thus making these items harder for the focal group. The 0.5 difference in the item

location represents a low level of uniform DIF magnitude.2 A high level of DIF magnitude was

simulated by introducing a 1.0 difference in the item location parameter.

For the nonuniform DIF type, a low level of nonuniform DIF was introduced at a shift level

of 0.3 in the item discrimination parameter, such that the item discrimination parameters for the

focal group were set 0.3 lower than for the reference group. For a low level of nonuniform DIF,

the item-location parameter(s) for the focal group decreased by 0.5 representing DIF in location.

A high level of nonuniform DIF condition was simulated by decreasing a 1.0 difference in loca-

tion and decreasing a 0.6 difference in discrimination.

Two scale-level effect sizes, signed test difference in the sample (STDS) and unsigned test

difference in the sample (UTDS; Meade, 2010), were calculated to show how much DIF exists

in the designed DIF conditions regarding the numbers, types, and magnitudes of DIF. The pat-

terns of scale-level effect sizes can differ, depending on the manipulation of the DIF patterns.

Table 6 in Online Appendix G presents two scale-level DIF effect size measures, the STDS and

the UTDS; the values are on the total score scale (the two measures can range from 0 to 20)

using one simulated data set for each simulation condition.

Sample size design. Balanced and unbalanced designs were considered. For the balanced design,

1,000 persons were assigned to each group. According to Woods’s (2008) literature review of

the applications of IRT-LR-DIF, the mean ratio of the mean ratio of the number of examinees

in the reference group to the number of examinees in the focal group was 3. Thus, for the unba-

lanced design, 1,500 persons were assigned to a reference group and 500 persons were assigned

to a focal group.

Evaluation Measures

Two accuracy measures were considered to compare the item parameter estimates and person

scores across four different DIF approaches: bias and root mean square error (RMSE). The bias

is given by (m̂� m) for an impact estimate as an example and implies the accuracy of the para-

meter estimates. The RMSE was computed using

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPR
r = 1 (m̂� m)2=R

q
, where r indicates the

rth replication from a converged solution (r = 1, . . . , R). When a parameter estimate is unbiased,

the RMSE quantifies precision (i.e., the variance of the estimator). For biased parameter esti-

mates, the RMSE combines the bias and the precision into the overall accuracy. The average

bias and RMSE across items were reported for item parameters (a, b), and the average bias and

RMSE across persons were presented for person scores (u). In addition, to show the differences

in item parameter estimate precision in the multigroup and modeling DIF approaches, the ratio

of the standard error (SE) of the item parameter estimate from the multigroup DIF approach

(SEMG) to that of the modeling DIF approach (SEM; i.e., relative efficiency) was calculated.

Then, the average ratio across items was considered. Furthermore, IRT reliability (Green, Bock,

Humphreys, Linn, & Reckase, 1984) for person scores was compared across four DIF

approaches mainly to show to what extent reliability can be affected by each approach.

Analysis

Mplus 7.11 (Muthén & Muthén, 1998-2014) was used to fit four models with marginal maxi-

mum likelihood estimation (ESTIMATOR=MLR in Mplus). For multigroup and modeling

approaches, the KNOWNCLASS option for TYPE=MIXTURE was used in Mplus. Prediction
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errors of the person scores are not available for multigroup and modeling approaches with the

MLR estimator. Thus, ESTIMATOR=BAYES (with default priors and hyperpriors) was used

to obtain the prediction errors, and 100 imputations were used in Mplus. The posterior median

of the person scores was used to calculate the IRT reliability when the posterior distribution for

the portion of the person scores was not symmetric.

Results

Due to the page limit, the hypotheses for the simulation study are reported in Online Appendix

H. No convergence problems were encountered in any replication for all four approaches in the

balanced design. However, in the unbalanced design, one replication had a convergence prob-

lem in the modeling DIF approach. The replication was excluded from the analyses of the

results.

As expected from the research hypotheses in Online Appendix H, the patterns in the results

were similar between the balanced and unbalanced designs for DIF effects, even though there

were different magnitudes of bias and RMSE due to the different number of persons in the ref-

erence and focal groups in the designs. Regarding the magnitudes of RMSE in the balanced

and unbalanced designs, the expected results were found for the multigroup and modeling DIF

approaches (except for the impact estimates in the two-step multigroup DIF approach, the

impact estimates were not much different between the balanced and unbalanced designs).

However, unexpectedly, in the deleting and ignoring DIF approaches, the RMSEs were smaller

in the unbalanced design than those in the balanced design for the item location estimates and

the person scores. Further investigation showed that these unexpected results were from the dif-

ferent location shift when the impact was ignored in the deleting and ignoring DIF approaches.

Specifically, the mean true person scores across all persons was 0.264 in the balanced design,

whereas it was 0.137 in the unbalanced design. The smaller shift in the unbalanced design than

in the balanced design resulted in a smaller bias for the item location estimates and the person

scores.

Because this study focused on DIF item treatment comparisons, the differing DIF effects

results are reported for the balanced design below. Results for the unbalanced design are

reported in Online Appendix I.

Item parameters. Tables 1 and 2 report the average bias, RMSE, and ratio across the items for

the item discrimination estimates and the item location estimates, respectively. The item para-

meter results for the deleting DIF approach were not comparable with the other three approaches

because only non-DIF items were used for calibration. However, bias and RMSE are reported in

Tables 1 and 2 to interpret them within the deleting DIF approach. The results of the multigroup

approach were from the item parameter estimates with the one-step approach, and the results for

the item discrimination parameters of the modeling DIF approach were based on the primary

dimension.

In the deleting DIF approach, bias for the item discrimination (a) estimates was similar

across DIF conditions, and RMSE increased mainly with the increasing number of DIF items.

Bias and RMSE for the item-location parameter (b) estimates increased mainly with the increas-

ing number of DIF items.

For the other three approaches, the following patterns were found for the item discrimination

parameter (a). First, in terms of bias, the multigroup and modeling DIF approaches had similar

values across the simulation conditions and produced smaller bias than the ignoring DIF

approach (except one condition, nonuniform type, low magnitude, and 30% DIF item). Second,

RMSE for the multigroup DIF approach was smaller than that of the modeling DIF approach,
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Table 1. Average Bias, RMSE, and Ratio Across Items for Item Discrimination Estimates.

Uniform Nonuniform

No. of DIF items Magnitude Deleting Ignoring Multigroup Modeling Deleting Ignoring Multigroup Modeling

A. Bias

10% Low 0.032 0.037 0.000 0.001 0.032 0.007 0.000 0.005

High 0.030 0.037 20.004 20.002 0.032 0.011 0.000 0.003

30% Low 0.031 0.047 20.004 20.002 0.031 0.000 20.003 0.001

High 0.033 0.062 0.000 0.002 0.032 20.026 0.000 0.010

50% Low 0.032 0.060 20.003 20.001 0.036 20.018 0.000 20.001

High 0.032 0.092 20.002 20.003 0.035 20.059 0.000 0.004

B. RMSE

10% Low 0.090 0.092 0.083 0.089 0.089 0.102 0.085 0.095

High 0.089 0.092 0.082 0.093 0.090 0.099 0.086 0.091

30% Low 0.096 0.098 0.083 0.099 0.096 0.093 0.092 0.092

High 0.098 0.116 0.084 0.128 0.095 0.108 0.092 0.101

50% Low 0.106 0.108 0.083 0.108 0.109 0.096 0.099 0.092

High 0.106 0.153 0.084 0.177 0.107 0.113 0.100 0.100

C. Ratio

10% Low — — — 0.995 — — — 1.017

High — — — 0.996 — — — 1.012

30% Low — — — 0.999 — — — 1.083

High — — — 1.010 — — — 1.061

50% Low — — — 1.002 — — — 1.143

High — — — 1.038 — — — 1.127

Aggregated bias

No. of DIF items 10% 0.032 0.023 20.001 0.002

30% 0.032 0.021 20.002 0.002

50% 0.034 0.019 20.001 0.000

Magnitude Low 0.032 0.022 20.002 0.001

High 0.032 0.020 20.001 0.002

Type Uniform 0.032 0.056 20.002 20.001

Nonuniform 0.033 20.014 20.001 0.004

Aggregated RMSE

No. of DIF items 10% 0.090 0.096 0.084 0.092

30% 0.096 0.104 0.088 0.105

50% 0.107 0.118 0.092 0.119

Magnitude Low 0.098 0.098 0.088 0.096

High 0.098 0.114 0.088 0.115

Type Uniform 0.098 0.110 0.083 0.116

Nonuniform 0.098 0.102 0.092 0.095

Aggregated ratio

No. of DIF items 10% — — — 1.005

30% — — — 1.038

50% — — — 1.078

Magnitude Low — — — 1.040

High — — — 1.041

Type Uniform — — — 1.007

Nonuniform — — — 1.074

Note. RMSE = root mean square error; DIF = differential item functioning; - = not applicable.
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which was the expected result because of the larger number of parameters in the modeling DIF

approach. In this approach, RMSE can be larger, with an increasing number of DIF items and

high magnitudes in uniform and nonuniform DIF types. However, this pattern was found only

Table 2. Average Bias, RMSE, and Ratio Across Items for Item Location Estimates.

Uniform Nonuniform

No. of DIF items Magnitude Deleting Ignoring Multigroup Modeling Deleting Ignoring Multigroup Modeling

A. Bias

10% Low 0.298 0.327 0.020 0.020 0.299 0.267 0.021 0.024

High 0.299 0.350 0.022 0.020 0.298 0.340 0.020 0.019

30% Low 0.313 0.378 0.020 0.026 0.313 0.359 0.020 0.026

High 0.313 0.448 0.020 0.025 0.314 0.412 0.020 0.028

50% Low 0.344 0.427 0.020 0.033 0.343 0.395 0.019 0.037

High 0.343 0.549 0.021 0.034 0.345 0.486 0.019 0.049

B. RMSE

10% Low 0.306 0.334 0.070 0.079 0.306 0.289 0.070 0.081

High 0.306 0.357 0.070 0.101 0.306 0.346 0.070 0.089

30% Low 0.321 0.384 0.073 0.112 0.321 0.365 0.073 0.108

High 0.321 0.454 0.073 0.181 0.321 0.418 0.073 0.172

50% Low 0.350 0.432 0.076 0.134 0.350 0.400 0.077 0.132

High 0.350 0.553 0.077 0.219 0.350 0.491 0.078 0.226

C. Ratio

10% Low — — — 1.010 — — — 1.011

High — — — 1.003 — — — 1.006

30% Low — — — 1.048 — — — 1.061

High — — — 1.027 — — — 1.041

50% Low — — — 1.081 — — — 1.105

High — — — 1.057 — — — 1.078

Aggregated bias

No. of DIF items 10% 0.299 0.321 0.021 0.021

30% 0.313 0.399 0.020 0.026

50% 0.344 0.464 0.020 0.038

Magnitude Low 0.318 0.359 0.020 0.028

High 0.319 0.431 0.020 0.029

Type Uniform 0.318 0.413 0.021 0.026

Nonuniform 0.319 0.377 0.020 0.031

Aggregated RMSE

No. of DIF items 10% 0.306 0.332 0.070 0.088

30% 0.321 0.405 0.073 0.143

50% 0.350 0.469 0.077 0.178

Magnitude Low 0.326 0.367 0.073 0.108

High 0.326 0.437 0.074 0.165

Type Uniform 0.326 0.419 0.073 0.138

Nonuniform 0.326 0.385 0.074 0.135

Aggregated ratio

No. of DIF items 10% — — — 1.008

30% — — — 1.044

50% — — — 1.080

Magnitude Low — — — 1.053

High — — — 1.035

Type Uniform — — — 1.038

Nonuniform — — — 1.050

Note. RMSE = root mean square error; DIF = differential item functioning; - = not applicable.
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in the nonuniform DIF type in the multigroup DIF approach. Third, the average ratio of SEMG

to SEM was higher than 1.0 for all conditions, except three simulation conditions in the uniform

DIF type, in which the standard errors of the item discrimination estimates were smaller in the

modeling DIF approach than in the multigroup DIF approach. For all simulation conditions

except the three conditions, larger differences in the ratio were found as the number of DIF

items increased especially with the nonuniform DIF type.

For the item-location parameter (b), the following patterns were observed in the ignoring,

multigroup, and modeling DIF approaches. First, compared with the item discrimination para-

meter, larger differences in bias and RMSE for the item location were found between the multi-

group approach and the ignoring approach and between the modeling approach and the ignoring

approach. Second, bias and RMSE for the multigroup DIF approach were similar across all DIF

simulation conditions, which were expected because it is a population data-generating model.

However, bias and RMSE for the modeling DIF approach increased as the number of DIF items

and the DIF magnitudes increased. Third, bias was similar between the multigroup and model-

ing DIF approaches when there were 10% and 30% DIF items. However, the bias for the multi-

group DIF approach was smaller than the bias for the modeling DIF approach where there were

50% DIF items. Fourth, the RMSE for the multigroup DIF approach was smaller than the

RMSE for the modeling DIF approach. The difference between the two approaches became

larger as the number of DIF items increased. Fifth, according to the average ratio of SEMG to

SEM, the standard errors of the item location estimates were smaller in the modeling DIF

approach than in the multigroup DIF approach for all simulation conditions, as expected.

Person scores and IRT reliability. Table 3 presents the average bias and RMSE across persons for

person scores (u) and IRT reliability for each DIF treatment approach. In the table, the results

of the multigroup DIF approach were based on the two-step approach. When only non-DIF

items were used for scoring in the deleting DIF approach, the bias of the person scores did not

change across all levels of DIF conditions, whereas the RMSE for the person scores was influ-

enced by the number of DIF items. Among the other three DIF treatments, the following pat-

terns were found. First, bias and RMSE for the ignoring DIF approach were larger than the

multigroup and modeling DIF approaches. Although there were some patterns, there were small

differences between the two approaches. Second, overall, slightly larger bias and RMSE

(except two conditions) were found in the modeling DIF approach than in the multigroup DIF

approach for the uniform condition. However, the opposite pattern was found for the nonuni-

form condition except three conditions in which the same RMSE was found between the multi-

group and modeling DIF approaches. Third, bias and RMSE in the multigroup and modeling

approaches increased as the number of DIF items and the DIF magnitudes increased (except

conditions with 10% and nonuniform DIF type). As expected, IRT reliability was mainly influ-

enced by the number of DIF items in the ignoring DIF approach. IRT reliability was similar

between the multigroup DIF treatment (with two steps) and the modeling DIF approach, and

was not affected by the simulation conditions.

Impact and variances of person scores. The impact (m) and variance (s2) of person scores for the

focal group can be estimated in the multigroup DIF approach (with two steps) and the modeling

DIF approach. Results are reported in Tables 4 and 5 for impact and variance estimates, respec-

tively. The following patterns were found for the impact estimates. First, overall, larger bias and

RMSE were found in the multigroup DIF approach than the modeling DIF approach (except

one condition in RMSE, 10% DIF, low magnitude, and uniform DIF type). Second, for all con-

ditions, the impact was underestimated in the multigroup DIF approach (except one condition,

10% DIF, low magnitude, and nonuniform type in which there was no cancelation of DIF across

items and persons), whereas it was slightly overestimated in the modeling DIF approach. Third,
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Table 3. Average Bias and RMSE Across Persons for Person Scores and IRT Reliability.

Uniform Nonuniform

No. of DIF items Magnitude Deleting Ignoring Multigroup Modeling Deleting Ignoring Multigroup Modeling

A. Bias

10% Low 0.264 0.261 0.003 0.001 0.264 0.263 0.054 0.040

High 0.264 0.264 20.015 20.029 0.264 0.264 20.006 20.005

30% Low 0.263 0.264 20.035 20.038 0.263 0.264 20.019 20.015

High 0.264 0.264 20.082 20.095 0.264 0.264 20.055 20.046

50% Low 0.264 0.264 20.067 20.071 0.264 0.264 20.036 20.034

High 0.264 0.265 20.149 20.170 0.264 0.265 20.092 20.085

B. RMSE

10% Low 0.499 0.482 0.413 0.414 0.498 0.487 0.416 0.415

High 0.499 0.482 0.415 0.418 0.499 0.486 0.419 0.419

30% Low 0.523 0.481 0.420 0.422 0.523 0.489 0.424 0.424

High 0.524 0.485 0.437 0.445 0.523 0.499 0.445 0.441

50% Low 0.553 0.482 0.431 0.434 0.553 0.495 0.435 0.435

High 0.553 0.491 0.474 0.489 0.553 0.516 0.474 0.470

C. Reliability

10% Low 0.773 0.798 0.780 0.786 0.773 0.792 0.786 0.786

High 0.772 0.798 0.780 0.785 0.773 0.792 0.787 0.786

30% Low 0.729 0.800 0.781 0.786 0.729 0.789 0.785 0.786

High 0.730 0.802 0.782 0.786 0.730 0.782 0.782 0.787

50% Low 0.669 0.802 0.784 0.787 0.670 0.786 0.784 0.788

High 0.669 0.807 0.784 0.784 0.669 0.775 0.781 0.789

Aggregated bias

No. of DIF items 10% 0.264 0.263 0.009 0.002

30% 0.264 0.264 20.048 20.049

50% 0.264 0.265 20.086 20.090

Magnitude Low 0.264 0.263 20.017 20.020

High 0.264 0.264 20.067 20.072

Type Uniform 0.264 0.264 20.058 20.067

Nonuniform 0.264 0.264 20.026 20.024

Aggregated RMSE

No. of DIF items 10% 0.499 0.484 0.416 0.417

30% 0.523 0.489 0.432 0.433

50% 0.553 0.496 0.454 0.457

Magnitude Low 0.525 0.486 0.423 0.424

High 0.525 0.493 0.444 0.447

Type Uniform 0.525 0.484 0.432 0.437

Nonuniform 0.525 0.495 0.436 0.434

Aggregated reliability

No. of DIF items 10% 0.760 0.795 0.783 0.786

30% 0.730 0.793 0.783 0.786

50% 0.669 0.793 0.783 0.787

Magnitude Low 0.724 0.795 0.783 0.787

High 0.715 0.793 0.783 0.786

Type Uniform 0.715 0.801 0.782 0.786

Nonuniform 0.724 0.786 0.784 0.787

Note. Results for multigroup approach were based on the two-step approach to compare results between the

reference and focal groups; bias and RMSE for the multigroup approach were based on maximum likelihood estimates

for the comparison with deleting and ignoring approaches; reliability for the multigroup (with the two-step) and

modeling approaches were calculated based on Bayes estimation. RMSE = root mean square error; IRT = item

response theory; DIF = differential item functioning.
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bias and RMSE increased when the number of DIF items and the magnitudes of the DIF items

increased in the multigroup DIF approach. This pattern was also found for bias in the modeling

DIF approach, but the degree of the effects of the simulation factors was not as large as in the

multigroup DIF approach. RMSE was mainly influenced by the number of DIF items in the

modeling DIF approach.

The following patterns were observed regarding the variance of person scores. First, bias in

the multigroup DIF approach was larger than bias in the modeling DIF approach across all con-

ditions. However, RMSE was smaller in the multigroup DIF approach than that of the modeling

DIF approach in the uniform DIF type (except one condition, 30% DIF, high magnitude, uni-

form DIF type), whereas the opposite pattern was found in the nonuniform DIF. Second, as

shown in Tables 4 for impact estimates, bias and RMSE in the multigroup DIF approach

increased as the number of DIF items and the magnitudes of the DIF items increased. This pat-

tern was also observed for bias in the modeling approach, but the degree of the effects of the

simulation factors was not as large as in the multigroup approach.

Table 4. Bias, RMSE, and Ratio for Impact Estimates.

Uniform Nonuniform

No. of DIF items Magnitude Multigroup Modeling Multigroup Modeling

A. Bias
10% Low 20.021 0.016 0.080 0.015

High 20.057 0.017 20.040 0.016
30% Low 20.096 0.012 20.063 0.013

High 20.191 0.017 20.138 0.015
50% Low 20.162 0.013 20.100 0.015

High 20.326 0.017 20.212 0.016
B. RMSE

10% Low 0.026 0.028 0.042 0.028
High 0.059 0.029 0.081 0.028

30% Low 0.097 0.029 0.065 0.029
High 0.191 0.030 0.139 0.029

50% Low 0.163 0.030 0.101 0.032
High 0.327 0.031 0.212 0.032

Aggregated bias
No. of DIF items 10% 20.010 0.016

30% 20.122 0.014
50% 20.200 0.015

Magnitude Low 20.060 0.014
High 20.161 0.016

Type Uniform 20.142 0.015
Nonuniform 20.079 0.015

Aggregated RMSE
No. of DIF items 10% 0.052 0.028

30% 0.123 0.029
50% 0.201 0.031

Magnitude Low 0.082 0.029
High 0.168 0.030

Type Uniform 0.144 0.030
Nonuniform 0.107 0.030

Note. Impact for the multigroup approach was estimated with the two-step approach. RMSE = root mean square

error; DIF = differential item functioning.
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Discussion

The purpose of this study was to present the modeling DIF approach and to evaluate it by com-

paring its performance with that of other DIF treatments such as deleting, ignoring, and multi-

group (with one step for item parameters and two steps for impact and person scores)

approaches. Overall, the simulation results were consistent with the hypothesized ones, with

few exceptions as noted earlier. The following general patterns were found in the simulation

study. First, the multigroup and modeling DIF approaches outperformed the deleting and ignor-

ing approaches for item parameter estimates and person scores. Second, overall, the multigroup

approach with two steps works well, compared with the modeling DIF approach. Third, the

modeling DIF approach can be a viable method to treat DIF items for most DIF conditions,

except for the larger number of DIF items (e.g., 50%). Below, guidelines in choosing one DIF

treatment method over another based on the simulation results are provided.

Table 5. Bias, RMSE, and Ratio for Variance Estimates of Person Scores.

Uniform Nonuniform

No. of DIF items Magnitude Multigroup Modeling Multigroup Modeling

A. Bias
10% Low 20.017 20.005 20.081 20.003

High 20.029 0.003 20.121 20.003
30% Low 20.014 0.001 20.162 20.001

High 20.055 20.007 20.315 20.008
50% Low 0.018 20.004 20.233 20.001

High 0.024 20.007 20.432 0.001
B. RMSE

10% Low 0.043 0.055 0.088 0.059
High 0.047 0.058 0.126 0.059

30% Low 0.041 0.056 0.165 0.066
High 0.067 0.060 0.316 0.066

50% Low 0.044 0.058 0.235 0.075
High 0.048 0.058 0.433 0.076

Aggregated bias
No. of DIF items 10% 20.062 20.002

30% 20.137 20.004
50% 20.156 20.003

Magnitude Low 20.082 20.002
High 20.155 20.004

Type Uniform 20.012 20.003
Nonuniform 20.224 20.003

Aggregated RMSE
No. of DIF items 10% 0.076 0.058

30% 0.147 0.062
50% 0.190 0.067

Magnitude Low 0.103 0.062
High 0.173 0.063

Type Uniform 0.048 0.058
Nonuniform 0.227 0.067

Note. Variance for the multigroup approach was estimated with the two-step approach. RMSE = root mean square

error; DIF = differential item functioning.
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Parameters and Information of Interest

Given the mixed results for the multigroup and modeling DIF approaches, researchers can

choose one of the methods depending on the parameters of interest (i.e., item parameters, per-

son scores, impact, and variance of the person scores) and information they need (i.e., accuracy

[quantified with bias], overall accuracy [quantified with RMSE], or precision [quantified with

standard error]).

The simulation results showed that the multigroup DIF approach with one step can provide

better overall accuracy for item parameter estimates than the modeling DIF approach in most

DIF conditions. For the nonuniform DIF type, the overall accuracy for item discrimination

parameter estimates in the modeling DIF approach can be similar to that in the ignoring DIF

approach. The overall accuracy of the item location estimates in the modeling DIF approach

was similar to that of the multigroup approach with one step only when there are 10% and 30%

DIF items. The modeling DIF and the multigroup DIF with a two-step approach for item para-

meter estimates are recommended when the number of DIF items is not large (e.g., less than

30%).

However, the standard error of the item parameter estimates in the modeling DIF approach

can be smaller than that of the multigroup DIF approach, because item parameters are estimated

based on all persons of the data in the modeling DIF approach, whereas they are estimated from

persons in the reference group. The item parameter estimates from the modeling DIF approach

can be more precise than those from the multigroup DIF approach, especially when there are

high DIF magnitudes and a large number of DIF items (e.g., 50%). If there are a larger number

of persons in the reference group, the precision can be relatively good for the multigroup

approach with a two-step approach. Unless there are many more persons in the reference group,

the modeling DIF approach is preferred to the multigroup DIF approach when researchers need

to use the standard errors of the item parameter estimates such as creating an item bank and

implementing IRT equating.

For the person scores, there were small differences between the multigroup DIF approach

and the modeling DIF approach based on the simulation results. However, there was the pattern

that the multigroup DIF approach can be slightly better than the modeling DIF approach for the

uniform DIF type. On the contrary, the modeling DIF approach can be better than the multi-

group DIF approach for the nonuniform DIF type. Thus, one of the approaches can be chosen,

depending on the DIF type in DIF analyses. Regarding impact and variance, the modeling DIF

approach performed better than the multigroup DIF approach in terms of accuracy (bias) and

overall accuracy (RMSE).

Multigroup Analysis Versus Modeling DIF

The specification of the multigroup and modeling approaches was based on the assumption

that one of the two groups can be set as a reference group and another is a focal group. It is

more critical to justify the reference group selection in the multigroup approach than in the

modeling approach. When one of the two groups is arbitrarily set as the reference group,

results (i.e., purified item parameters, person scores, impact, and variance of the person

scores) can change in the multigroup approach because of the two-step nature for scoring and

impact estimation in the multigroup approach. In contrast, the results from the modeling

approach will not change in the case of having an arbitrarily chosen reference group. Thus,

when a reference group cannot be clearly justified, using modeling approach is recommended

over multigroup approach.
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DIF Effect Sizes and Test Score Uses

DIF effects can be characterized differently, depending on the number of DIF items, the magni-

tude of the DIF, and the type of DIF. The DIF effect sizes can be calculated at the item and at

the test levels to quantify the effects of these factors on the total score scale or latent variable

scale. The DIF effect sizes can be a useful guideline in deciding a DIF treatment method.

In interpreting DIF effect sizes, it is important to decide whether the interpretation is made

for the individual score level or the whole population level (e.g., Borsboom, 2006). As an

example of the whole population level, when there is a large portion of nonuniform DIF items,

cancelation is allowed between a reference group and a focal group. In this case, it is expected

that differential effects between ignoring DIF and multigroup analysis or between ignoring DIF

and modeling DIF will be small in impact estimate. When researchers care about the impact

only, ignoring DIF would not cause bias in the presence of a full cancelation (i.e.,

jSTDSj � UTDS = 0), even though the test scores are composed of DIF items. In addition, the

ignoring DIF approach can be a better approach than the deleting DIF approach when research-

ers are interested in the impact. Deleting DIF items can result in bias for the impact because it

can disturb the cancelation at the test level. However, the cancelation occurs at the population

distribution score level, rather than at the individual score level (Borsboom, 2006). Thus, ignor-

ing DIF can result in invalid score comparisons for individuals.

In fact, it may be challenging to provide a general guideline for interpreting DIF effect sizes

because the interpretation of the magnitude of DIF effect size may vary across test score uses.

For example, the scale-level DIF effect size (ranged from 0 to 10), STDS = 2, can be seriously

taken for high-stakes tests, whereas it can be an ignorable effect size in low-stakes tests. It was

not the aim of this study to provide an absolute guideline for interpreting the DIF effect size. It

is hoped that the simulation study results can facilitate discussions of interpreting DIF effect

sizes, regarding various DIF conditions and DIF treatments.

This study has several limitations. First, as in other simulation studies, the simulation condi-

tions employed in the study design were limited, including the 20-item test and 20.5 impact,

because the authors’ main interest in the simulation study was to evaluate their proposed method

and compare it with other methods under various DIF conditions. Investigating the four different

approaches in more extensive simulation studies including various testing conditions is needed

to provide more general guidelines for item calibration and scoring practices in the presence of

DIF items.

Second, the multigroup and modeling approaches were based on the assumptions that there

are two categories of items (i.e., DIF items and non-DIF items), and the DIF items were flagged

with the right criterion. Thus, the performance of these approaches can differ depending on the

quality of the DIF detection. It has been known that power and Type I error of DIF item detec-

tion vary across DIF detection methods (e.g., Bolt, 2002). Thus, it may be common to have dif-

ferent categorizations of DIF items (i.e., DIF items vs. non-DIF items) depending on the DIF

detection method, which can be a potential problem with using the multigroup and modeling

approaches. One possible strategy for dealing with this problem is to show the sensitivity of the

item parameter estimates, person scores, and impact results to different DIF categorizations with

different DIF detection methods. When consistent results occur among the different DIF detec-

tion methods, the results can finally be reported.

Third, the model specification for the modeling DIF approach is limited to one primary

dimension and one secondary dimension for binary responses. It would be worthwhile to extend

the modeling DIF approach for more complex DIF patterns such as more than one primary and

secondary dimensions and/or for polytomous responses.
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The current study presented and evaluated IRT purification methods for item calibration and

scoring in the presence of DIF after a subset of items was detected as DIF items. In addition, the

method was compared with current DIF treatment methods, deleting DIF, ignoring DIF, and multi-

group approaches. It is hoped that this article improves the practice of dealing with DIF items and

leads to further discussions and studies on the treatment of DIF items in evaluating measures.
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Notes

1. Angoff (1993) noted that impact can be used to refer to ‘‘the true or unassailable difference between

the groups’’ and ‘‘an artifactual difference brought about by the use of inappropriate and irrelevant

(DIF) items’’ (p. 18). In this article, the authors used the term impact to indicate ‘‘the true or unassail-

able difference between the groups.’’

2. Low does not mean an absolute size of differential item functioning (DIF) such as small size of DIF.

Low may represent a medium size of DIF in practice. Likewise, low and high nonuniform DIF should

be interpreted relatively, not absolutely.
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