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Abstract

Cognitive diagnostic computerized adaptive testing (CD-CAT) purports to obtain useful diag-
nostic information with great efficiency brought by CAT technology. Most of the existing CD-
CAT item selection algorithms are evaluated when test length is fixed and relatively long, but
some applications of CD-CAT, such as in interim assessment, require to obtain the cognitive
pattern with a short test. The mutual information (MI) algorithm proposed by Wang is the first
endeavor to accommodate this need. To reduce the computational burden, Wang provided a
simplified scheme, but at the price of scale/sign change in the original index. As a result, it is
very difficult to combine it with some popular constraint management methods. The current
study proposes two high-efficiency algorithms, posterior-weighted cognitive diagnostic model
(CDM) discrimination index (PWCDI) and posterior-weighted attribute-level CDM discrimina-
tion index (PWACDI), by modifying the CDM discrimination index. They can be considered as
an extension of the Kullback–Leibler (KL) and posterior-weighted KL (PWKL) methods. A pre-
calculation strategy has also been developed to address the computational issue. Simulation
studies indicate that the newly developed methods can produce results comparable with or bet-
ter than the MI and PWKL in both short and long tests. The other major advantage is that the
computational issue has been addressed more elegantly than MI. PWCDI and PWACDI can run
as fast as PWKL. More importantly, they do not suffer from the problem of scale/sign change as
MI and, thus, can be used with constraint management methods together in a straightforward
manner.
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Cognitive diagnosis (CD) can be used to determine the presence or absence of specific skills

measured by the items in educational assessment. In the past two decades, various cognitive

diagnostic models (CDMs) have been proposed to facilitate obtaining diagnostic information,

which specifies whether each of the required skills has been mastered (Hartz, 2002; Junker &

Sijtsma, 2001; Mislevy, Almond, Yan, & Steinberg, 2000; Rupp, Templin, & Henson, 2010; K.

K. Tatsuoka, 1983).

One application of CDM that has received much attention is combining CD with computer-

ized adaptive testing (CAT), denoted as cognitive diagnostic CAT (CD-CAT; Cheng, 2009;

Huebner, 2010). CAT is an approach to individual difference assessment that is administered

and scored by computers (Lord, 1968). The major advantage of CAT is that items are selected

sequentially based on an examinee’s performance on previous items, and thus, the test is tai-

lored to his or her latent trait level. In this regard, CAT can potentially provide a more efficient

estimate of the latent trait of interest (Weiss, 1982). It is desired that CD-CAT can be devel-

oped to reap the same benefit of measurement efficiency as item response theory (IRT)–based

CAT. In particular, some applications of CD-CAT, such as in interim assessment, require to be

able to accurately recover examinees’ cognitive pattern with a short test length.

One of the crucial elements of CD-CAT is the item selection algorithm, and measurement

efficiency is the one of the major goals in the algorithm development. Most item selection algo-

rithms in CD-CAT are developed directly from the information indices in information theory.

Few algorithms may not have directly evolved from an information index, but some of them

are still connected to an information index–based algorithm, such as the rate function approach

(Liu, Ying, & Zhang, 2015), which can be alternatively interpreted as the minimum Kullback–

Leibler (KL) information between the log-likelihood ratio distribution and the zero-mean distri-

bution within its exponential family. Therefore, this article will focus on information indices–

based algorithms in CD-CAT.

Two general approaches can be identified among the basic algorithms according to the distri-

butions involved in the calculation: the response distribution–based approach and the cognitive

pattern posterior-based approach (or simply posterior-based approach). Research on item selec-

tion in CD-CAT originated from the SHE algorithm for the sequential classification experiment

for CD-CAT by C. Tatsuoka (2002) and C. Tatsuoka and Ferguson (2003) and the KL algo-

rithm by Xu, Chang, and Douglas (2003). The key distinction lies in the distributions involved:

The KL algorithm is measured by the expected distance between the distribution of the response

conditional on the estimated cognitive pattern and all possible cognitive patterns and, thus, the

KL algorithm falls into the response distribution approach, whereas, the SHE algorithm, a mem-

ber of the posterior-based approach, is the expected Shannon entropy of the new posterior of

the cognitive patterns.

Since then, major developments in the CD-CAT item selection algorithm research have

evolved around these two original methods. Cheng (2009) proposed two new methods based on

the KL algorithm: posterior-weighted KL (PWKL) and hybrid KL (HKL), which can match the

SHE in terms of measurement efficiency. Note that the posterior in PWKL is used as the weight-

ing factor and not involved in the calculation of KL distance, so PWKL is still a member of the

response distribution–based approach, and the same applies to HKL and other extensions of

PWKL. The modified PWKL (MPWKL) is the most recent development for the KL approach

(Kaplan, de la Torre, & Barrada, 2015). Kaplan et al. (2015) pointed out that the computational

time for MPWKL is much longer than PWKL and the generalized deterministic inputs, noisy

‘‘and’’ gate (G-DINA) model discrimination index (GDI), the other method proposed in that

article, although the measurement efficiency has been much improved over PWKL. The heavy

computational burden in MPWKL is due to the repetitive computation of the expected KL dis-

tance between the conditional response distributions given any pair of two distinct cognitive
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patterns, which is defined as the D matrix (Henson & Douglas, 2005). The D matrix can be pre-

calculated even before CAT administration actually takes place. During CAT administration, it

can be retrieved and reused to calculate MPWKL and, thus, substantial computation can be

saved. These apply to all other algorithms of this category including KL, PWKL. This pre-

calculation strategy might not offer too much added value for KL or PWKL because their com-

putation is not demanding, but it opens up a new possibility for the complicated methods such

as MPWKL.

Recently, Wang (2013) proposed mutual information (MI) algorithm that exploits the

expected MI between two posteriors. Simulation studies indicate that MI is more efficient than

PWKL and SHE in most conditions especially in short-length tests, but it suffers from the huge

computational burden. Wang devised a revised MI, but the mathematical manipulation for the

simplification is not straightforward. More importantly, the value and even the sign do not

remain the same as the original MI, which makes it inconvenient to use together with other

methods such as non-statistical constraint management methods because the most commonly

used method to incorporate constraint is to use them as weighting factors for an information

index. For example, the restrictive progressive (RP) method (Wang, Chang, & Huebner, 2011)

is built upon PWKL, and some new variants of RP can be easily developed by replacing the

PWKL with other information indices, such as SHE. MI, however, is not feasible due to its

computational burden, and neither is the revised MI for the scale/sign issue mentioned above.

The primary goal of this study is to develop two high-efficiency algorithms in this category

for short-length CD-CAT, by modifying the two item discrimination indices for paper-and-

pencil test construction for CD, namely, CDM discrimination index (CDI) and attribute-level

CDI (ACDI), proposed by Henson and Douglas (2005); Henson, Roussos, Douglas, and He

(2008); and Rupp et al. (2010). Furthermore, the second goal is to propose a pre-calculation

strategy to address the computational issue for complicated algorithms in the response

distribution–based approach. Henson and Douglas (2005) discussed the concept of reliability,

or discrimination, for CDMs to describe the ability of a test to distinguish among examinees’

cognitive patterns of mastery. CDI is essentially weighted sum of expected KL distance

between any pair of cognitive patterns and serves as a quantitative measure of how informative

an item is for the classification of examinees in CDM. The two newly proposed item selection

algorithms, as the counterpart of MI in response distribution–based item selection methods, are

expected to achieve similar or better measurement accuracy for short-length CD-CAT, but with

a more elegant method to address the computational issue.

The remaining sections of the article are laid out as follows. The next section will present

the CDM used in this study. Section ‘‘Item Selection Methods’’ is a brief review of major item

selection algorithms in CD-CAT. Section ‘‘CDI and ACDI’’ is a summary of CDI and ACDI.

A comparison between the KL algorithm and the CDI will be made. In Section ‘‘PWCDI and

PWACDI,’’ modifications for CDI and ACDI to be an efficient item selection method will be

presented. In Section ‘‘Simulation Studies,’’ two simulation studies will be conducted to evalu-

ate the efficiency of the two new item selection methods. Finally, Section ‘‘Discussion’’ will

conclude with a discussion of the findings of this work and directions for future research.

The CDM

In CD, one attempts to identify the cognitive skills involved in responding to items in an assess-

ment. Each skill is generally referred to as an attribute, and typically, content experts determine

the attributes required for an item. The general purpose of CD is to identify which attributes

each examinee has mastered or not based on the responses.
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A Q-matrix is an essential element of most of the CDMs. For an item bank consisting of J

items, the Q-matrix is a J 3 K matrix of 1s and 0s that specifies the association between

items and K attributes (K. K. Tatsuoka, 1983). The entry corresponding to the kth attributes

for the jth item, qjk , is equal to 1 if item j requires the mastery of attribute k, and qjk = 0

otherwise.

The Deterministic Input, Noisy And Gate (DINA) model (Haertel, 1989; Junker & Sijtsma,

2001) is used in this study for its simplicity and widespread use in CDM research (DeCarlo,

2010; de la Torre, 2011). The DINA model assumes that, in principle, an examinee must

have mastered each attribute associated with a particular item to respond correctly to that

item (‘‘And Gate’’) while recognizing that examinees might respond contrary to predictions

(‘‘Noisy’’). Certain examinees will answer an item incorrectly even though they have mas-

tered all of the required attributes, whereas other examinees will answer an item correctly

even though they have not mastered at least one of the required attributes. Given these prop-

erties, the DINA model–predicted probability that examinee i will respond correctly to item

j is defined by

P Yij = 1jai

� �
= 1� sj

� �hij gj
1�hij ,

where ai = (ai1, ai2, . . . , aiK)—aik is 1 if examinee i has mastered attribute k, and 0

otherwise—denotes the examinee’s mastery profile; sj is the probability that an examinee with

all of the required attributes will ‘‘slip’’ and answer item j incorrectly; and gj is the probability

that an examinee with at least one missing attribute will successfully ‘‘guess’’ the correct

answer. And hij =
QK

k=1 a
qjk

ik is the latent response to item i by examinee j. hij = 1 if examinee i

has mastered all the attributes measured by item j, otherwise hij = 0.

Item Selection Methods

This section is a brief review of item selection algorithms concerning measurement accuracy in

CD-CAT. A taxonomy of two approaches is adopted: the response distribution–based and

posterior-based methods including the original KL and SHE algorithms and their important

developments. As regards the distributions involved, the response distribution–based approach

attempts to develop a global summative measure for the difference between the conditional dis-

tributions of the response to the candidate item given all of the possible true and estimated cog-

nitive patterns. By contrast, the posterior-based approach involves the conditional posterior

distribution(s) of cognitive patterns given all of the previous responses and the possible response

to the candidate item.

This major difference carries some important implications for measurement efficiency and

calculation burden. In light of measurement efficiency, the SHE algorithm is much higher than

the KL algorithms as it is a direct measure of possible change in posteriors, whereas the KL

algorithm assesses this change through that of the response distributions. Therefore, it is the

major task for response distribution–based approach to tap the measurement potential in the

response distributions as MPWKL did. As far as computation is concerned, the posterior-based

approach needs updating the posterior and, thus, not much work can be done before CAT

administration while the pre-calculation of the D matrix offers a new route for the response

distribution–based approach. For example, alternatively, the KL indices calculation reduces to

pick out and sum up an appropriate column from the D matrix. The comparison of measure-

ment efficiency and computational reduction between these two approaches is the recurring

theme of the literature review below.
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The Response Distribution–Based Approach

The KL algorithm is the sum of KL distance between the distribution of the response conditional

on the estimated cognitive pattern, P(Yijja_ i), and the distributions that are conditional on all pos-

sible cognitive patterns, P(Yijjac), c = 1, 2, . . . , 2K (Xu et al., 2003). This index is formulated as:

KLj a
_

i

� �
=
X2K

c =1

X1

y = 0

log
P Yij = yja_ i

� �
P Yij = yjac

� �
0
@

1
AP Yij = yja_ i

� �2
4

3
5:

It can be considered as a measure of global discrimination power of item j between P(Yijja_ i)

and all the possible response conditional distributions P(Yijjac). The item with the maximum

value for KL, given the cognitive pattern a
_

i for examinee i, is the most discriminating one and

thus will be administered.

The original KL method suffers from a low measurement efficiency problem. The simula-

tion studies indicated that the KL index cannot achieve a pattern recovery rate similar to that of

the SHE algorithm for the DINA (Cheng, 2009) and the fusion model with a fixed-length CD-

CAT (Xu et al., 2003). But the KL algorithm demonstrated great computational advantage for

CAT administration. From the equation, it can be seen that all the possible KL indices for each

item in the entire bank can be calculated without any information from the CAT administration

because only the random variable Yij with value of either 0 or 1 and 2K possible cognitive pat-

terns are involved. As a result, substantial computation can be done offline, and item selection

reduces to picking out the maximum from the pre-calculated and stored D matrix.

The low efficiency issue was remedied by a Bayesian KL algorithm, namely, the PWKL

algorithm (Cheng, 2009). To reflect the varying importance of different patterns, the addend in

the KL algorithm is weighted by the corresponding posterior probability, and this modification

leads to the PWKL (Cheng, 2009):

PWKLj a
_

i

� �
=
X2K

c = 1

X1

y = 0

log
P Yij = yja_ i

� �
P Yij = yjac

� �
0
@

1
AP Yij = yja_ i

� �2
4

3
5p acjyt�1ð Þ

8<
:

9=
;,

where p(acjyt�1)}p(ac)
Qt�1

j = 1 P(Yij = 1jac)
yij 1� P(Yij = 1jac)
� �1�yij

, p(ac) is the prior prob-

ability of the cognitive patterns, and yt�1 is the vector of responses on t � 1 items for examinee

i. Inspired by Henson and Douglas’s (2005) discussion on the relationship between the item dis-

crimination power and the cognitive pattern distance, Cheng (2009) further assigned additional

weights to the cognitive patterns that are closer to the current cognitive pattern estimate and

defined the HKL whose formulation is presented below:

HKL =
X2K

c = 1

X1

y = 0

log
P Yij = yja_ i

� �
P Yij = yjac

� �
0
@

1
AP Yij = yja_
� �2

4
3
5p acjyt�1ð Þ 1

d ac, a
_

i

� �
8<
:

9=
;,

where d(ac, a
_

i) is the Euclidean distance

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
k = 1 (ack � a

_

ik)
2

q
for the possible cognitive pat-

tern ac and the current cognitive pattern estimate a
_

i.

The MPWKL is the most recent development for the KL approach (Kaplan et al., 2015).

MPWKL exploits the fact that the point estimate of cognitive pattern a
_

i might not be accurate

particularly when the test is relatively short, and it might be more desirable to consider the

weighted sum of all the PWKL with respect to all the possible cognitive patterns

ad , d = 1, 2, . . . , 2K . More specifically, the MPWKL is calculated as follows:

612 Applied Psychological Measurement 40(8)



MPWKLj =
X2K

d = 1

X2K

c = 1

X1

y = 0

log
P Yj = yjad

� �
P Yj = yjac

� �
 !

P Yj = yjad

� �
p acjyt�1ð Þ

" #
p ad jyt�1ð Þ

( )
:

If a probability of 1 is assigned to the point estimate a
_

i, then MPWKL reduces to PWKL.

MPWKL is more informative than the PWKL, and thus, it is expected to outperform PWKL,

which is confirmed by simulation studies. Kaplan et al. (2015) did not assess the performance of

MPWKL against MI or in a short-test scenario, or address the computational issue of MPWKL.

PWKL is an important development for the response distribution–based approach. Due to the

additional information on the posterior of the cognitive patterns, the PWKL and HKL are more

efficient than the original KL algorithm and similar to the SHE algorithm. Furthermore, they

also enjoy the advantage of having KL distance part and distance weights (in HKL) calculated

beforehand, and only the posterior weights need to be updated. So the running time for PWKL

and HKL can be decomposed into two parts: the offline calculation of the KL distance and the

online updating of the posterior weighting. Running time for PWKL and HKL is not a concern,

but this perspective carries important implications for further development along the response

distribution–based approach such as MPWKL and the two new methods proposed in the current

study. The calculation of KL distance can be done offline before the administration of the CD-

CAT and repeatedly retrieved when necessary, so the computational demand during the test

administration is in fact not high at all. But in terms of measurement efficiency, PWKL is not

designed for a short test and, therefore, not efficient enough for this scenario (Wang, 2013). The

current study is motivated by this fact and attempts to fill this gap in the literature.

The Posterior-Based Approach

C. Tatsuoka (2002) and C. Tatsuoka and Ferguson (2003) proposed the SHE item selection

algorithm. Shannon entropy quantifies the uncertainty inherent in a distribution. Shannon

entropy is maximized if the distribution is uniform and is minimized if the probability mass

concentrates on a single point. In CD-CAT, an ideal item would be one that minimizes the

expected Shannon entropy of the posterior distribution of a
_

i conditional on previous responses.

Thus, the SHE algorithm is defined as follows:

SHE =
X1

y = 0

X2K

c = 1

p acjyt�1, Yt = y
� �

log
1

p acjyt�1, Yt = y
� �

 !" # X2K

c = 1

P Yt = yjacð Þp acjyt�1ð Þ
" #

=
X1

y = 0

P Yt = yjyt�1ð Þ
X2K

c = 1

p acjyt�1, Yt = y
� �

log
1

p acjyt�1, Yt = y
� �

 !" #
,

where yt�1 denotes the response vector of t � 1 items for examinee i, and P(Yt = yjyt�1) is the

conditional response distribution for the current item given yt�1.

It is easy to observe from the equation that the value of the posterior of the cognitive patterns

needs online updating during CAT administration. Thus, no calculation can be made in advance

as the KL distance part in the response distribution–based approach. Fortunately, this does not

appear to be an issue in the SHE. As mentioned above, in terms of measurement efficiency, it is

superior to the KL index and is comparable with the PWKL and HKL.

A recent development for the SHE approach is the MI for CD-CAT (Wang, 2013). The

expected MI is calculated as follows:
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MI =
X1

y = 0

P Yt = yjyt�1ð Þ
X2K

c = 1

p acjyt�1, Yt = y
� �

log
p acjyt�1, Yt = y
� �

p acjyt�1ð Þ

	 
" #
:

An ideal item would be one that maximized the expected MI between p(acjyt�1, Yt = y) and

p(acjyt�1). To analytically show the connection between SHE and MI, MI can be rewritten as

the difference between two entropy measures,

MI =
X1

y = 0

P Yt = yjyt�1ð Þ

X2K

c = 1

p acjyt�1, Yt = y
� �

log
1

p acjyt�1ð Þ

	 
"
�
X2K

c = 1

p acjyt�1, Yt = y
� �

log
1

p acjyt�1, Yt = y
� �

 !#

= EYt
SHE p acjyt�1ð Þð Þ � SHE p acjyt�1, Yt = y

� �� �� �
,

in which the second term is exactly the SHE algorithm and the first term is the expected SHE of

the current posterior p(acjyt�1) with respect to Yt. SHE, however, intends to minimize the sec-

ond terms in MI, or, equivalently, maximize �SHE p(acjyt�1, Yt = y)
� �

.

Simulation studies indicated that MI is more efficient than other competing item selection

methods, particularly for short tests (Wang, 2013). However, the computational efficiency issue

of the posterior-based approach poses a serious practical challenge in the case of MI because

the online updating of the posteriors and a triple summation are involved in MI. By some alge-

braic manipulations, Wang (2013) presented a simplified version of MI:

MI =
1

h1

X1

y = 0

X2K

c = 1

P yt�1, Yt = yjacð ÞP acð Þ log
P Yt = yjacð Þ

h2

" #
,

where h1 =
P2K

c = 1

P(yt�1jac)P(ac) and h2 =
P2K

c = 1

P(yt�1, Yt = yjac)P(ac). The calculation burden

can be reduced by dropping some terms only related to h1 because it is a constant term over dif-

ferent items. Wang pointed out that one problem with such a simplification scheme is that it

only preserves the rank of the original index and that there is a change in scale and/or sign.

Therefore, if weighted by an item exposure control and constraint management index via multi-

plication, a simplified MI would produce an incorrect ordering of items.

In summary, both approaches have certain strengths and weaknesses. Compared with

the indirect response distribution–based approach, the posterior-based approach is a more

direct and effective measure in the context of CD-CAT in which an accurate estimate of the

cognitive pattern obtained via the updated posterior distribution is the ultimate goal. The

response distribution–based approach, however, has an edge over the posterior-based

approach with respect to computational efficiency. MI is the most efficient method among

all the existing methods but only with a partial solution to the computational issue. No

empirical study comparing MI and MPWKL has been found in the existing literature. It is

desirable to develop algorithms of both high measurement efficiency and low computational

demand. With this goal in mind, the current study attempts to develop two response

distribution–based high efficient methods from a CDI which can be considered as a general-

ized KL algorithm.
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CDI and ACDI

CDI

CDI is proposed for facilitating paper-and-pencil test construction for CD purposes. The build-

ing block for CDI is the D matrix for the jth item, Dj, and it is a 2K32K matrix whose entries

are the expected KL distance between the response distributions for any two distinct cognitive

patterns. Each u, v element in Dj, namely, the expected KL distance between the response dis-

tributions conditional on the cognitive patterns au and av (where, u = 1, 2, . . . , 2K and v = 1,

2, . . . , 2K ), is

Djuv = Eau
log

Pau
Xj

� �
Pav

Xj

� �
 !" #

:

A simulated example for the D matrix of a two-attribute test is presented in Table 1 for illustra-

tion purpose; (0,0), (1,0), (0,1), and (1,1) are the four possible cognitive patterns for a two-

attribute test, and all the KL values in the table are simulated only for illustration purpose.

A possible summative measure for the discriminatory power of the jth item is the mean of

all the elements of Dj. But the difficulty of differentiating pairs of cognitive patterns is differ-

ent. Specifically, an examinee who has not mastered any of the attributes measured by a test is

easily discriminated from an examinee who has mastered all attribute patterns. On the contrary,

cognitive patterns that differ by only one component are usually the most difficult to discrimi-

nate; therefore, Djuvs for those comparisons require more attention. If a test discriminates well

between similar cognitive patterns, it will discriminate well between those dissimilar cognitive

patterns. Therefore, a weighted average should be used such that each element is first weighted

by the similarity, or inverse ‘‘distance’’ between the cognitive patterns. Thus, a larger emphasis

is placed on those comparisons of cognitive patterns that are more similar.

Thus, a KL distance–based quantitative measure of how informative an item is for the classi-

fication of examinees in CDM, namely, CDI, can be constructed as a weighted mean of all off-

diagonal elements of Dj.

CDIj =
1P

u 6¼v h au, avð Þ�1

X
u 6¼v

h au, avð Þ�1
Djuv,

where h(au, av) =
PK
k = 1

auk � avkj j is the Hamming distance between two cognitive patterns au

and av. Henson et al. (2008) and Rupp et al. (2010) further developed the ACDI for attribute k.

This is defined as follows:

Table 1. A Simulated D Matrix for a Two-Attribute Test.

(0,0) (1,0) (0,1) (1,1)

(0,0) 0.00 0.90 1.15 2.05
(1,0) 0.80 0.00 1.94 1.15
(0,1) 1.36 2.26 0.00 0.90
(1,1) 2.16 1.36 0.80 0.00

Note. (0,0), (1,0), (0,1), and (1,1) are the four possible cognitive patterns for a two-attribute test; the Kullback–Leibler

(KL) values in the table are simulated only for illustration purpose.
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ACDIjk =
1

2K

X
all relevant cells

Djuv:

All of the relevant cells are defined as the entries in the D matrix where only the kth attribute

is different for cognitive patterns au and av. The ACDI for item j, ACDIj, is simply the sum of

ACDIjk over k from 1 to K:

ACDIj =
XK

k = 1

ACDIjk =
XK

k = 1

1

2K

X
all relevant cells

Djuv:

To simply the notation,

ACDIj =
1

2K

X
all relevant cells

Djuv,

where ‘‘all of the relevant cells’’ refers to all of the entries for any pair of cognitive patterns

with the Hamming distance of 1. ACDIj for item j is a partial sum of the matrix D in which only

the entries for two cognitive patterns with the Hamming distance of 1 are included. The cogni-

tive patterns with a Hamming distance of 1 are the pair that differ by only one component and

usually the most difficult to discriminate, so ACDI is the summation of all the most important

elements in the matrix D in terms of discriminating examinees.

Why CDI Is Better Than the KL Algorithm?

It is easy to note that the D matrix connects the computation of CDI/ACDI and the KL algorithm.

If the KL is obtained via the pre-calculation strategy described above, one, in fact, has to con-

struct the D matrix first, although this concept was not proposed in the original article. All the

possible KL values for an item can be obtained by summing up each columns corresponding to

the interim cognitive pattern estimate, namely, the marginal sum of columns in Table 1. Without

the weights of cognitive pattern similarity, CDI coincides with the sum of those possible KL val-

ues. In this sense, CDI can be interpreted as the sum of all the possible KL values weighted by

cognitive pattern similarity. Viewed in this new perspective, CDI as an item selection algorithm

is expected to be more informative than the KL algorithm, particularly during the early stage of

CD-CAT where the cognitive pattern estimate might not be accurate because, unlike the KL

algorithm, the calculation does not rely on the interim estimate of the cognitive pattern.

ACDI is a partial sum of the D matrix. ACDI selects the most important elements in Dj. It

would be interesting to assess its performance against the KL algorithm that chooses one partic-

ular column in Dj.

To further tap the potential, the same line of thinking of using posterior as weighting in

developing PWKL from KL can be applied to the CDI and ACDI, and the resultant new meth-

ods, posterior-weighted CDI (PWCDI) and posterior-weighted ACDI (PWACDI), are expected

to outperform or, at least, match PWKL.

PWCDI and PWACDI

The PWCDI and PWACDI

The key change is to incorporate the posterior distribution of cognitive patterns into the static

D matrix. It is natural to follow the same reasoning as does PWKL and take the varying

616 Applied Psychological Measurement 40(8)



importance of different cognitive patterns into account. One complication, however, is that the

entries in Dj are the expected KL distance between the conditional response distributions for

any pair of two distinct cognitive patterns and the posterior should be considered for both the

rows and columns, whereas in the KL algorithm, the weights are only applied to the columns.

Then the posterior-weighted D (PWD) matrix for item j can be defined as follows:

PWDjuv = Eau
p auð Þ3p avð Þ3 log

P Xjjau

� �
P Xjjav

� �
 !" #

,

where au and av are the updated cognitive pattern posteriors (where, u = 1, 2, . . . , 2K and v = 1,

2, . . . , 2K ). The PWCDI and PWACDI can then be easily defined in the same manner as the

original CDI and ACDI:

PWCDIj =
1P

u 6¼v h au, avð Þ�1

X
u 6¼v

h au, avð Þ�1
PWDjuv and

PWACDIj =
1

2K

X
all relevant cells

PWDjuv, respectively:

It is easy to see that both posterior and distance weights are used in PWCDI and PWACDI.

Connection to Existing Algorithms

PWCDI is closely related to some existing algorithms that can be clearly revealed through the

application of the D matrix in various algorithms. Just as explained above, the calculation of

the KL algorithm amounts to picking out the proper column of the D matrix corresponding to

the estimated cognitive pattern and then obtaining the column sum. With pre-calculation of the

D matrix, one may store the D matrix first and, during the administration, finish the computa-

tion according to the cognitive pattern estimate. Similarly, HKL is the column sum weighted

by cognitive pattern distance, PWKL the posterior-weighted column sum, and MPWKL the

sum of the D matrix weighted by row and column posteriors, and cognitive pattern distance.

PWCDI, however, is essentially the sum of the D matrix weighted by row and column poster-

iors, and cognitive pattern distance. In this sense, PWCDI is a counterpart to HKL as the

MPWKL to PWKL and can be alternatively labeled as the modified HKL (MHKL). PWCDI

can be interpreted as a posterior-weighted sum of all HKL values. The only difference between

PWCDI and MPWKL is the distance weighting, which is the same as that between PWKL and

HKL. It can be expected that PWACDI, on the contrary, is not directly related to any existing

algorithms.

Computational Simplification

The dynamic nature of the PWD matrix poses some computational challenge, particularly for

CAT administration where real-time delivery is the key. Just like MI, PWCDI and PWACDI

require a triple summation over 2K possible cognitive patterns. This problem can be solved eas-

ily using the same reasoning for the construction of the PWD matrix. The PWD matrix may be

partitioned into the ‘‘dynamic’’ posterior weighting and the ‘‘static’’ D matrix. The ‘‘dynamic’’

posterior weighting requires updating using the cognitive pattern estimate in each iteration of

CAT administration whereas the ‘‘static’’ D matrix remains constant over different iterations of

CAT and examinees. The computational demands for these two parts are drastically different.
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Only one multiplication is needed for the calculation of weighting, whereas that for the static

part is much more complicated. Translating this into mathematical language, the PWD can be

reformulated as follows:

PWDjuv = p auð Þ3p avð Þ3
X1

x = 0

P Xjjau

� �
3 log

Pau
Xjjau

� �
Pav

Xjjav

� �
" #

,

and the matrix form is

PWD = p3pT � D,

where p is the vector for the posterior probability of cognitive patterns and pT is its transpose.

The symbol ‘‘�’’ indicates the element-wise matrix multiplication. In practice, the D matrix can

be calculated beforehand and stored for the repetitive use in CD-CAT administration. In a

matrix-oriented programming language such as MATLAB, this simplification can improve cal-

culation speed significantly. Compared with the computational simplification made for MI,

algebraic manipulation is much easier in PWD and the issues of negativity and scale change

are also conveniently avoided. Therefore, for example, the RP method based on PWCDI and

PWACDI can be easily constructed by replacing PWKL with them. In summary, PWCDI and

PWACDI are a superior computational alternative to MI.

Simulation Studies

Study 1: The Fixed-Length Test

Design. A fixed-length CD-CAT simulation study was carried out to evaluate the efficiency of

the new algorithms. Three factors were manipulated in the simulation study: test length (short

vs. long), item bank quality (high vs. low), and item selection algorithms. The details were as

follows:

Examinees generation. Three thousand examinees were generated assuming that every exami-

nee has a 50% chance of mastering each attribute. In a five-attribute test, there were 32 distinct

types of cognitive patterns that were assumed to be equally likely in the population.

Item bank generation. The item bank consisting of 500 items for a five-attribute DINA model

is generated in the same manner as in Cheng (2009). The Q-matrix used in this study is gener-

ated item by item and attribute by attribute. Each item has a 30% chance of measuring each

attribute. This mechanism was employed to ensure that every attribute is adequately and equally

represented in the item pool. The item parameters sj and gj were both generated from U(0.05,

0.25) for the high-quality item bank and from U(0.10, 0.30) for the low-quality bank.

Test length. The length of the short test was set as 5 items, and the length of the long test was

set to be 10 items.

Item selection algorithms. Eight selection algorithms were compared in this study: KL,

PWKL, ACDI, CDI, MI, MPWKL, PWACDI, and PWCDI. The comparisons of KL, ACDI,

and CDI can reveal the efficiency of ACDI and CDI if they were used as item selection algo-

rithms against KL. The original ACDI and CDI were also compared with PWACDI and

PWCDI to demonstrate the effectiveness of the static-to-dynamic change of D matrix. The per-

formance of PWACDI and PWCDI against PWKL and MI is of the greatest interest for the cur-

rent study. The performance of MPWKL against MI is also interesting as no empirical studies

have been done.
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Evaluation criteria. The efficiency of the algorithms can be demonstrated using the high attribute

correct classification rate (ACCR) and mastery pattern correct classification rate (PCCR).

ACCR is defined as

ACCRk =
X3, 000

i = 1

I aik = a
_

ik

� �
=3, 000,

where I is the indicator function; PCCR is defined as

PCCR =
X3, 000

i = 1

I ai = a
_

i

� �
=3, 000:

Results. The ACCR and PCCR for the eight algorithms in various item banks and of various test

lengths are presented in Table 2. In the short test under the high-quality item bank, the PCCRs

for ACDI and CDI, 0.187 and 0.245 respectively, are higher than those of KL, even though

ACDI and CDI are not proposed as an item selection algorithm for CD-CAT. The table shows

that PWACDI and PWCDI have a 0.773 PCCR, and outperform ACDI and CDI, which indi-

cates that the modification proposed in this study is quite effective. More interesting results con-

cern the PCCRs for PWKL, MI, PWACDI, and PWCDI. The performances of PWACDI and

PWCDI are indistinguishable from those of MI. PWACDI in particular achieves the same mea-

surement precision as PWCDI. The lost information on other entries in the matrix D does not

exert a negative effect on item selection. PWCDI and MPWKL work equally well. As expected,

there is a substantial difference of 0.154 between the PCCRs for these three algorithms and

PWKL. Similar observations can be made easily for the low-quality item bank.

In the long test, regardless of item bank quality, the PCCRs for ACDI and CDI are higher

than is the case for KL. The difference between the ACDI/CDI and PWKL is still noticeable.

The difference between MI and PWKL almost disappears, and the difference between the

PWACDI/PWCDI and the PWKL shrinks to about 0.01 to 0.03. PWACDI, PWCDI, and

MPWKL are almost identical in the long test.

To demonstrate the advantage of the pre-calculation of the matrix D, the running time for

several algorithms in two strategies for one simulation study condition, namely, without pre-

calculation (old) and with pre-calculation (new), is recorded and summarized in Table 3. The

running time for SHE and simplified MI is also given as the baseline. The pre-calculation strat-

egy does not make a big difference for PWKL, but for MPWKL and PWCDI, the running time

reduces by a factor of about 6.4 and similar to that of PWKL. The running time of MPWKL

was reported as 3 times more than that of PWKL (Kaplan et al., 2015). SHE is a little longer

than PWKL, and MI is twice as long as SHE. The proposed method is very effective in reduc-

ing the calculation time for the response distribution–based algorithm.

Study 2: The Variable-Length Test

Design. Study 2 seeks to investigate the efficiency of the two proposed algorithms against

PWKL in a variable-length test. A more efficient algorithm can terminate the test with fewer

items than a less efficient algorithm in a variable-length test.

Three factors were manipulated in the simulation study: item bank quality (high vs. low),

the termination rule, and three item selection algorithms (PWKL, PWACDI, and PWCDI).

Examinees and item banks were simulated in the same manner as in Study 1. The termination

rule for the variable-length test was proposed by C. Tatsuoka and Ferguson (2003) and stops
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Table 2. The ACCR and PCCR for Eight Algorithms in Various Item Banks and Test Lengths.

Item Selection
ACCR

Test length quality algorithms A1 A2 A3 A4 A5 PCCR Difference

5 High KL 0.581 0.964 0.548 0.897 0.562 0.144
ACDI 0.720 0.989 0.492 0.941 0.492 0.187
CDI 0.503 0.989 0.939 0.939 0.491 0.245
PWKL 0.805 0.942 0.881 0.923 0.900 0.619
MI 0.942 0.945 0.925 0.948 0.926 0.774 0.155
MPWKL 0.921 0.943 0.916 0.923 0.904 0.772 0.153
PWACDI 0.911 0.943 0.915 0.923 0.889 0.773 0.154
PWCDI 0.923 0.943 0.917 0.923 0.906 0.773 0.154

Low KL 0.571 0.943 0.587 0.845 0.539 0.158
ACDI 0.690 0.967 0.492 0.887 0.491 0.193
CDI 0.504 0.966 0.888 0.889 0.491 0.238
PWKL 0.762 0.875 0.835 0.867 0.835 0.512
MI 0.887 0.888 0.846 0.894 0.866 0.627 0.115
MPWKL 0.852 0.891 0.859 0.857 0.824 0.621 0.109
PWACDI 0.838 0.892 0.856 0.856 0.811 0.635 0.123
PWCDI 0.852 0.892 0.857 0.856 0.826 0.611 0.099

10 High KL 0.591 0.989 0.753 0.928 0.842 0.337
ACDI 0.719 0.991 0.937 0.947 0.714 0.534
CDI 0.939 0.992 0.939 0.933 0.924 0.771
PWKL 0.997 0.981 0.977 0.980 0.971 0.909
MI 0.981 0.973 0.967 0.978 0.976 0.900 20.09
MPWKL 0.983 0.984 0.984 0.980 0.974 0.928 0.019
PWACDI 0.976 0.980 0.978 0.971 0.972 0.921 0.012
PWCDI 0.983 0.983 0.984 0.979 0.973 0.926 0.017

Low KL 0.578 0.981 0.825 0.9 0.655 0.277
ACDI 0.688 0.972 0.883 0.891 0.685 0.460
CDI 0.877 0.966 0.885 0.878 0.869 0.618
PWKL 0.935 0.946 0.927 0.939 0.922 0.768
MI 0.933 0.941 0.936 0.944 0.949 0.781 0.013
MPWKL 0.937 0.949 0.944 0.935 0.930 0.798 0.030
PWACDI 0.925 0.939 0.933 0.920 0.928 0.800 0.032
PWCDI 0.938 0.947 0.944 0.936 0.930 0.800 0.032

Note. ACCR = attribute correct classification rate; A = attribute; PCCR = pattern correct classification rate;

KL = Kullback–Leibler index method; ACDI = attribute-level cognitive diagnostic model discrimination index; CDI =

cognitive diagnostic model discrimination index; PWKL = posterior-weighted Kullback–Leibler information method;

MI = mutual information method; MPWKL = modified PWKL; PWACDI = posterior-weighted attribute-level cognitive

diagnostic model discrimination index; PWCDI = posterior-weighted cognitive diagnostic model discrimination index.

Table 3. Average Test Administration Time per Examinees (10 Items, High-Quality Bank).

Algorithm Time (old, in ms) Time (new, in ms)

PWKL 20 19
MPWKL 142 22
PWCDI 144 23
MI 55
SHE 28

Note. ‘‘Old’’ refers to the calculation strategy in which the matrix D is not pre-calculated and ‘‘new’’ is otherwise.

PWKL = posterior-weighted Kullback–Leibler information method; MPWKL = modified posterior-weighted Kullback–

Leibler information method; PWCDI = posterior-weighted cognitive diagnostic model discrimination index; MI =

mutual information method simplified as in Wang (2013).
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the test when the probability of the cognitive pattern with the largest probability reaches a pre-

specified value, such as 0.7, 0.8, and 0.9, in the current study.

Evaluation criteria. The efficiency of an algorithm in a variable-length test can be measured by

the mean test length. Other descriptive statistics of the test length including the maximum, min-

imum, and standard deviation were also reported.

Results. All of the descriptive statistics for three algorithms under various combinations of item

banks and different criteria for the stopping rule are summarized in Table 4. Regardless of the

item quality and stopping rule criterion, the mean test length for MI, PWACDI, and PWCDI is

smaller than that of the PWKL, except that in the low item quality bank, MI produces a larger

mean test length when the stopping rule criterion is conservative (i.e., 0.8, 0.9). Item bank qual-

ity and stopping rule criteria have some effect on MI and PWACDI, but under all of the condi-

tions, PWCDI uniformly has about 0.5 items fewer than is the case for the PWKL.

Discussion

The PWKL is a well-established efficient Bayesian item selection algorithm in CD-CAT. It can

achieve satisfactory measurement accuracy with a relative long test. Some applications of CD,

such as in interim assessment, however, aim to reaching the goal of accuracy in a short test. MI,

as a computationally intensive SHE approach method, provided a partial solution to this need.

The current study pursues the response distribution–based approach, developing two

Bayesian methods based on CDI/ACDI, PWACDI, and PWCDI. The key to the improvement

is the information on all of the other possible cognitive patterns besides the estimated cognitive

pattern. This is particularly important during the early stage of CD-CAT. Inaccuracy of estimat-

ing the latent trait at the early stage of CAT is well recognized (Chang & Ying, 1996). Thus,

some item selection methods are not efficient during the early stage because the cognitive pat-

tern estimate plays an important role in the calculation. The PWKL remedied this issue by

incorporating the posterior distribution of the cognitive patterns, which is the usual Bayesian

solution. The proposed methods provide a further improvement by taking advantage of all of

the pairwise comparison of all possible cognitive patterns in the CDI, together with the

Bayesian solution. Two simulation studies demonstrate that the new algorithms can improve

the PCCR greatly in a short test and can satisfy the pre-specified stopping rule with fewer items

in a variable-length test.

It is worth noting that there might be an issue of Q-matrix completeness for the short test

length conditions in Study 1. Chiu, Douglas, and Li (2009) stated that the necessary and suffi-

cient condition for a complete Q-matrix was that it contained all the unit vectors. More specifi-

cally, the Q-matrix for an examinee in the short test length conditions is complete if it is a 5-

by-5 identity matrix after some necessary column swapping. According to this rule, the comple-

teness of the Q-matrices produced by all of the algorithms may be empirically checked. The Q-

matrices produced by MI, MPWKL, PWCDI, and PWCDI are complete whereas those pro-

duced by PWKL might not be, which can be additional evidence of the superiority of the new

algorithms.

Among all the questions that deserve further studies, the most interesting one is to investi-

gate the efficiency of the two new methods if they are combined with the item exposure control

mechanism. In practice, some statistical and non-statistical constraints are important such as the

item exposure rates. Wang et al. (2011) proposed two restrictive stochastic item selection meth-

ods for addressing the issue of the trade-off between measurement precision and item security

based on the PWKL, namely, RP and the restrictive threshold (RT) method. The PWACDI and

PWCDI can be easily generalized into the RT and RP methods, and replace the PWKL index in
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RP and RT. It would be interesting to investigate whether the RP and RT based on the MI and

the two proposed methods can still maintain this advantage against the original RP and RT.
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