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Abstract

Markov chain Monte Carlo (MCMC) is nowadays a standard approach to numerical computation 

of integrals of the posterior density π of the parameter vector η. Unfortunately, Bayesian inference 

using MCMC is computationally intractable when the posterior density π is expensive to evaluate. 

In many such problems, it is possible to identify a minimal subvector β of η responsible for the 

expensive computation in the evaluation of π. We propose two approaches, DOSKA and INDA, that 

approximate π by interpolation in ways that exploit this computational structure to mitigate the 

curse of dimensionality. DOSKA interpolates π directly while INDA interpolates π indirectly by 

interpolating functions, for example, a regression function, upon which π depends. Our primary 

contribution is derivation of a Gaussian processes interpolant that provably improves over some of 

the existing approaches by reducing the effective dimension of the interpolation problem from 

dim(η) to dim(β). This allows a dramatic reduction of the number of expensive evaluations 

necessary to construct an accurate approximation of π when dim(η) is high but dim(β) is low.

We illustrate the proposed approaches in a case study for a spatio-temporal linear model for air 

pollution data in the greater Boston area.

Supplemental materials include proofs, details, and software implementation of the proposed 

procedures.
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1. INTRODUCTION

The core of Bayesian inference is formalization of beliefs about model parameters η given 

the observed data Y using the posterior density π of η. For most nontrivial problems, 

analytical derivation of characteristics of individual components ηi, such as posterior 

moments, quantiles, or other functionals of the marginal density of ηi, is intractable and one 

has to resort to Markov chain Monte Carlo (MCMC) to sample from π in order to estimate 

the desired quantities from the sample. Each transition of the Markov chain typically 

requires an evaluation of the target density π at a candidate state drawn from a proposal 

density. Therefore, when π is computationally expensive to evaluate, only short MCMC runs 

are feasible, which is not sufficient for accurate estimation.

The focus of our work is reduction of computational burden of MCMC via efficient 

construction of approximate posterior densities in settings where η is high-dimensional but 

there is structure in the computation to evaluate the exact posterior density π or its logarithm 

l. In many such problems, it is possible to identify in η the minimal subset of variables, β, 

that is responsible for the expensive computation, and thereby to partition η as η = [β, ζ]. 

Consequently, l can be evaluated at a new parameter value η* = [β*, ζ*] in two steps: (i) a 

computationally expensive step υ = GE(β*), followed by (ii) a cheap calculation GC(υ, β*, 

ζ*) or sometimes even GC(υ, ζ*), so that l([β*, ζ*]) = GC[GE(β*), β*, ζ*].

For example, consider the linear model Y = Xw + e, where e has a multivariate normal 

(MVN) distribution with a zero mean and a covariance matrix V ≔ V(γ) parameterized by 

γ. If the dimension of the vector of observations Y is large, V−1 is not available in closed 

form and V does not have exploitable sparsity structure; as is often the case in spatio-

temporal models, the cost of evaluation of the posterior density of [w, γ] is dominated by the 

factorization of V, which constitutes the major cost in GE, while the cost to complete the rest 

of the computations GC is of smaller magnitude.

Another class of examples comes from the field of computationally expensive inverse 
problems, discussed in the article by Kennedy and O’Hagan (2001) and references therein. 

In the simplest case, the vector of observed data Y is modeled as Y = f(β) + e, where f is the 

vector-valued computationally expensive “black-box” nonlinear regression function (known 

as simulator) and e is the vector of errors that has a multivariate normal density. Evaluation 

of f at β* often presents the main computational challenge which we associate with GE, and 

once the value f(β*) is known, the remaining computation GC to evaluate l is cheap.

In this article, we are concerned with systematic examination of computationally tractable 

approaches to approximate l when its argument η separates into the “expensive” and 

“cheap” blocks. Consequently we assume that l([β*, ζ*]) = GC[GE(β*), β*, ζ*], with GE 

and GC well-defined, and omit the details of actual identification of the expensive and cheap 

computations, which are specific to an application area and to an implementation of l. The 

main idea is simple: evaluate GE at a set of points on a high-probability region for β and use 

the values GE(β(i)) to approximate l by an interpolant l̃. The resulting cheap-to-evaluate 

surrogate surface l̃ can be used to define a proposal density for MCMC sampling from π that 

produces candidate states with a high probability of being accepted (Rasmussen 2003; 
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Christen and Fox 2005), or as a substitute for l if the approximation is accurate enough 

(Bliznyuk et al. 2008).

Reduction of the computational burden for such models via approximations to π (or its 

logarithm l) attracted considerable attention in recent years. To improve the efficiency of 

MCMC, Rasmussen (2003) used best linear unbiased prediction (BLUP, known in 

geostatistics as kriging) to interpolate l directly, that is, at the knots chosen on the η-space, 

under the assumption that l is a realization of a Gaussian process (GP). As a consequence, 

his heuristic approach is sensitive to the “curse of dimensionality” and only posterior 

densities with dim(η) around 15 are conjectured to be tractable (Rasmussen 2003, p. 659).

The main contribution of our article is extension of Rasmussen’s interpolant to high-

dimensional models where only a subvector β of η is “expensive.” In the class of zeromean 

GPs with separable covariance functions (as defined in Section 3), we derive a direct optimal 

interpolant ( DOSKA), for which the interpolation error is controlled only by the placement of 

knots in the β-space, rather than in the η-space. This causes the effective dimension of the 

interpolation problem to drop from dim(η) to dim(β), and is capable of reducing the number 

of expensive computations GE necessary to construct a direct interpolant by orders of 

magnitude when dim(β) is low and dim(η) is high. As we illustrate in the case study of 

Section 5 for the above linear model with dim(η) = 70 and dim(β) = 6, fewer than 300 β-

knots are sufficient for construction of a very accurate approximation to l. To address 

situations in which these assumptions on the GP may be overly restrictive, we discuss 

generalizations in Section 6.

Our second contribution is development of the idea of indirect approximation ( INDA) in the 

context of general computationally expensive statistical problems with variable parameter 

costs. We propose to use the indirect interpolants of l of the form 

l
∼([β∗, ζ∗]) = GC[GE

∼ (β∗), β∗, ζ∗], where the ith component of GE
∼

 interpolates the ith 

component of the “output” of GE. To the best of our knowledge, this simple idea has not 

attracted attention outside of the literature on analysis of computer experiments, where 

considerable research effort was devoted to emulation of an expensive computer model using 

a GP model (e.g., Kennedy and O’Hagan 2001). The dimension of each subproblem of 

interpolating a component of GE is dim(β). We recommend and use interpolation under a 

radial basis function (RBF) model, which is much cheaper to fit than kriging models when 

the dimension of the “output” of GE is very large (Sections 2 and 6.2).

The article is structured as follows: Necessary notation and definitions for the direct and 

indirect interpolants are introduced in Section 2. Section 3 is devoted to derivation and 

analysis of properties of the optimal direct interpolant DOSKA. The impact of the 

dimensionality and of dependence between the “expensive” and “cheap” blocks of η is 

studied in the simulation studies of Section 4. Application of both of the proposed methods, 

direct and indirect, is illustrated in Section 5 on a spatio-temporal linear model for a real air 

pollution dataset. Possible extensions of the proposed direct interpolant and relative merits 

of direct and indirect approximations are discussed in Section 6. Technical details, such as 

proofs and discussion of fitting, are gathered in the Appendix.
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2. NOTATION AND DEFINITIONS OF INTERPOLANTS

In this section, we introduce relevant notation and define the RBF and kriging interpolants 

that are used in this article for direct and indirect approximation.

2.1 Notation

All variables are assumed to be (column) vectors or matrices of size specified in the 

appropriate definition; this will not be emphasized by boldface notation. We define the 

distance between a point x and a set  as dist(x, ) = infx′∈  ‖x − x′‖2. Only when applied 

to a vector, a single subscript notation is used to “extract” components, for example, xi is the 

ith component of x. For sets 1 and 2, 1 \ 2 will denote the set of elements of 1 that 

are not in 2 and | 1| will give the number of elements in 1. We represent sets as lists with 

lexicographic ordering of elements. The direct (Cartesian) product operator ⊕ is used to 

“merge” elements from lists 1 and 2 as

𝒮1 ⊕ 𝒮2 ≔ x(i), y(1) , …, x(i), y
( |𝒮2 | )

: i = 1, …, |𝒮1 | .

(To emphasize the ordering of elements in the list 1 ⊕ 2 necessary for the proof of 

Proposition A.2 of Appendix A.1, we did not use the conventional notation, ×, for the 

Cartesian product of two sets.)

For a scalar-valued function g : (x, y) ↦ g(x, y), we extend its definition to finite sets as g : 

( 1, 2) ↦ g( 1, 2), where g( 1, 2) is a | 1| × | 2| matrix whose ijth element is g(x(i), 

y(j)) for x(i) ∈ 1 and y(j) ∈ 2. We use an analogous extension for functions of a single 

vector argument.

2.2 General Form of Interpolants

In the most general form, an RBF or a kriging interpolant of a scalar-valued function g at a 

set of points  = {x(1),…, x(K)} is given by

g∼(x) = ∑
i = 1

K
aiϕ x, x(i); θ + q(x; c), (2.1)

where ϕ is a basis function parameterized by θ and q is a “model” for the systematic 

variation in g. We restrict attention to “tails” q that are linear in c such as low-degree 

polynomials in x with coefficients c. The basis function parameters θ enter into Equation 

(2.1) in a nonlinear way, whereas the interpolant is linear in the coefficients a = [a1, …, aK]⊤ 

and c. In the case of kriging, ϕ(·, ·; θ) is a positive definite function. Merits of kriging and 

RBF interpolation were discussed by Cressie (1991, section 4.4) and Bliznyuk et al. (2008).

For a given vector θ of basis function parameters, the vectors of coefficients a = [a1, …, 

aK]⊤ and c can be obtained by solving the system of dual kriging equations given in the 

work of Cressie (1991, section 4.4.5), which requires (K3) floating point operations (flops). 
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The right side of this system—determined by the values that g takes at  and by the linear 

constraints on a and c to ensure existence and uniqueness of the solution—does not depend 

on θ, while the (interpolation) matrix on the left side is typically a function of θ.

2.3 (Specifics of) Interpolants of Densities

Our focus is interpolation of the log-posterior l that can be represented as l(β, ζ) = 

GC[GE(β), β, ζ], where evaluation of GE is expensive, but that of GC is cheap.

As we noted in the Introduction, knots for our direct ( DOSKA) and indirect ( INDA) 

interpolants (specified below) are chosen on β-space rather than η-space. It is crucial that 

these be selected on a high probability density (HPD) region for β. The true HPD region for 

β is unknown but can be approximated using a local quadratic fit or a more general 

nonparametric approximation of l as discussed in the work of Bliznyuk et al. (2008) and 

Bliznyuk et al. (2011), respectively. Here we follow fitting recommendations outlined in 

these articles. In particular, to reduce the sensitivity of the interpolants to scaling of 

variables, we fit the interpolants upon a “sphering” (Scott 1992, section 7.3) transformation 

β ↦ H−1 β, where H is any square matrix satisfying HH⊤ ≈ var(β).

If l̃ is a direct or an indirect interpolant of l, the approximate posterior density π̃ is defined as

π∼([β∗, ζ∗]) = exp l
∼([β∗, ζ∗]) · 𝕀{β∗ ∈ 𝒩, ζ∗ ∈ ℨ}, (2.2)

where  is the indicator function,  is some neighborhood of the β-knots ℬ used for 

interpolation, and ℨ is the parameter space for ζ. Thus we restrict the support of π̃ to the 

region where l̃ is well-approximated. To ensure that π̃ is a valid unnormalized density, that 

is, is integrable, we assume that the interpolant l̃ is continuous as a function of η, and that 

and ℨ are closed and bounded. A more extensive discussion of the knot selection and fitting 

issues can be found in the work of Bliznyuk et al. (2008, 2011). The steps to construction 

and use of the posterior density interpolants are outlined in Appendix A.2.

2.4 Indirect Approximation ( INDA)

The indirect approximation ( INDA) that we consider has the form l̃(β, ζ) = GC[G̃
E(β), β, 

ζ], where the ith component of G̃
E is a function that interpolates the ith component of GE at 

the set of knots ℬ.

If kriging is used, the vector of covariance function parameters θ ideally needs to be 

estimated individually for every component of GE. However, several popular RBFs (most 

notably, cubic and thin-plate spline) do not require estimation of θ (particularly, after 

“sphering” β; Section 2.3), yet are quite robust in practice. In this case, the linear systems of 

equations to interpolate components of GE have the same interpolation matrices, and, 

consequently, only a single matrix factorization is required to simultaneously solve the 

interpolating equations for multiple right sides determined by values of components of GE at 

the knots ℬ; see Appendix A.2.3 for details.
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In our work, we use RBF interpolation with a cubic basis function ϕ(x, y; θ) ≔ ‖x − y‖2
3 and a 

linear tail q(x; c) ≔ [1, x⊤] · c for indirect approximation.

2.5 Direct Approximation

Direct interpolants such as those using RBFs or by kriging, approximate l by treating it as a 

“black box,” without an attempt to identify computationally expensive blocks in the 

evaluation of l (Rasmussen 2003).

Our direct optimal interpolant of l by (separable) simple kriging ( DOSKA)—the main focus 

of this work—will be derived in Section 3.1 and fitting issues will be discussed in Appendix 

A.2.2. Simple kriging assumes that the mean function of the GP is known (Cressie 1991) 

and the BLUP is computed after the mean has been subtracted from the GP. Following 

Rasmussen (2003), we “recenter” l to have roughly a zero mean over the (estimated) high-

probability region of π. Likewise, we use a Gaussian basis function defined as

ϕ(x, y; θ) = exp − ∑
j = 1

dim(x)
θ j(x j − y j)

2 . (2.3)

RBF-based direct interpolants similar to DOSKA can also be used as discussed in Section 6.1. 

However, because the basis functions are typically neither separable nor positive definite, 

theoretical optimality (like in the case of simple kriging) of these generalizations of DOSKA 

cannot be established.

3. DOSKA—DIRECT OPTIMAL SEPARABLE (SIMPLE) KRIGING 

APPROXIMATION

The focus of this section is derivation and study of the properties of the direct interpolant of l 
that distinguishes between expensive and cheap computations in the evaluation of l. We 

proceed under the assumption that l is a realization of a GP with mean 0, constant variance 

σ2, and a correlation function satisfying the separability condition

Cη β(1), ζ(1) , β(2), ζ(2) = Cβ β(1), β(2) · Cζ ζ(1), ζ(2) . (3.1)

The implications and possible relaxations of this assumption are discussed in Sections 3.2 

and 6. In Section 3.1, we derive an optimal interpolant as a solution to the following adaptive 

design problem: given a finite set ℬ of β-knots, construct a set of knots

𝒟([β∗, ζ∗]) = β( j), ζ(i, j) :1 ≤ i ≤ K j, β( j) ∈ ℬ , (3.2)

of arbitrary size, to minimize the error of prediction of l([β*, ζ*]) with the best linear 

unbiased predictor (BLUP) E{l([β*, ζ*])|l( )}. Notice the set ℬ is held fixed and the 

“expensive” subvector of each element of ([β*, ζ*]) is an element of ℬ. In Section 3.2 we 
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study the properties of the proposed interpolant. Fitting issues are addressed in Appendix A.

2.2.

3.1 Derivation of DOSKA

Let  = {[β(j), ζ(i,j)] : 1 ≤ i ≤ Kj, β(j) ∈ ℬ} be any finite set of η-knots that can be created 

using β-knots from ℬ. Define * ≔ {ζ*} ∪ {ζ(i,j) : [β(j), ζ(i,j)] ∈  for some j}.

By Proposition A.2 proved in Appendix A.1,

var l([β∗, ζ∗]) | l(𝒟) ≥ var l([β∗, ζ∗]) | l(ℬ ⊕ 𝒵∗) ,

as  ⊂ ℬ ⊕ *. Since E{l([β*, ζ*])|l( )} and E{l([β*, ζ*])|l(ℬ ⊕ *)} are both unbiased, 

the latter predictor improves over the former.

From Proposition A.2 proved in Appendix A.1 it follows that, under separability of Cη of 

Equation (3.1), var{l([β*, ζ*])|l(ℬ ⊕ *)} = var{l([β*, ζ*])|l(ℬ ⊕ ζ*)}. Hence E{l([β*, 

ζ*])|l(ℬ ⊕ ζ*)} improves over E{l([β*, ζ*])|l( )} and cannot be improved upon no matter 

what  is constructed using the knots in ℬ. The resulting Direct Optimal Separable (Simple) 

Kriging Approximant ( DOSKA) has the form

l
∼

D([β∗, ζ∗]) ≔ E l([β∗, ζ∗]) | l(ℬ ⊕ ζ∗) = Cβ(β∗, ℬ) · Cβ(ℬ, ℬ)−1 · l(ℬ ⊕ ζ∗) . (3.3)

To simplify notation, here we suppressed dependence of Cβ on the correlation function 

parameters θ, which will be examined in Appendix A.2.2 when we discuss fitting.

A reader may wonder how the predictor in Equation (3.3) is different from the usual kriging 

equations. Clearly, the best predictor of l([β*, ζ*]) based on ℬ is E{l([β*, ζ*])|l(ℬ ⊕ ℨ)}, 

where ℨ is the entire parameter space for ζ. Using a limiting argument, a naïve evaluation of 

the best predictor would require an inversion of an infinite covariance matrix of l(ℬ ⊕ ℨ). 

Equation (3.3) gives the expression for the best predictor in the form that can be evaluated in 

practice.

In Figure 1, we illustrate the derivation of DOSKA graphically when dim(η) = 2 and dim(β) = 

1. One is given the set ℬ of 10 β-knots, denoted by Δ. The goal is to predict l(η*) at a new 

site η*= [β*, ζ*], marked by x. A reasonable strategy for creation of the set  of η-knots 

(marked by o) attempts to cover the (elliptical) HPD region for η. To improve the prediction 

error of the BLUP given , one (i) projects {η*} ∪  onto the ζ -space to obtain * = {ζ*}

∪  (with ζ* marked by * and  marked by ▹) and (ii) constructs ℬ ⊕ * (marked by +, 

large and small). Under the above assumptions on l, the BLUP given the knots ℬ ⊕ * is 

the same as the BLUP given the knots ℬ ⊕ ζ* (marked by large +).

3.2 Analysis

In this section we make several important observations about DOSKA.
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1. The predictor of Equation (3.3) does not assume that either Cβ or Cζ is 

separable, although this assumption is often made out of convenience in 

applications of kriging (Rasmussen 2003). Remarkably, under the above 

assumptions on the GP, DOSKA does not depend on the choice of Cζ at all, as can 

be seen from Equation (3.3).

2. It follows by Taylor’s expansion of l̃D of Equation (3.3) in the neighborhood of 

its maximizer [β̂, ζ̂] that, under the assumed separability of the correlation 

function of Equation (3.1), the unnormalized approximate posterior density 

exp(l̃D) implies neither the independence of β and ζ, nor the separability of the 

covariance matrix of β and ζ.

3. If β* ∈ ℬ, then lD̃([β*, ζ*]) = l([β*, ζ*]). In this case, the gradients with respect 

to ζ of the left and right sides are equal, but the gradients with respect to β are 

not.

4. The derivatives of DOSKA are available analytically so long as Cβ is differentiable 

and l is differentiable in ζ. They can be used for efficient sampling from the 

approximate posterior density using gradient-based MCMC samplers such as 

Langevin diffusions (Robert and Casella 1999).

5. Given a compact set S and a set of n knots n ⊂ S ⊂ ℝd, define m( n, S) = 

maxx∈S dist(x, n). This is the minimum value of the coverage “radius” r that 

ensures that every point in S is within distance r from n. Convergence of 

interpolants to the underlying function g (over S) is governed by m( n, S), and 

often the rate is (m( n, S)α), where α > 0 is determined by the smoothness g, 

by the choice of the interpolant, and by the Lp norm used to measure distance 

between g and the interpolant. It is possible to show that the fastest rate at which 

m( n, S) shrinks is (n−1/d). For example, if S = [0, 1] ⊂ ℝ, m( n, S) ≥ 1/(2n).

If the full direct approximation to a continuous l is used (like in Rasmussen 2003) and the 

set n of η-knots is chosen on some subset S of ℝdim(η) to minimize m( n, S), the point-
wise convergence rate of the kriging interpolant to l is (bounded above by) (n−1/dim(η)), 

where dim(η) = dim(β) + dim(ζ). On the other hand, the corresponding convergence rate for 

DOSKA is not influenced by dim(ζ), and is (n−1/dim(β)). Stated differently, DOSKA 

interpolates each element of the family of functions {l([·, ζ]) : ζ ∈ ℨ} using the same set of 

knots n chosen in ℝdim(β), and is optimal within the rich class of kriging interpolants under 

the assumptions of this section. (Of course, direct interpolants other than DOSKA are possible 

for this family of functions and we discuss extensions in Section 6.)

We are not aware of the results about Lp convergence rates for interpolation by kriging, but 

we conjecture that results similar to those for RBFs (Buhmann 2003, chapter 5) may be 

possible.
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4. SIMULATION STUDY: A MULTIVARIATE NORMAL (MVN) DENSITY WITH 

CORRELATION

In this section, we conduct a large simulation study using a collection of cheap-to-evaluate 

densities from which a long sample can be obtained efficiently for reference purposes. We 

examine the impact of dimensionality and of dependence in the components of the argument 

of the posterior density on the performance of DOSKA. In order to speed up the construction 

of interpolants, we make use of the known shape and location of the high-probability region 

to select β-knots. (Even so, the experiments reported here required well over 100 hours of 

computer time to run, with estimation of the parameters of DOSKA by the KfCV being the 

dominant cost.)

Our first set of experiments was inspired by the work of Rasmussen (2003) that chose knots 

on the η-space for his GP interpolant under the Gaussian correlation function. We adopt his 

“equicorrelation” test problem 2 that assumes that l is the logarithm of a 10-dimensional 

MVN(0, Σ) density, with the entries of Σ on the main diagonal equal to 1 and all off-

diagonal entries equal to 0.908. (One eigenvalue of Σ is roughly 100 times greater than the 

rest.) This MVN density is treated as a “black-box” posterior density for a 10- dimensional 

parameter vector η. We investigate the impact of partitioning of the argument η = [β, ζ] of l 
into the “expensive” and “cheap” blocks on the number of knots required to ensure an 

accurate approximation of l by DOSKA. In this experiment, dim(η) = 10 and dim(β) ranges 

from 1 to 10. The distinction between “expensive” and “cheap” parameters is artificial in 

this synthetic test problem.

The β-knots are chosen to cover the exact 0.99 HPD region for β after “sphering” (see 

Section 2.2). The exact covariance matrix for β is used to define the transformation matrix. 

(In a real application, the “sphering” matrix can be estimated from an MCMC sample from 

an approximate posterior density as discussed by Bliznyuk et al. (2011).) To select the knots 

for interpolation we use the “greedy” maximin heuristic from appendix A.2 of the article by 

Bliznyuk et al. (2008). For each value of dim(β) studied, we start with a modest number of 

knots K and add extra knots in 20% increments until a discrepancy measure between the 

exact and approximate marginal posterior densities for the ith component of η falls below a 

specified threshold δ for every i. As the discrepancy measure, we use an estimate of the total 

variation (TV) norm for each component of η under the exact and approximate posterior 

densities

TV(πi, π∼i) = 1
2∫ |πi(x) − π∼i(x)|dx

(see Appendix A.4). Thus, if K knots are used and the TV norm between the “exact” and 

“approximate” samples for some ηi exceeds δ, we augment the set of K knots with 

additional K0 ≈ 0.2K knots, set K ← K + K0, and refit DOSKA so that a new MCMC sample 

can be collected from the updated approximate density for estimation of the approximate 

marginal densities.
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We note that K(d, δ)—the number of knots used to achieve the approximation of “quality” δ 
when the dimension of β is d—is a random variable because the knot selection procedure is 

stochastic. For this reason, we repeated the knot selection 150 times with different 

placements of knots for every d from 1 to 9.

The parameters θ of the Gaussian correlation function [Equation (2.3)] used in DOSKA were 

estimated by KfCV as discussed in Appendix A.2.2 using four restarts of a gradient-based 

optimization algorithm (a quasi-Newton method).

We estimate the component-wise TV norms as outlined in Appendix A.4. For that purpose, 

we use an i.i.d. sample from the exact posterior density exp(l) and a sample from the 

approximate posterior density exp(l̃D) obtained using a Metropolis–Hastings independence 

sampler (Tierney 1994) with exp(l) as the proposal. If DOSKA is accurate, exp(l) ≈ exp(l̃D) 

and an MCMC sample from exp(l̃D) is essentially an i.i.d. sample. Each sample is of size 

104. The value δ = 0.05 was used as an upper bound on the maximum component-wise TV 

norm, which corresponds to a fairly accurate approximation.

The results of our study are summarized in Figure 2, where we plot against dim(β) the 

sample median and confidence bounds of level 0.9 for K(dim(β), δ). Based on a separate 

experiment with 200 replications (below), the median of K(10, 0.05) is about 84 with little 

variability about this value. Comparison of values of K(dim(β), 0.05) on this plot with K(10, 

0.05) allows one to appreciate the potential computational savings of exploiting the 

separation of η into the “expensive” and “cheap” blocks. For example, the median number 

of required knots for DOSKA was 22 when dim(β) = 3, whereas 84 knots are necessary if 

separation is ignored.

Figure 3 summarizes results of a different set of 200 independent approximation trials on 

MVN densities, in which dim(ζ) = 0 and dim(β) = dim(η) varies from 1 to 15. Because of 

“sphering” and joint normality, the components of transformed η are independent. As 

expected, the median K(d, δ) is an increasing function of d, as is the width of the confidence 

interval.

Comparison of Figure 3 with Figure 2 allows one to examine the impact of dependence and 

of “sphering” on the performance of DOSKA. “Sphering” removes dependence in the 

components of β, but can actually increase the dependence between the transformed β (H−1 

β) and the untransformed ζ. (For example, the maximum component-wise correlation can 

increase from 0.908 up to about 0.95 after the transformation in our first experiment.) The 

non-monotonic behavior of the 0.95th sample quantile in the first experiment appears to be 

influenced by two factors: (i) the growth of dim(β), which calls for higher numbers of knots 

to approximate the posterior of β, as was seen from Figure 3 and (ii) non-monotonic 

behavior of the condition number of the covariance matrix of the transformed η, which 

increases from about 100 at d = 1 to about 187 at d = 4, and then slowly decreases to about 

37 at d = 9. The condition number reflects the considerably different directional variability 

in the joint density of H−1 β and ζ, which is conjectured to be the cause of non-

monotonicity.
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Performance of DOSKA without “sphering” is considerably worse than with it. For example, 

on the above test problem with dim(β) = 3 and dim(η) = 10, without sphering over 200 knots 

were needed to produce an accurate approximation. For this reason, we did not follow this 

path deeply.

5. CASE STUDY: SPATIO-TEMPORAL MODELING OF BLACK CARBON 

POLLUTION IN THE GREATER BOSTON AREA

The primary goal of this section is illustration and comparison of the direct and the indirect 

approximation frameworks on a large spatio-temporal model for air pollution data. 

Descriptive and predictive inferences from such models are of interest to environmental 

epidemiologists and have a profound impact on public policy making. From the 

computational standpoint, our focus is on linear models that are “large enough” to be 

statistically and practically meaningful, whose computational structure is similar to that of 

bigger problems. However, doing exact Bayesian inference in order to evaluate the quality of 

approximations should still be possible.

In what follows, we discuss the data, the statistical model, and the considerations for 

drawing exact Bayesian inference under our model. We then go over the practicalities of 

building the direct and the indirect approximations and assess their quality.

5.1 Background

Concentrations of traffic particles such as black carbon are well-known markers of overall 

air pollution in metropolitan areas. Multiple health effects studies have revealed association 

between the elevated air pollution levels and increased rates of mortality and morbidity 

(Gryparis et al. 2007). In spite of the individual risks being small, the impact of the air 

pollution on public health is immense because it affects large groups of people. Considerable 

research effort at the Harvard School of Public Health focused on monitoring and spatio-

temporal modeling of concentrations of elemental and black carbon in the greater Boston 

area. Inferences and predictions from these models, while interesting in their own right, are 

also often used as exposure variables in environmental epidemiology models.

We obtained the data on daily average concentrations of black carbon used in the work of 

Gryparis et al. (2007) from the authors. These data come from two studies where the 

measurements were taken by outdoor monitors at 49 spatial locations in Boston and its 

suburbs over the period from mid October, 1999, until the end of September, 2004. One of 

the studies had roughly 30 monitors that worked over shorter periods of time (on the order of 

2 weeks, with only several monitors overlapping in time). The rest of the monitors (coming 

from the other study) worked much longer, up to the whole period of the study. More details 

are provided in the article by Gryparis et al. (2007).

The dataset we use consists of 5943 measurements on a daily scale. In the next section, we 

propose a model for spatio-temporal smoothing for these data.
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5.2 Statistical Model

For our analysis, we use a modification of the statistical model used by Gryparis et al. 

(2007). The additive model for the logarithm of daily average concentration of black carbon 

at spatial location s at time t is

Y(s, t) = w0 + gS(s) + gT(t) + ε(s, t), (5.1)

where gS and gT are smooth functions of spatial coordinates and of time, respectively, while 

ε(·, ·) is a Gaussian (error) process indexed by space and time. Here, gT is the annual (cyclic) 

temporal trend, so that gT(t) = gT (dt), where dt = mod(t, 365) is the day of the year if leap 

years are ignored. Each of gS and gT has a form similar to Equation (2.1). (To avoid 

confusion, we should point out that Equation (2.1) is used here in two distinct ways, as part 

of a statistical model—to define smooth spatial and temporal trends—and for interpolation 

of the log-posterior.) In particular, the spatial smooth term is modeled using a thin-plate 

spline with 49 knots, one at each monitoring station, whereas a cubic spline with 13 equally 

spaced knots is used to model gT (Wood 2006). Linear constraints were placed on the 

coefficients of gT to ensure that gT is periodic, that is, continuous and differentiable at t = 0. 

Thus, the model of Equation (5.1) can be written as a linear model

Y(s, t) = x(s, t) · w + ε(s, t),   where (5.2)

x(s, t) = 1, s⊤, ϕ s, s(1) , …, ϕ s, s
(nS)

, dt, ψ dt, dt
(1) , …, ψ dt, dt

(nT)

is a row vector of “predictors” and w[w0, wS
⊤, wT

⊤]⊤ is a column vector of coefficients. Here, 

ϕ(·, s(i)) is the ith spatial basis function and ψ( · , dt
( j)) is the j th basis function for the smooth 

temporal trend. Following Wood (2006), we penalize the square of the second derivative of 

the nonparametric smooth terms to prevent overfitting. This approach is attractive because 

the penalty matrices for gS and gT can be written as positive semidefinite (psd) quadratic 

forms in wS and wT. For example, the penalty for gT is

℘t = ∫ {gT″(t)}2 dt = wT
⊤ · Mt · wT (5.3)

for some symmetric psd matrix Mt. These penalty matrices are subsequently used to define a 

precision matrix for the multivariate normal prior on w to mimic the penalized log-

likelihood criterion with penalty matrices Ms and Mt, which is used in frequentist statistics. 

This prior has a zero mean and a precision matrix
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∑w = Δ · Idim(w) + blkdiag{0, Ms/σS
2, Mt /σT

2}, (5.4)

where a small multiple Δ of the identity matrix is used to ensure that the prior is proper, and 

where blkdiag is a block-diagonal matrix with blocks listed as arguments. Connections 

between penalized splines and Bayesian models, as well as alternative penalties, were 

discussed by Ruppert, Wand, and Carroll (2003).

Preliminary investigations using residuals from a frequentist model fit with i.i.d. errors 

indicate the presence of unexplained spatio-temporal dependence. In particular, examination 
of the plots of autocorrelation and partial autocorrelation functions for residuals from a 

monitoring station with a long series of daily measurements revealed that temporal 

dependence can be explained well by an order-1 autoregressive process with moderate lag-1 

correlation (of less than 0.5). The implications of this observation on computational aspects 

of the inference will be discussed in the next section.

To model spatial dependence, we use the Matern family of correlation functions

CS(s, s + h) = (2 νθS‖h‖2)ν · Kν(2 νθS‖h‖2)/{2ν − 1Γ(ν)}, (5.5)

where ν, θS > 0, Γ(·) is the gamma function, and Kν(·) is the modified Bessel function of 

order ν (Banerjee, Carlin, and Gelfand 2004). The smoothness parameter ν is difficult to 

estimate accurately unless the spatial resolution of the data is very fine. Due to the spatial 

sparsity of the set of monitors, we hold ν fixed at 2.

To account for the instrument measurement error and data aggregation errors, we need to 

allow for a nugget effect (Banerjee, Carlin, and Gelfand 2004). The covariance function for 

ε has the form

cov{ε(s, t), ε(s′, t′)} = σ1
2 · 𝕀{s = s′, t = t′} + σ2

2 · CS(s, s′ |θS) · CT(t, t′ |θT), (5.6)

where CS is the Matern spatial correlation function, CT is the temporal correlation function 

(specified below), and  is the indicator function.

5.3 Computational Considerations for Exact Bayesian Inference

5.3.1 Evaluation of the Likelihood—Under the plausible assumption that the rates of 

decay of the temporal autocorrelation are similar across all monitoring stations, it can be 

seen that the components of ε that are 15 days or more apart are practically uncorrelated 

since the correlation is less than 10−4. However, the covariance matrix of the errors for the 

space–time indices for which black carbon observations are available is numerically dense. 

It can take on the order of 20 seconds on a modern computer to form and factorize this 

matrix. Even though this does not impact the costs to fit and evaluate the proposed 

interpolants, it makes comparisons of the approximation quality based on the samples from 
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the approximate and exact posterior densities problematic since a sufficiently long exact 

MCMC sample is very expensive to obtain. Consequently, we introduce structure into the 

covariance matrix via covariance tapering. As a temporal correlation function we use the 

product of the exponential and the (compactly supported) spherical correlation functions 

(Furrer, Genton, and Nychka 2006)

CT(t, t + h) = exp( − θT · h) · max{(1 − h/r), 0}2(1 + h/(2r))

for r = 15, which behaves similarly to the exponential correlation function when h is small, 

and is exactly zero when h ≥ 15. This reduces the proportion of nonzero entries (the fill) of Σ 
to less than 2%. In addition, we reorder the observed data lexicographically with respect to 

the temporal index, which makes unnecessary the element reordering approaches discussed 

in the article by Furrer, Genton, and Nychka (2006). This brings the nonzeros closer to the 

main diagonal, which, by dramatically reducing the bandwidth of ΣY, allows a very efficient 

sparse Cholesky factorization. As a result, the cost to evaluate the likelihood drops to about 

2 seconds, in which the computational bottleneck is construction of ΣY using its sparsity 

pattern (precomputed).

5.3.2 Reparameterization—Our work with later versions of these air pollution data 

revealed sensitivity of computational effort required by the maximization of the log-

posterior and by MCMC sampling to the parameterization of some of the variance 

components.

Define γ = {σ1
2, σS

2, σT
2 , σ2

2, θS, θT} and let β = log(γ). If [w, γ |Y]γ is the joint posterior density 

of w and γ, then

[w, β |Y] = [w, γ(β) |Y]γ · exp ∑
i

βi , (5.7)

where γ(β) = exp(β). For simplicity, we work with the whole log-transformed γ.

The parameter space for γ was taken to be a hyper-rectangle with lower bounds 10−4 for the 

variance components (σ2’s) and 10−3 for the parameters of the correlation functions (θ ’s), 

and with the respective upper bounds equal to 30 and 10. The parameter space for β is also a 

hyper-rectangle obtained by taking the logarithms.

5.3.3 MCMC Sampling of the Exact Joint Posterior—Even though the computational 

burden to evaluate [w, β|Y] has been considerably reduced by tapering, the random walk 

Metropolis–Hastings (RWMH; Robert and Casella 1999) sampler mixes very poorly due to 

the high dimensionality of w and β even when adaptive sampling (Haario, Saksman, and 

Tamminen 2001) is used, with typical lag-1 autocorrelations routinely exceeding 0.995. 

However, a long informative sample from this density can be obtained by proceeding as 

follows.
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Since [Y|w, β] is a multivariate normal density and [w|β] is a conjugate normal prior, [w|β, 
Y] is also multivariate normal and is available in closed form. Consequently, one can 

analytically integrate w out of [w, β, Y] as [β, Y] = [β, w, Y]/[w|β, Y]. We sample from [β|

Y] using RWMH since the normalizing constant is not important and, for each state β* of β, 

we simulate w exactly from [w|β*, Y]. The convergence of this Markov chain is governed 

entirely by the properties of [β|Y]. It is also seen that if β* is a sample from [β|Y], then {w*, 

β*} is a sample from [w, β|Y] if w* is a sample from [w|β*, Y]. The lag-1 autocorrelation in 

the components of β that we obtained in the actual sampling was below 0.9; mixing for w 
was considerably better.

This approach is considerably more attractive than a Gibbs sampler that “metropolizes” 

simulation from [β|w, Y] since (i) the convergence is not influenced by the dependence 

between w and β, and (ii) recalibration of the proposal density for each new (fixed) w* when 

sampling β from [β|w*, Y] is not required (since we are sampling from [β|Y]).

The actual expressions for [β|Y] and [w|β, Y] are provided in Appendix A.3.

5.3.4 Definition of the Expensive Computation—Even if tapering is used, the major 

part of the expensive computation is evaluation and factorization of ΣY. The exact 

expressions of the components of the expensive computation GE are given in Appendix A.3.

The expensive computation GE in the evaluation of [β, w|Y] is incurred entirely in the 

evaluation of [β|Y]. Once this is done for a given value of β, evaluation of [w, β|Y] = [w|β, 
Y] · [β|Y] is computationally cheap. Therefore, we associate w with the cheap parameter ζ 
from the earlier discussion.

The definition of the “expensive” parameter β in this problem was influenced by our ability 

to evaluate [β|Y] (up to a multiplicative constant), which is instrumental for generation of 

the knots over a HPD region of [β|Y] (in next section). If analytical integration is not 

possible, one can use approximations to [β|Y] reviewed in the work of Bliznyuk et al. 

(2008).

5.4 Generation of β-knots for DOSKA and INDA

Unlike in Section 4, the β-knots for interpolation are not available. We need to produce them 

on the unknown HPD region of the true marginal posterior density of β. We do this using our 

recent approximation procedure GRIMA that performs robustly on “irregular” densities (those 

having non-elliptical high-probability regions and modes occurring on the boundary of the 

parameter space), on which existing approaches, such as that of Bliznyuk et al. (2008), can 

fail. GRIMA reuses the points from the optimization trajectory to build an initial response 

surface, which is used to select those sites for new expensive evaluations that are likely to 

belong to the true HPD region. The response surface is updated after each new expensive 

evaluation, thereby becoming more accurate. The approximate HPD region is being refined 

until an accurate approximation to the exact HPD region and to the true posterior density 

over it are obtained. (Details are available in the supplied version of the article by Bliznyuk, 

Ruppert, and Shoemaker (2011).)
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The marginal posterior density of β is used in GRIMA to generate β-knots for DOSKA and 

INDA. These approximants are fitted to interpolate the exact joint posterior density of η as 

was discussed in Sections 2.2 and 3.

To reach the HPD region of β, we used a derivative-free optimization algorithm CONDOR 

(Vanden Berghen and Bersini 2005) started in the center of the parameter space for β. 

Optimization took 155 evaluations of log[β|Y], out of which 45 values were retained to build 

the initial approximation for [β|Y]. GRIMA was allowed to add new β-knots sequentially until 

the improvement in the response surface approximation of the log[β|Y] from adding new 

knots became negligible. More precisely, we monitored the component-wise TV norms 

between samples from the “current” approximate density and the preceding ones that used 

fewer knots. For example, judging from Figure 4 in the online supplementary materials, it is 

seen that the extra reduction in the TV norms from using more than 105 knots is negligible, 

and we terminate GRIMA after it has added 140 new knots to the 45 that came from 

optimization.

5.5 Comparisons

DOSKA and INDA were fitted to the logarithm l of the full joint posterior density of η = {β, 
ζ } using the same set of 185 β-knots that were supplied by GRIMA. The “sphering” matrix 

as well as the approximate HPD region, to which the direct and indirect interpolants are 

restricted (see the end of Section 2.2), were also produced by GRIMA.

For the purpose of reference, an MCMC sample ℳ of size 105 from the exact [β, w|Y] was 

collected as discussed in Section 5.3.3. We obtained samples of size 105 from the 

approximate densities by (i) taking a mildly correlated subsample of size 104 from the 

“exact” correlated sample and then (ii) resampling the available “exact” subsample and the 

corresponding values of l(ℳ). The resulting independence M-H sampler reduced the 

maximum component-wise lag-1 autocorrelation in the Markov chain from 0.9 to 0.2. The 

same set of 105 candidate states from ℳ was used for both INDA and DOSKA. This reduces 

the MCMC variability of the component-wise TV norms between the “exact” and 

“approximate” samples for the two approximations. The use of the same resample can be 

viewed as an application of the common random numbers technique (e.g., see Asmussen and 

Glynn 2007).

From the plot of component-wise TV norms for the two approximations in Figure 5 in the 

online supplementary materials it is seen that either of them is very accurate, with typical 

TV norm values (between the exact and approximate marginal densities) of about 0.015.

To conclude the case study, only 155 − 45 + 185 = 295 evaluations of GE were sufficient for 

very accurate fully Bayesian inference using MCMC when dim(η) = 70 and dim(β) = 6.

6. EXTENSIONS AND COMPUTATIONAL ISSUES

6.1 Extensions

Recall that, to ensure optimality, DOSKA uses all of the knots ℬ at which the expensive 

computation GE has been performed. Therefore, fitting of the model is infeasible if the size 

Bliznyuk et al. Page 16

J Comput Graph Stat. Author manuscript; available in PMC 2018 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of ℬ measures in tens or hundreds of thousands, as is the case in some applications (Taddy, 

Lee, and Sanso 2009). Also, separability of the basis function assumed by Equation (3.1) 

may be unappealing for the models with very high degree of dependence between β and ζ, 

especially when the number of allowed β-knots is small. These concerns can be resolved by 

using the following generalization by localization: Instead of constructing  of Equation 

(2.1) from the full set of knots ℬ as was done in Section 3,  can be chosen adaptively 
depending on the new prediction site η* = [β*, ζ*] as

𝒟([β∗, ζ∗]) = β( j), ζ(i, j) :1 ≤ i ≤ K j, β( j) ∈ ℬ(β∗) , (6.1)

where ℬ(β*) ⊂ ℬ are knots in some neighborhood of β*, and ζ(i,j)’s are knots in a 

neighborhood of ζ*. Of course, if some components of ζ are “more expensive” than the rest, 

it is beneficial to use multiple values of the “cheaper” block for each value of the “more 

expensive” block of ζ. Notice that fitting is now done on the η-space, rather than β-space, 

and a general interpolant of Equation (2.1) with a nonseparable basis function and a nonzero 

tail q may be used. This local interpolant can arise naturally when one uses basis or 

covariance functions with bounded supports discussed by Buhmann (2003, chapter 6) and 

Gneiting (2002a), respectively, since the influence of the knots whose supports do not 

include [β*, ζ*] is expected to be negligible on prediction of l([β*, ζ*]). (More precisely, 

the estimated coefficients a and c of Equation (2.1) depend on all knots but the basis 

functions are nonzero only for neighbors of η*.) The cost to estimate parameters of the local 

interpolant using the knots ([β*, ζ*]) is low if the size of ([β*, ζ*]) is modest. However, 

this cost is incurred every time the evaluation of the approximation at a new site is required.

It is expected that if ([β*, ζ*]) includes the knots ℬ(β*) ⊕ ζ*, the local direct interpolant 

will behave similarly to DOSKA. In the simplest case when ([β*, ζ*]) ≡ ℬ(β*)⊕ ζ*, this 

local approximation amounts to interpolating the function l(·, ζ*) at the knots ℬ(β*) as we 

remarked near the end of Section 3.2. Because of the loose assumptions on the form of this 

local interpolant, it is unlikely that any kind of optimality can be proved.

6.2 Computational Considerations

We conclude this section with an account of the relative computational advantages of direct 

and indirect interpolants under the assumption of ideal practical implementation of each 

method. A more refined analysis of the computational costs that makes use of the cost 

structure in the evaluation of GC is possible, but is application-specific and is beyond the 

scope of this work. Computationally, the choice only matters if very large MCMC samples 

from the surrogate density are required, since neither approximation evaluates GE. As far as 

the quality of the interpolation is concerned, we doubt that a definitive recommendation can 

be given as to when to use each type of approximation.

Let dim(GE) be the dimension of the “output” of GE and cost(GC) be the flop count of the 

cheap computation. If K is the number of β-knots and c is the cost to evaluate a basis 

function once, the cost to evaluate an interpolant of a one-dimensional function is cK. Each 

evaluation of DOSKA costs K · cost(GC) flops to compute l[ℬ(β*) ⊕ ζ*] plus K2 flops to 
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solve the dual kriging system (Section 2) with the right side l[ℬ(β*) ⊕ ζ*] using a 

precomputed factorization of the interpolation matrix. The cost of evaluation of INDA is cK · 

dim(GE) flops to obtain G̃
E(β*) plus cost(GC) flops to compute GC[G̃

E(β*), β*, ζ*]. 

Therefore, the “global” version of DOSKA is less attractive than INDA when K and cost(GC) 

are high and is more attractive when K and cost(GC) are low but dim(GE) is large. As an 

illustration, consider the inverse problem example from Section 1. If n = dim(f) is large and 

the covariance matrix for e is unstructured so that cost(GC) = (n3), then DOSKA is roughly 

K times more “expensive” than INDA. On the other hand, if the covariance matrix for e is 

diagonal, DOSKA may be preferable (depending on the magnitude of c).

When “local” direct and indirect interpolants are used with the same basis function and tail 

[recall Equation (2.1)], DOSKA becomes more attractive because of the lower cost to refit the 

interpolant for each new evaluation. If F is the cost to fit a local interpolant with K knots, the 

refitting cost for DOSKA is F flops. However, INDA costs F + K2 · dim(GE) flops under some 

RBF models (if factorization of interpolation matrix can be reused—see end of Section 2) 

and F · dim(GE) under most kriging models, since a separate interpolant needs to be fitted 

for each component of the “output” of GE. Because F = (K3), the difference in overall 

fitting and evaluation cost can be quite considerable for the two “local” interpolants.

7. CONCLUSIONS

In this article we presented two classes of interpolants, direct and indirect, that allow one to 

carry out fully Bayesian inference with the help of the approximate density when the exact 

posterior density π of the parameter vector η is computationally expensive to evaluate. The 

key to success is identification of the subvector β of η that is responsible for the dominant 

computational cost in the evaluation of π. This identification can be done in a host of 

practical problems such as large-scale inverse problems and high-dimensional linear models 

with parametric spatio-temporal dependence.

The primary contribution of this article is derivation of the optimal direct interpolant DOSKA 

(in Section 3) that provably improves over the existing direct GP interpolants of the 

logarithm l of π such as that of Rasmussen (2003). Since the quality of approximation by 

our interpolant of l is governed by dim(β) rather than by dim(η), a gain of several orders of 

magnitude over the naïve approaches that interpolate l on the η-space is expected when 

dim(η) is high but dim(β) is low.

We supported our analytical findings by simulation experiments of Section 4. There we 

showed that intelligent exploitation of separation of η into the “expensive” and “cheap” 

subvectors allows reduction of the number of expensive evaluations GE by roughly an order 

of magnitude relative to the already very efficient approach of Rasmussen’s if dim(β) is low 

and dim(η) is moderate. In the case study of Section 5, we provided an example of accurate 

fully Bayesian inference with the proposed direct ( DOSKA) and indirect ( INDA) interpolants 

for a large-scale spatio-temporal model that has dim(η) = 70 and dim(β) = 6 using fewer 

than 300 (expensive) evaluations of GE.
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The answer to the question “Which interpolant is ‘better,’ direct or indirect?” is very 

problem- and implementation-specific, in our opinion. Unless only one interpolant can be 

used due to the computational costs of fitting and evaluation (discussed in Section 6), we 

recommend that both be used using the same set of β-knots. There is hardly a better 

guarantee that both approximations of π are accurate than the agreement of summaries of 

the approximate posterior densities produced by these two distinct methods.

These very encouraging results support application of the proposed approximations to high-

dimensional structured statistical problems for which there currently do not exist 

computationally tractable alternatives.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Illustration of derivation of DOSKA: The goal is to obtain a prediction of l at η* = [β*, ζ*] 

( x) using the set ℬ of β knots (△). Top: the knots  (○) are selected to cover the elliptical 

HPD region. {η*} ∪  is projected onto the ζ -space to produce * (▹ and *). Bottom: ℬ ⊕ 
* is marked by large and small +; ℬ ⊕ ζ* is marked by large +. The online version of this 

figure is in color.
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Figure 2. 
MVN problem of Section 4: Sample median and quantiles of level 0.05 and 0.95 for the 

estimated minimum number of β-knots required to achieve maximum component-wise TV 

norm less than δ = 0.05. The plot is based on 150 replications (trials). KfCV is used to 

estimate DOSKA parameters. The online version of this figure is in color.
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Figure 3. 
DOSKA interpolation on MVN problems of dimensions 1, …, 15 without “cheap” parameters: 

Sample median and quantiles of level 0.05 and 0.95 for the estimated minimum number of 

β-knots required to achieve maximum component-wise TV norm less than δ = 0.05. The 

plot is based on 200 (design) replications for each value of dim(β). KfCV is used to estimate 

DOSKA parameters. The online version of this figure is in color.
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