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Abstract

PURPOSE—Mortality prediction in ARDS is important for prognostication and risk 

stratification. However, no prediction models have been independently validated. A combination 

of two biomarkers with age and APACHE III was superior in predicting mortality in the NHLBI 

ARDSNet ALVEOLI trial. We validated this prediction tool in two clinical trials and an 

observational cohort.

METHODS—The validation cohorts included 849 patients from the NHLBI ARDSNet Fluid and 

Catheter Treatment Trial (FACTT), 144 patients from a clinical trial of sivelestat for ARDS 

(STRIVE), and 545 ARDS patients from the VALID observational cohort study. To evaluate the 
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performance of the prediction model, the area under the receiver-operator-characteristic-curve 

(AUC), model discrimination and calibration were assessed and recalibration methods were 

applied.

RESULTS—The biomarker/clinical prediction model performed well in all cohorts. Performance 

was better in the clinical trials with an AUC of 0.74 (95% CI: 0.70–0.79) in FACTT, compared to 

0.72 (95% CI: 0.67–0.77) in VALID, a more heterogeneous observational cohort. The AUC was 

0.73 (95% CI: 0.70–0.76) when FACTT and VALID were combined.

CONCLUSION—We validated a mortality prediction model for ARDS that includes age, 

APACHE III, SP-D and IL-8 in a variety of clinical settings. Although the model performance as 

measured by AUC was lower than in the original model derivation cohort, the biomarker/clinical-

model still performed well and may be useful for risk assessment for clinical trial enrollment, an 

issue of increasing importance as ARDS mortality declines and better methods are needed for 

selection of the most severely ill patients for inclusion.
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INTRODUCTION

The acute respiratory distress syndrome (ARDS) is responsible for more than 2 million 

critical care days and 75,000 deaths in the United States yearly [1]. There is a pressing need 

for development and clinical testing of new therapies that might improve clinical outcomes 

in ARDS. However, the design of investigational trials for this complex and heterogeneous 

syndrome is not straightforward [2]. The success of clinical trials in ARDS is highly 

dependent on the power, which is primarily determined by the mortality rate for enrolled 

patients [3–5]. Methods to better predict hospital mortality may provide a basis for 

prognostic enrichment [6], optimizing the power of clinical trials to detect a treatment effect, 

and improving bedside prognostication [7].

To date, much effort has been spent on identifying predictors of mortality in patients with 

ARDS [8–18], and developing scoring systems to improve prognostication [19–23]. 

However, the two most widely used scoring systems, APACHE III [21] and SAPS 3 [22], 

were developed and validated in general ICU patients; these scores were not focused on 

patients with ARDS. Other simpler scoring systems have been developed in the target 

population of ARDS patients [19, 20, 23, 24]. However, these scores were either 

outperformed by APACHE III [19, 20] or could not be validated in independently collected 

data [20, 23, 24]. Recently, Ware et al. demonstrated that a combination of plasma 

biomarkers of inflammation and lung epithelial injury (IL-8, surfactant protein D [SP-D]) 

and clinical predictors (age, APACHE III) was superior to either biomarkers or clinical 

factors alone in predicting ARDS mortality in patients enrolled in the NHLBI ARDSNet 

ALVEOLI trial [25]. However, this biomarker/clinical prediction model (biomarker/clinical-

model) has not yet been externally validated across multiple independent patient groups.
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In the current study, the primary goal was to validate the previously published biomarker/

clinical-model in three independent ARDS patient cohorts, including both clinical trial 

cohorts and a heterogeneous group of patients enrolled in an observational cohort study. A 

second goal was to confirm that inclusion of the two biomarkers added value for predicting 

ARDS mortality in these independent cohorts. A portion of this work was presented in 

abstract form at the American Thoracic Society International Conference in 2015[26].

MATERIALS AND METHODS

The Original Prediction Model

The previously reported hospital mortality model was developed with 528 patients from the 

NHLBI ARDS Clinical Trials Network multicenter randomized controlled trial of two PEEP 

titration strategies (the ALVEOLI study) [27]. Study details and prediction model 

development have been published [25]. Briefly, the model includes patient age, APACHE III 

score, and plasma IL8 and SPD as predictors. The formula for the model is shown in 

Supplemental Figure 1 (e-Figure 1), and a web-based module is available at (https://

cqs.mc.vanderbilt.edu/shiny/ChestModel/).

Study Population and Measurements

Detailed methods are provided in the Supplemental methods (e-methods). Briefly, the 

current study included a total of 1,538 mechanically ventilated patients with ARDS who 

participated either in the NIH ARDS Network Fluid and Catheter Treatment Trial (FACTT)

[28], the Sivelestat Trial in ALI Patients Requiring Mechanical Ventilation (STRIVE)[29], 

or the Validating Acute Lung Injury biomarkers for Diagnosis (VALID) study[30]. All 

eligible patients in FACTT and STRIVE were mechanically ventilated and had acute lung 

injury (ALI) or ARDS by American European Consensus Conference (AECC) definitions 

[31], thus meeting the current Berlin definition of ARDS [32]. All VALID patients were 

eligible for inclusion if they were mechanically ventilated on at least one day and met Berlin 

ARDS criteria on 2 consecutive days of the first 4 ICU days. IRB approval was obtained in 

all studies; informed consent was obtained from all subjects except in VALID where a subset 

of subjects were enrolled under a waiver of informed consent. The current study includes 

849, 144, and 545 participants from FACTT, STRIVE and VALID, respectively, depending 

on the availability of the clinical data and plasma samples for biomarker measurements. For 

some analyses the FACTT and VALID patients were combined into one cohort.

Plasma samples were obtained at enrollment (prior to randomization) for patients in the 

FACTT and STRIVE trials, and on the morning of ICU day 2 in VALID. SP-D and IL-8 

were measured in stored plasma samples from each study for this validation. Age and 

APACHE score were extracted from each study database. APACHE II scores were converted 

to estimated APACHE III for patients in VALID and STRIVE using a translation equation 

(APACHE III=5.57 + 3.08 * APACHEII) that was developed in a cohort of 634,428 patients 

[33].
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Statistical Analysis

Detailed analytical approaches are reported in e-methods. Briefly, demographics, clinical 

variables and biomarker values were summarized and compared by individual study cohort 

and combined. For the primary goal, to evaluate the performance of the prediction model in 

the independent validation sets, model discrimination and calibration were assessed. 

Discrimination was quantified using the area under the receiver operator characteristic 

(ROC) curve (AUC), also known as the C-statistic. The 95% confidence intervals (CI) 

calculated from 300-iteration bootstrap were reported. The benchmark AUC, which is the 

best possible AUC by refitting the model on each validation dataset, was also reported to 

provide readers an estimate of optimal discrimination on each validation cohort as a 

reference. Calibration was assessed graphically with a calibration plot. A simple 

recalibration method (logistic calibration) to recalibrate the model as suggested by Harrell et 
al. [34] and Janssen et al. [35] was also used. For the second goal, to evaluate the added 

value of the two biomarkers in predicting hospital mortality in the validation datasets, the 

likelihood ratio test, the Net Reclassification Improvement (NRI), and Integrated 

Discrimination Improvement (IDI) were used. Finally, to demonstrate a potential application 

of the prediction model, we stratified the participants in FACTT into low and high mortality 

risk groups and then evaluated the effects of the treatments separately in each subgroup. The 

differences in the treatment effects between these two subgroups were evaluated by testing 

the interaction term of the treatment by risk group in models. For ventilator-free days 

(VFD), zero inflated negative binomial models were used, due to the high frequency of 

patients who had zero VFDs. This demonstration was not attempted in STRIVE due to the 

limited sample size. Statistical significance was considered at a two-sided 5% level. All 

statistical analyses were performed using R software version 3.3.1.

RESULTS

Patient Characteristics

The participants in the model development cohort (ALVEOLI, n=528) and validation 

cohorts were similar in age, but different in hospital mortality rate, APACHE scores, cause 

of ARDS, and distribution of biomarker values (Table 1). The overall hospital mortality rates 

in FACTT (n=849) or FACTT and VALID combined (n=1394) were lower than in 

ALVEOLI (19% or 21% vs 27%, P < 0.01, Table 1), while the hospital mortality rates were 

similar in VALID (n=545, 24% vs. 27%, P = 0.25, Table 1) and STRIVE (n=144, 32% vs. 

27%, P = 0.27, e-Table 1) to ALVEOLI.

Discrimination and Calibration

Despite the differences in patient characteristics, when we applied (with fixed model 

coefficients) the original biomarker/clinical-model to the validation sets, the discrimination 

for hospital mortality was good. The model achieved AUC of 0.74 (95% CI: 0.70–0.79), 

0.72 (95% CI: 0.67–0.77) and 0.73 (95% CI: 0.70–0.76) in FACTT, VALID, or the 

combined dataset, respectively (Table 2), which are similar to the benchmark AUC in the 

independent study cohorts (0.75, 0.74 and 0.73, respectively, Table 2). In STRIVE, the 

model achieved AUC of 0.78 (95% CI: 0.70–0.87, e-Table 2), comparing with the 

benchmark AUC of 0.87.
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In the FACTT and VALID cohorts, the original biomarker/clinical-model tended to predict 

somewhat higher hospital mortality risk than the actual observed mortality among those at 

highest risk, indicated by the right tail of the calibration curve falling below the 45° line. 

Overall, the slopes for the calibration curves were 0.53, 0.56 and 0.52 in FACTT, VALID or 

combined, respectively (Figure 1A, C, E). By contrast, the calibration curve in STRIVE was 

shifted up, but almost parallel to the ideal line with an estimated slope of 0.92 (e-Figure 2A). 

After recalibration, however, the model calibrated well in all validation cohorts (Figure 1B, 

D, F, e-Figure 2B). The tails of the calibration curves in the FACTT and VALID remain 

slightly off the 45° line, which may primarily be due to the limited number of patients with 

an extremely high predicted hospital mortality.

Two Biomarkers Added Predictive Value

In the original published model, inclusion of the two biomarkers along with patient age and 

APACHE score significantly improved the model fit and the predictive ability [25]. To 

confirm that the two biomarkers (SP-D and IL-8) were also of value in the validation 

cohorts, we analyzed the added value of these two biomarkers compared to clinical factors 

alone. The model AUCs increased from 0.72 to 0.75, 0.67 to 0.74, and 0.70 to 0.73 in 

FACTT, VALID, or combined, respectively (Table 3), with addition of the two biomarkers to 

the clinical variables. The NRI ranged from 0.41 to 0.45 and the IDI ranged from 0.04 to 

0.09. All of these improvements reached statistical significance (P < 0.001, Table 3).

Prognostic Enrichment: an Illustration

To illustrate how the mortality prediction model might have value for prognostic enrichment 

in a clinical trial, we applied the original biomarker/clinical-model to patients in the FACTT 

cohort, classifying patients into two prognostic groups: a low-risk group (Predicted mortality 

≤ 20%) or a high-risk group (Predicted mortality > 20%). We then assessed the treatment 

effect of randomization to conservative versus liberal fluid therapy separately in each 

prognostic group. In the low-risk group, no significant treatment effect for conservative 

versus liberal fluid therapy was observed with regard to mortality or ventilator-free days 

(VFDs) (Table 4). In the high-risk group, however, there was a significant treatment effect 

for conservative fluid therapy; those randomized to conservative fluid therapy had 20% more 

VFDs compared to those randomized to liberal fluid therapy (RR=1.2, 95% CI: 1.09–1.33). 

These findings illustrate how prognostic enrichment using the mortality prediction model 

could be used to target clinical trial enrollment to a subset of patients with ARDS at a higher 

risk of a clinical outcome of interest, thereby improving the power of the study to detect a 

treatment effect.

DISCUSSION

Despite decades of experimental and clinical investigation, and improvements over time in 

ICU survival rates [36], effective pharmacotherapy for ARDS remains extremely limited 

[37, 38]. Inadequately powered trials [3–5] and failure to identify appropriate subsets of 

patients for enrollment may have contributed to the persistent lack of effective 

pharmacologic interventions. A recent application of latent class analysis methods to several 

NHLBI ARDS Network trials has consistently identified two subphenotypes within enrolled 
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ARDS patients, a finding that may be useful to reduce heterogeneity in ARDS clinical trials 

and potentially provide a basis for predictive enrichment in clinical trials [2, 39]. Prognostic 

enrichment is an approach that could be used to identify patients with a higher risk of death 

for enrollment in clinical trials. This approach has recently been recommended by the US 

Food and Drug Administration (FDA) to improve efficiency of drug development. However, 

development of methods that can predict patient clinical outcomes, such as hospital 

mortality in ARDS, remains challenging.

In the current study, utilizing patients from three independent, heterogeneous cohorts of 

patients with ARDS, we externally validated a previously published biomarker/clinical-

model for hospital mortality in ARDS [25]. In the validation cohorts, the AUCs of the 

original biomarker/clinical-model were close to benchmark AUCs, indicating that the 

original biomarker/clinical-model achieved discrimination that was close to optimal in these 

cohorts. Based on calibration plots, the prediction accuracy of the original biomarker/

clinical-model was moderate in the validation cohorts. However, after recalibration, the 

updated model performed well on all three validation cohorts or combined. We also 

confirmed the original finding that two plasma biomarkers, SP-D and IL-8, added value to 

clinical predictors in predicting ARDS mortality in the validation cohorts. Finally, despite 

the overall significant treatment effect of conservative fluid therapy on VFDs originally 

reported in one of the validation clinical trials (FACTT), we observed a significant treatment 

effect on VFDs only in the high-risk subgroup as classified by the predicted hospital 

mortality using the biomarker/clinical-model, but not in the low-risk subgroup, indicating 

that the originally observed treatment effect was confined to a subgroup of the participants. 

These results illustrate how the prediction model might be used for both prognostic and 

predictive enrichment for clinical trial enrollment.

Attempts have been made to develop simpler scoring systems for ARDS that are easier to 

use in clinical practice [19, 20, 23]. However, none have succeeded to date. For example, 

Brown et al. developed a classification tree for hospital mortality including age, BUN, 

shock, respiratory rate, and minute ventilation [19]. The tree model is simpler than the 

widely used APACHE III score, but does not outperform it, and has not been externally 

validated. Cooke et al. developed a clinical predictive index for mortality including 

hematocrit, bilirubin, fluid balance and age[20]. This predictive index, however, failed in the 

external validation, and the performance was worse than the APACHE III score (AUC 0.68 

vs 0.75 respectively, p=0.03). In a Spanish study, Villar et al. developed another scoring 

system, including age, PaO2/FiO2 ratio, and plateau pressure, termed the APPS [23]. The 

APPS showed good discrimination ability in both the derivation and internal validation 

cohort, with an AUC of 0.76 and 0.80, respectively. However, Bos et al. reported that it is 

likely that the APPS was overfit to the derivation cohort, since it could not be validated 

using data collected from two hospitals in Netherlands [24]. These findings demonstrate that 

a prediction tool that performs well in derivation and internal validation datasets is not 

guaranteed to perform well in another population. Thus, an external validation is required 

before a prediction tool can be generalized to, and applied in other population.

In the current study, despite the strong performance of the original published mortality 

prediction model in its derivation cohort (AUC of 0.83), performance was not as strong in 
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the current study with AUCs of 0.74, 0.72, and 0.73 in FACTT, VALID or the combined 

dataset, respectively. The observed drop in discriminative ability from the model derivation 

cohort to the validation cohort is a common phenomenon. Several explanations may apply. 

First, the model may have been overfit in the derivation cohort. However, based on the 

calibration plots, this is not likely the case in our study. In STRIVE, the calibration curve is 

almost parallel to the 45° line, but shifted upwards. This was mainly caused by a higher 

mortality rate in STRIVE compared to ALVEOLI (32% vs 27%, respectively) and was 

confirmed by the recalibration curve (e-Figure 2B). In FACTT and VALID, the majority of 

the patients had a predicted mortality of less than 40% (X-axis in Figure 1), among whom, 

the predicted mortality is close to the observed mortality. The recalibration further improved 

the predication accuracy (Figure 1B, D, F). A second explanation for the drop in AUCs from 

derivation to validation is the differences in the case mix. As shown in Table 1, the patients 

included in the validation cohorts are different than those in the derivation cohort with 

regard to race, APACHE scores, and biomarker values. Despite the heterogeneity of the 

patients, the AUCs for validation of the original published model in FACTT and VALID 

(0.74 and 0.72, respectively) are very close to the benchmark AUC, which is the best 

possible AUC derived by refitting the model on each validation dataset (0.75 and 0.74, 

respectively). It is also worth noting that, in all three validation cohorts, the benchmark AUC 

lies within the bootstrap 95% CIs of the AUC from strict validations, further indicating that 

the biomarker/clinical-model may have discrimination power when applied to future 

datasets. These findings reveal the potential value of the biomarker/clinical-model as a 

prognostic enrichment tool for future clinical trial enrollment.

The current study is the first to successfully externally validate a prediction model for 

hospital mortality in ARDS patients across multiple, diverse patient groups. However, our 

study has some limitations. First, in two of the validation sets, the APACHE II score was 

recorded and we used a published formula to estimate the APACHE III score. Although the 

translation equation was developed in a large study [33], it is possible that it may not 

accurately reflect the true APACHE III score. Second, some of the biomarker values in the 

validation sets were not within the range of those in the model derivation cohort. This may 

cause inaccurate predicted mortality for those with extreme values. However, excluding 

those participants will decrease the precision of study performance estimation and the 

usefulness of the developed models. Thus, we decided to include all of the eligible patients. 

Third, FACTT and STRIVE represent a highly selected subgroup of all patients with ARDS 

enrolled over 10 years ago that may not be reflective of the general population of current 

patients with ARDS. This concern is mitigated to some extent by the inclusion of the VALID 

cohort, a more recently enrolled and much more heterogeneous and inclusive group of 

critically ill patients with ARDS compared to clinical trial cohorts. Fourth, the STRIVE 

study is relatively small, and we were only able to study a subset of the STRIVE patients 

due to limited plasma availability. However, inclusion of this study does provide additional 

evidence that the model validates and with more generalizability[40], though the results for 

this particular study may not be as precise as those from the other two larger cohorts.
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CONCLUSION

Using three independent patient groups, we found that a published mortality prediction 

model that combines two clinical variables and plasma biomarkers of two aspects of ARDS 

pathogenesis (inflammation and lung epithelial injury) could serve as a simple tool for the 

prediction and stratification of mortality among patient with ARDS. Although the model 

performance as measured by AUC was lower than in the original model derivation cohort, 

the biomarker/clinical-model still performed well and may be useful for prognostic 

enrichment for enrollment in clinical trials, an increasingly important issue as mortality in 

ARDS declines and better methods are needed for selection of the most severely ill patients 

for inclusion in clinical trials.

Supplementary Material
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Abbreviation

AECC American European Consensus Conference

ALI Acute Lung Injury

APACHE Acute Physiology and Chronic Health Evaluation

ARDS Acute Respiratory Distress Syndrome

AUC Area Under receiver operator characteristic Curve

CI Confidence Interval

FACTT Fluid And Catheter Treatment Trial

ICU Intensive Care Unit

IDI Integrated Discrimination Improvement

NHLBI National Heart, Lung, and Blood Institute

NRI Net Reclassification Improvement

PEEP Positive End-Expiratory Pressure
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ROC receiver operator characteristic curve

RR Risk Ratios

STRIVE Sivelestat Trial in ALI Patients Requiring Mechanical Ventilation

VALID Validating Acute Lung Injury biomarkers for Diagnosis

VFD Ventilator-Free Days
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Take Home Message

The externally validated biomarker/clinical prediction model may provide prognostic and 

predictive enrichment in clinical trials enrollment, and improve bedside prognostication.
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Figure 1. 
Calibration plots of the original biomarker/clinical-model and recalibrated model in the 

validation cohorts. Panels A, C, E: the calibration plots of the original prediction model 

applied to the validation cohorts. Panels B, D, F: the recalibration plots in the validation 

cohorts. The recalibration was done by 1) estimating the calibration intercept and calibration 

slope; 2) multiplying all the regression coefficients of the original biomarker/clinical-model 

by the calibration slope; 3) updating the intercept of the original biomarker/clinical-model 

with the calibration intercept. This method does not involve re-estimating the coefficient of 

any individual predictor.

Zhao et al. Page 13

Intensive Care Med. Author manuscript; available in PMC 2018 August 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhao et al. Page 14

Ta
b

le
 1

Pa
tie

nt
s 

ch
ar

ac
te

ri
st

ic
s 

in
 th

e 
de

ri
va

tio
n 

co
ho

rt
 (

A
LV

E
O

L
I)

, a
nd

 th
e 

ex
te

rn
al

 v
al

id
at

io
n 

co
ho

rt
s 

(F
A

C
T

T
 a

nd
 V

A
L

ID
)

D
er

iv
at

io
n 

C
oh

or
t

E
xt

er
na

l V
al

id
at

io
n 

C
oh

or
ts

A
LV

E
O

L
I 

(N
=5

28
)

FA
C

T
T

 (
N

=8
49

)
V

A
L

ID
 (

N
=5

45
)

FA
C

T
T

+V
A

L
ID

 (
N

=1
39

4)

C
ha

ra
ct

er
is

ti
cs

Su
m

m
ar

y2
Su

m
m

ar
y2

P
3

Su
m

m
ar

y2
P

3
Su

m
m

ar
y2

P
3

A
ge

 (
Y

ea
rs

)
50

 (
39

, 6
5)

49
 (

39
, 6

1)
0.

22
53

 (
39

, 6
4)

0.
41

50
 (

39
, 6

2)
0.

68

M
al

e 
G

en
de

r
29

0 
(5

5%
)

44
9 

(5
3%

)
0.

46
31

3 
(5

7%
)

0.
41

76
2 

(5
5%

)
0.

92

C
au

ca
si

an
 R

ac
e

39
8 

(7
5%

)
55

5 
(6

5%
)

<
0.

01
46

6 
(8

6%
)

<
0.

01
10

21
 (

73
%

)
0.

34

A
PA

C
H

E
 I

II
 s

co
re

1
92

 (
71

, 1
44

)
91

 (
70

, 1
16

)
1.

00
95

 (
79

, 1
07

)
0.

63
92

 (
73

, 1
12

)
0.

82

P
la

sm
a 

SP
-D

 (
ng

/m
l)

99
 (

50
, 2

12
)

13
6 

(6
3,

 2
83

)
<

0.
01

60
 (

34
, 1

12
)

<
0.

01
96

 (
46

, 2
16

)
0.

27

P
la

sm
a 

IL
-8

 (
pg

/m
l)

40
 (

16
, 9

8)
32

 (
16

, 7
8)

0.
01

22
 (

6,
 7

8)
<

0.
01

28
 (

13
, 7

8)
<

0.
01

C
au

se
 o

f 
A

R
D

S
<

0.
01

<
0.

01
<

0.
01

 
Se

ps
is

11
7 

(2
2.

2%
)

20
7 

(2
4.

4%
)

14
7 

(2
7.

0%
)

35
4 

(2
5.

4%
)

 
P

ne
um

on
ia

20
9 

(3
9.

6%
)

39
7 

(4
6.

8%
)

10
4 

(1
9.

1%
)

50
1 

(3
6.

0%
)

 
T

ra
um

a
43

 (
8.

1%
)

62
 (

7.
3%

)
18

0 
(3

3.
1%

)
24

2 
(1

7.
4%

)

 
M

ul
ti

pl
e 

T
ra

ns
fu

si
on

26
 (

4.
9%

)
8 

(0
.9

%
)

18
 (

3.
3%

)
26

 (
1.

9%
)

 
A

sp
ir

at
io

n
81

 (
15

.3
%

)
12

1 
(1

4.
3%

)
71

 (
13

.1
%

)
19

2 
(1

3.
8%

)

 
O

th
er

52
 (

9.
8%

)
54

 (
6.

4%
)

24
 (

4.
4%

)
78

 (
5.

6%
)

N
um

be
r 

of
 n

on
pu

lm
on

ar
y 

or
ga

n 
fa

ilu
re

s4
<

0.
01

 
0

20
9 

(3
9.

6%
)

-
11

1 
(2

0.
4%

)
-

 
1

20
8 

(3
9.

4%
)

-
24

5 
(4

5.
0%

)
-

 
2

82
 (

15
.5

%
)

-
14

0 
(2

5.
7%

)
-

 
3

24
 (

4.
5%

)
-

39
 (

7.
2%

)
-

 
4

5 
(0

.9
%

)
-

10
 (

1.
8%

)
-

H
os

pi
ta

l M
or

ta
lit

y
<

0.
01

0.
25

<
0.

01

 
A

liv
e

38
4 

(7
3%

)
68

4 
(8

1%
)

41
3 

(7
6%

)
10

97
 (

79
%

)

 
D

ea
d

14
4 

(2
7%

)
16

5 
(1

9%
)

13
2 

(2
4%

)
29

7 
(2

1%
)

1 A
PA

C
H

E
 I

II
 s

co
re

 w
er

e 
re

co
rd

ed
 in

 A
LV

E
O

L
I 

an
d 

FA
C

T
T.

 A
PA

C
H

E
 I

I 
sc

or
e 

w
er

e 
re

co
rd

ed
 in

 V
A

L
ID

 a
nd

 tr
an

sl
at

ed
 to

 A
PA

C
H

E
 I

II
 u

si
ng

 f
or

m
ul

a 
A

PA
C

H
E

 I
II

 =
 5

.5
7 

+
 3

.0
8×

A
PA

C
H

E
 I

I

2 m
ed

ia
n 

(I
Q

R
) 

fo
r 

co
nt

in
uo

us
 c

ha
ra

ct
er

is
tic

s

Intensive Care Med. Author manuscript; available in PMC 2018 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhao et al. Page 15
3 C

om
pa

re
d 

w
ith

 A
LV

E
O

L
I 

co
ho

rt
; P

ea
rs

on
 χ

2  
te

st
 f

or
 c

at
eg

or
ic

al
 c

ha
ra

ct
er

is
tic

s 
an

d 
W

ilc
ox

on
 R

an
k 

Su
m

 te
st

 f
or

 c
on

tin
uo

us
 c

ha
ra

ct
er

is
tic

s

4 In
 F

A
C

T
T,

 th
e 

nu
m

be
r 

of
 n

on
pu

lm
on

da
y 

or
ga

n 
fa

ilu
re

s 
w

as
 n

ot
 a

va
ila

bl
e 

to
 th

e 
cu

rr
en

t s
tu

dy

Intensive Care Med. Author manuscript; available in PMC 2018 August 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhao et al. Page 16

Table 2

The discrimination of the original biomarker/clinical-model in the derivation (ALVEOLI) and external 

validation cohorts as measured by the area under the receiver operator characteristic curve (AUC)

Derivation Cohort External Validation Cohorts

ALVEOLI(N=528) FACTT (N=849) VALID (N=545) FACTT + VALID (N=1394)

Measurements AUC AUC (95% CI) AUC (95% CI) AUC (95% CI)

AUC1
Original biomarker/clinical-model

0.83 0.74 (0.70, 0.79) 0.72 (0.67, 0.77) 0.73 (0.70, 0.76)

AUC2
Benchmark

- 0.75 (0.72, 0.80) 0.74 (0.70, 0.80) 0.73 (0.70, 0.77)

AUC: Area under the ROC curve

1
From applying the original biomarker/clinical-model on new datasets without refitting (re-estimating the coefficients).

2
Benchmark AUC by refitting the original biomarker/clinical-model that includes age, APACHE, SPD, and IL8 on the dataset.
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Table 4

Treatment effects in FACTT stratified by the predicted mortality categories

Predicted mortality

Treatment effects on VFDs(Conservative vs Liberal Fluid Therapy) Summary of VFDs by Treatment4

RR1 (95% CI) Conservative Liberal Fluid

Low2 (N=437) 1.05 (0.98, 1.12) 22 (12, 25) 19 (9, 24)

High2 (N=412) 1.20 (1.09, 1.33) 9 (0, 22) 1 (0, 19)

P for interaction3 0.026

VFD: ventilator-free days

1
Risk Ratio was estimated from zero inflated negative binominal models. RR of 1.2 can be interpreted as: compared with the patients who were 

randomized to liberal fluid therapy, those randomized to conservative fluid therapy had 20% more VFDs

2
Low: predicted mortality ≤ 20%; High: predicted mortality >20%; The median predicted mortality was 19%.

3
The P value for the product term of the treatment and predicted risk groups (Low vs High).

4
Median (IQR) were reported
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