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ABSTRACT
Population at risk of crime varies due to the characteristics of a population as well as the crime
generator and attractor places where crime is located. This establishes different crime opportu-
nities for different crimes. However, there are very few efforts of modeling structures that derive
spatiotemporal population models to allow accurate assessment of population exposure to crime.
This study develops population models to depict the spatial distribution of people who have a
heightened crime risk for burglaries and robberies. The data used in the study include: Census
data as source data for the existing population, Twitter geo-located data, and locations of schools
as ancillary data to redistribute the source data more accurately in the space, and finally gridded
population and crime data to evaluate the derived population models. To create the models, a
density-weighted areal interpolation technique was used that disaggregates the source data in
smaller spatial units considering the spatial distribution of the ancillary data. The models were
evaluated with validation data that assess the interpolation error and spatial statistics that
examine their relationship with the crime types. Our approach derived population models of a
finer resolution that can assist in more precise spatial crime analyses and also provide accurate
information about crime rates to the public.
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1. Background: population, crime, time, and
place

Population is not randomly distributed in space, but it
usually follows a clustering pattern (i.e. has high con-
centrations in some locations and lower in others).
Typically, locations of high concentration have a higher
likelihood of crime incidents. However, high concen-
trations are not easily detected due to peoples’ varying
mobility patterns. For example, most people are com-
muters with varying mobility patterns during work
days. These patterns result in spatiotemporal variations
of the population and, therefore in spatiotemporal var-
iations of crime occurrences.

The most used population statistic in crime analysis
is the residential population. The distribution of popu-
lation from the census is collected at different spatial
scales (e.g. neighborhoods, grid cells, or city level) and
contains attributes such as age, gender, occupation,
level of education, and others. A variation of the popu-
lation statistic is to filter and examine specific demo-
graphic factors, such as the population of a particular
race (H. Zhang, Suresh, & Qiu, 2012), which are
assumed to be associated with a higher risk of being a

victim of crime. Also, nonresidential mobile population
data, termed “ambient,” have been suggested for cer-
tain crime types, such as robbery (Zhang et al., 2012),
assaults, and violent crime, which do not affect just the
resident population but mainly the mobile population.
Data that represent the ambient population may reduce
the bias that would be produced by the use of the
resident population data only. For instance, Stitt,
Nichols, and Giacopassi (2003) examined crime occur-
rences close to casinos and calculated the population at
risk by combining census data with tourism data.

Other crime studies used the LandScan global popu-
lation model to represent the ambient population
(Andresen, 2011; Andresen & Jenion, 2008).
LandScan has an approximate resolution of 1 km and
was modeled by the Oak Ridge National Laboratory
(ORNL) using spatial data, imagery analysis, and a
multivariable dasymetric modeling approach to disag-
gregate census counts within administrative boundaries
(ORNL, 2016). LandScan data were used to calculate
rates of offenses and to identify local spatial autocorre-
lation using the local Moran’s I index (Andresen, 2011;
Andresen & Jenion, 2008). A limitation of this dataset
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is that it estimates a yearly average population and
there is no possibility for examining seasonal, weekly,
and daily variations of the population.

Another approach is to use social media data as a
proxy indicator for the ambient population in spatial
crime analysis. Malleson & Andresen (2015a, 2015b,
2016) used Twitter messages to determine if crime hot
spots are changing considering different populations (i.e.
residential and ambient/mobile). Additionally, the same
authors in a more recent publication merged aggregated
mobile telephone activity with census and social media
data to create an ambient population “collective” dataset
(Malleson & Andresen, 2016). However, a drawback of
using social media to develop population at risk models
is that they underestimate older people living or working
in a study area because social media are mostly used by
young people (Correa, Hinsley, & De Zuniga, 2010).

The population models of Malleson and Andresen
were used in hotspot detection techniques such as the
Geographical Analysis Machine (GAM), Getis-Ord (Gi*),
and spatial scan statistics to identify spatiotemporal clus-
tering. Other methods that use population information
in crime analysis are the thematic mapping of geographic
areas as a hot spot method that can be linked with
population to calculate crime rates (Chainey, Tompson,
& Uhlig, 2008), and prospective predictive techniques
such as the Geographically Weighted Regression
(GWR) that use population as a parameter estimate of
the prediction model (Cahill & Mulligan, 2007).

It is worth pointing out that a more sophisticated
population dataset will not be equally accurate when
used in spatial statistical techniques of different crime
types. That is because there are significant spatiotemporal
variations of crime prevalence by crime type. For exam-
ple, seasonal crime patterns vary by crime type and geo-
graphy (Andresen & Malleson, 2015). Summer months
present a crime increase for some types of crimes (e.g.
assault, theft), especially in places where there are a lot of
summer activities (e.g. beaches, parks). Also, the decrease
and increase of temperature at the hourly level can help to
predict street robbery (Tompson & Bowers, 2015).

Furthermore, crime research has looked into the
weekly, daily, and hourly variations of crime prevalence
and when temporal peaks occur by crime types. For
instance, street robberies are most likely to occur during
the week during business hours (6 am–5:59 pm) and also
during leisure hours (6 pm–1:59 am) (Irvin-Erickson,
2014). Nevertheless, while a specific location is considered
a hotspot at night, it may become a coldspot during the day
(Caplan & Kennedy, 2011).

On the other hand, robbery prevalence increases
at night and on weekends. It is concentrated
between 8:00 pm and midnight during the work-
week and between 9:00 pm and 4:00 am on weekend
nights (Caplan & Kennedy, 2011; Perry, 2013).
Regarding assaults, they are also most prominent
during weekends (i.e. Friday night to Sunday morn-
ing) and are spatially connected with the proximity
to bars or nightclubs (Andresen & Malleson, 2013,
2015; Caplan & Kennedy, 2011). Robberies and
assaults present temporal similarities and peak per-
iods that are found to be in the early morning hours
on weekends and between 00:00 and 03:00 am on
Saturdays and Sundays (Ceccato & Uittenbogaard,
2014).

On the other hand, according to Caplan and
Kennedy (2011), burglary risk levels seem to be
heightened during workday morning and afternoon
hours when owners are absent due to their general
activities away from home. Other studies that con-
sidered acquisitive crimes showed that property
crimes occur more often in the afternoons (highest
peak is at 5:00 pm) and take place in the city center
and regional commercial centers (Uittenbogaard &
Ceccato, 2012), while thefts are decreasing during
the weekend (Saturday and Sunday) (Andresen &
Malleson, 2015).

Moreover, spatial variations of crime prevalence
are studied through hot spot analysis. Similar to the
temporal variations, crime types show different pat-
terns in space. The spatial diversity of crime is a
core component of crime pattern theory as it con-
siders crime attractors and generators as places that
result in certain areas being vulnerable to crime
(Brantingham & Brantingham, 1981). For example,
for the cities of Vancouver and Ottawa, it was
found that while thefts are concentrated in the cen-
tral business district and also in shopping areas
across the city, most burglaries occur in residential
areas (Andresen & Linning, 2012). In Stockholm,
violent crime clusters are concentrated in specific
locations in the suburbs, mostly in the weekends
(Uittenbogaard & Ceccato, 2012). Locations of alco-
hol outlets show positive spatial correlation with
aggravated assaults (Snowden & Pridemore, 2013).
Locations of high drug activity are also positively
correlated with aggravated assault as well as with
other violent crimes (Snowden & Pridemore, 2013).
Among others, these examples identify specific
environmental characteristics for each crime type,
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which support the idea of using non-aggregated
crime types in spatial analysis.

2. Research gap and the current study

The objective of this study is to use social media
information to produce population at risk models for
crime (from hereafter “Pop.CR models”). Population at
risk is a terminology used mainly in epidemiology and
health geography (Ashford, Desjeux, & deRaadt, 1992;
Criqui, Denenberg, Langer, & Fronek, 1997; Hay,
Guerra, Tatem, Noor, & Snow, 2004). A general defini-
tion describes a group of people who are exposed to
danger or harm more than the general population
(TheLawDictionary, n.d.). Considering crime, popula-
tion at risk is a model of the general population that
represents people who are more likely to become vic-
tims of crime. In the previous section, we discussed
how population is the core input in spatial crime ana-
lysis. Up to now, when spatial analytical methods
require population information, most studies use the
residential population and few recent studies have used
ambient population (Malleson & Andresen, 2015b,
2016). Residential population is inappropriate for
crime types that involve mobile population (e.g. street
robbery) and although current efforts at ambient popu-
lation modeling offer improvements for such crime
types, these models are still too generic to capture
particular characteristics of the vulnerable population
(e.g. temporal aspects). To create more precise popula-
tion models that reflect the distribution of a population
when they are at a heightened victimization risk, addi-
tional factors can be considered such as place, time,
individuals’ traits, and so on. Such versatile informa-
tion is available with data from location-based social
networks. In this study, we use the Twitter application
and we process the temporal information of geo-
located tweets to create spatial distributions for time
slots when crime is at its peak.

Geo-located tweets alone can reveal the spatial dis-
tribution of the ambient population (Malleson &
Andresen, 2015a). Consequently, geo-located tweets
that are processed by time intervals can reveal the
spatial distribution of a population at risk of crime.
However, a geo-located Twitter dataset cannot substi-
tute for a population model due to the inconsistencies
between the number of tweets and population.
Furthermore, because the amount of tweets per user
may vary substantially (Li & Goodchild, 2013), a
tweets’ distribution is likely to be biased according to
the locations of the “heavy” users. Thus, Twitter data
should be preprocessed and used in combination with

general population data. In particular, spatial popula-
tion datasets can be used to control and retain popula-
tion counts within areas while Twitter data designate
their distribution.

We use density weighted areal interpolation to com-
bine population with Twitter data. Areal interpolation
is a common method in geographic studies and its
main applications are isopleth mapping and transform-
ing data from one set of boundaries (i.e. source zones)
to another (i.e. target zones) (Lam, 1983). The inter-
polation problem has led to the development of several
algorithms and application studies. One of the early
and most common applications is the disaggregation of
census data into a finer grid cell size resolution
(Martin, 1989; Mennis, 2003). Apart from creating
population surfaces, areal interpolation has also been
used for socioeconomic data. Tested interpolated vari-
ables include Black population, Hispanic population,
number of children, number of households, and values
of housing units (Eicher & Brewer, 2001; Mennis &
Hultgren, 2006).

Interpolation algorithms involve simple and more
advanced methods that employ additional ancillary
data (Hawley & Moellering, 2005). The area-weighting
method is the simplest approach to interpolate values
of a variable as a weighting function of the density
values of all source zones’ intersecting with a target
zone by assuming homogeneity in values within source
zones (Lam, 1983). A similar assumption that the den-
sity within each source zone is a constant is also the
first part of the Tobler’s (1979) pycnophylactic method.
However to counterbalance for heterogeneity in space,
the pycnophylactic method considers as a next step the
density of the target zones’ neighbors using a smooth-
ing function in each cell. A third popular method that
does not include ancillary data is the centroid-based
method proposed by Martin (1989) that applies a dis-
tance-based decay function from the centroid of each
source zone to allocate the value of the variable into
each target zone. A major disadvantage of this method
is that it does not preserve the total value of each
source zone (i.e. volume preserving characteristic).
Moving into the commonly known intelligent
approaches that employ ancillary data, the dasymetric
approach by Fisher and Langford (1995) used 2-D
binary land use data. The dasymetric approach discards
the homogeneity of source zones but employs it within
the control zones (in this example the land use types).
A rescaling operator was added later to preserve the
volume of each source zone (Langford, 2006). Next,
overlaid network algorithms are a group of simple and
more complicated methods that employ 1-D road
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network data (Xie, 1995). Last, the area-to-point inter-
polation by Kyriakidis (2004) originates from classic
geostatistical point interpolations.

In this research, Twitter data act as ancillary data
similar to most recent approaches in areal interpolation
that involve the use of point data (0-dimension)
(Bakillah, Liang, Mobasheri, Jokar Arsanjani, & Zipf,
2014; Lin & Cromley, 2015; Zhang & Qiu, 2011). Due
to their 0-dimension (i.e. locations), Twitter data have
an additional advantage. Original population data can
be disaggregated into zonal systems of finer resolu-
tions. Given the fact that there is spatial heterogeneity
in crime rates at a “micro” level (i.e. street to street
variation) (Groff, Weisburd, & Yang, 2010), crime
trends need to be examined at large scales (i.e. “micro
places”). This means that fine resolution risk models
produced from point level ancillary data will offer more
accurate results than risk models of a coarser resolu-
tion, when used in spatial crime analysis applications.

Lastly, to the best of the authors’ knowledge, there
has been only one attempt to use social media data
for areal interpolation of population. Lin and
Cromley (2015) used geo-located tweets along with
land cover, roads, and parcels to disaggregate popu-
lation values from census tracts to block groups in
Hartford County, CT. Results showed that adding
Twitter data decreases interpolation errors but

performs worse in regarding the errors compared to
other ancillary data when used as a single layer of
information in the interpolation process. Due to the
involvement of social media in the areal interpola-
tion process is still a novel endeavor, this study
offers additional findings and allows the comparison
of results. Nevertheless, it is important to keep in
mind that there is no direct analogy between the
study of Lin and Cromley (2015) and this study,
because the modeling of population at risk for
crime is not always a pure residential population
model as it also involves the tuning of the temporal
information of tweets.

3. Modeling population at risk

3.1. Density weighted areal interpolation
technique

To create Pop.CR models, we used a disaggregation
technique as shown in Figure 1. The upper part of
the figure shows the input data, namely source zones,
control points, and target zones. Source zones are ori-
ginal units (e.g. administrative regions) for which
population data are available. The second input data
are control points, which represent the spatial distribu-
tion of people at crime risk and are used to

Figure 1. An example of the density weighted areal interpolation technique depicting the three input data (i.e. source zones,
control points, and target zones), the output disaggregated model (i.e. distribution of disaggregated population), and if it is
available, the distribution of the validation data (i.e. distribution of validation population).
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disaggregate the original units and reallocate their dis-
tribution based on the distribution of the risk. The new
distribution is transferred to another zonal system, the
target zones, which are preferably of a finer resolution.
In this study, target zones are grid cells containing
population information per cell (validation data), thus
allowing the validation of the disaggregating process.
Last, the bottom part of the figure shows the density
distributions of the disaggregated population and the
validation population.

Our technique is based on an areal interpolation
technique that was developed by Zhang and Qiu
(2011) and uses points as ancillary data. More specifi-
cally, the authors used schools as control points to
disaggregate residential population from census tracts
to ZIP codes in Collin County, TX. In the original
method, the source zones are disaggregated to cells
and then transferred to the target zones. In our version,
the cells are the target zones. Also, the “point-based
intelligent approach” uses a function that is based on
the distance to the control points, though here we
consider the density of the control points. Distance to
control points is a reasonable choice when these points
represent locations around which the density of the
population is higher (in other words hotspot locations).
However, our control points (i.e. Twitter data) better
represent a density surface of the population. Thus, the
distance decay function would result in an inaccurate
disaggregation for many cells. For example, a cell that
has one control point would get a similar population
value compared to a cell that has many control points.
The formulas that were used to perform the disaggre-
gation and calculate the values of each target zone are
shown below in Equations (1–2).

Our approach is applicable when target zones are
smaller units than source zones. Therefore, some
target zones can be fully contained inside source
zones, while other target zones intersect with source
zones, or target zones are only contained by source
zones. For example, source zones can be municipa-
lities and target zones grid cells of 0.5 km2 resolu-
tion. Thus, some cells will be contained within a
municipality while others will intersect its boundary.
Another example is using districts as source zones
and postcodes as target zones. Postcodes typically lie
within a district and are aligned with its boundary.
At first, each target zone is assigned to one source
zone using a point-in-polygon operation, where the
point is the center of the target zone and the polygon
is the source zone that contains that point. The
population value for each target zone (Vsi) is a func-
tion of the ratio of the population value and the sum
of weights of the source zone s, and the weight of the

target zone within zone s (Equation 1). The weight
(Wsi) is calculated using a density function that
assigns weights proportionally to the control points’
density in each target zone (Equation 2). The den-
sity-weighted areal interpolation technique has been
automated with a Python code for the ArcGIS 10.0
program. The code and user instructions are avail-
able for free from the corresponding author upon
request.

Vsi ¼ VsPNs
i¼1 Wsi

Wsi (1)

Vsi is the value for target zone i within source s (num-
ber of people), Vs is the value of source zone s (number
of people), Ns is the number of target zones within
source zone s, and Wsi is the weight of target zone i
within source zone s.

Wsi ¼ csi
cs

� �q

(2)

csi is the number of control points in target zone i, cs
is the number of control points within all target zones
in source zone s, and q is the power parameter that
controls the degree of influence.

It is worth pointing out that Bakillah et al. (2014)
proposed a building level disaggregation approach in
an application with points-of-interest (POIs) from
OpenStreetMap (OSM) that are associated with a
higher density of population. Their approach merged
the “point-based intelligent approach” with other
existing methods. Similar to Twitter data, the popu-
lation correlated POIs, due to their volume, resemble
a density surface of the population. To reduce the set
of POIs and use them as control points in the dis-
tance decay function, a quadtree procedure was
applied. In a similar effort, we extracted the central
features from hotspot areas (i.e. spatial clusters using
the nearest neighbor hierarchical clustering techni-
que (Everitt, 1974)) and used these features as con-
trol points in a distance decay function as in Zhang
and Qiu (2011). The validation that is presented in
Section 3.4 was initially performed for both density-
weighted and the distance decay functions. The den-
sity-weighted function yielded better results and thus
only models from this function are presented in the
paper.

3.2. Analytical strategy

The study area is in Vienna, Austria, where we
developed Pop.CR models for two crime types: resi-
dential burglary (i.e. burglaries in houses or apart-
ments) and robbery of a cell phone, purse, or bag.
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Control points varied for each crime type and were
created by two different geo-located tweets’ distribu-
tions in the study area. For residential burglaries, a
Pop.CR model was created, named as “Pop.CR1” by
control points, named as “control points 1” that
portrayed the distribution of the residential popula-
tion (i.e. locations of people from Monday to Friday
between 2:00 am and 6:00 am – workday sleeping
hours). On the other hand, for robberies, we cap-
tured the distribution of the population at high
crime temporal peaks by analyzing their weekly pat-
terns in the study area. These patterns were identi-
fied by analyzing original crime data, which are
described in Section 3.3. Hence, a second Pop.CR
model was created, named as “Pop.CR2” by control
points, named as “control points 2” that portrayed
the distribution of the weekend night ambient popu-
lation (i.e. locations of people from Friday at 4:00
pm to Saturday at 5:00 am, and from Saturday at
4:00 pm to Sunday at 5:00 am).

The analytical strategy is presented in Figure 2 and
consists of two phases: phase A – application of the
method, and phase B – performance evaluation. In
phase A, the density weighted interpolation was applied
to the input data and the models were created. The
input data include source zone data of a coarse resolu-
tion, two sets of control points (one for each Pop.CR
model), and target zones of a finer resolution. Details
of the input data are described in Section 3.3. In phase
B, the models were evaluated using either validation
measures (methods described in Section 3.4 – results
shown in Section 4.1) or spatial statistics (methods
described in Section 3.5 – results shown in Section
4.2). The validation measures were used only in the
first model for which validation population data were
available. Population models usually represent residen-
tial populations and alternatively ambient populations
(Andresen, 2011; ORNL, 2016; Sutton, Elvidge, &
Obremski, 2003). Pop.CR2 was evaluated using spatial
statistics that examine the spatial relationship of the

Figure 2. Flowchart of the analytical strategy.
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population at risk and the crime type in question
because official population data with the characteris-
tics of this model currently do not exist. Hence, the
original crime data were employed for this part of the
analysis, as well.

3.3. Datasets and pre-processing

The interpolation method was applied and evaluated
for the city of Vienna, Austria. Four types of datasets
were used that include the input data (i.e. source zones,
control points, and target zones) and crime data (i.e.
robberies) in the study area.

3.3.1. Source zones
Source zones are administrative regions with popula-
tion data per region for 2011. Two types of regions are
used: (a) “Bezirk” (i.e. Austrian division equivalent to
districts or boroughs), which includes 23 areas of an
average size of 18 km2, and (b) the entire city of Vienna
that has an area of 414.66 km2. The population data
were obtained by the official statistical service in
Austria (StatistikAustria, 2016). The data were not
collected by questionnaires to the citizens (traditional
census) but directly retrieved from administrative reg-
isters. The total population of Vienna in 2011 was
1,714,227 and the population among the Bezirk areas
ranged from 16,374 to 177,989 people with a standard
deviation of 42,022 people. Bezirk areas are used for
the Pop.CR1 model. However, the Pop.CR2 model
involves mobile populations for particular time inter-
vals. If Bezirk areas were to be used as source zones for
this model, it would imply that people living in these
districts move only within the limits of their districts.
We assume that Viennese residents may spend their
working or leisure time at any location within the city
and therefore, we used the entire city as the single-
source zone for the second model.

3.3.2. Control points – Twitter data
Twitter data were obtained via harvesting the geo-
located messages by streaming the Twitter API for
posts in 2012. The administrative boundary of Vienna
city was considered the bounding box for the query
extracting the tweets. The geo-located dataset contains
303,613 tweets sent by 16,209 users and was further
processed so as to extract tweets within temporal inter-
vals that were described in Section 3.2. In total, 7140
tweets were extracted for time intervals that were used
to define the residential population (used in PopCR1)
and 39,364 tweets for the temporal peaks of robberies
(used in PopCR2), respectively. The amount of tweets

per user varies substantially (i.e. 1–1050). To counter-
balance the tweets discrepancies and restrict the impact
that “heavy” users may have in our models, only one
location per user was selected. According to Kounadi
et al. (Kounadi, Lampoltshammer, Groff, Sitko, &
Leitner, 2015), the spatial distribution of tweets by
user in the city of London, UK, was found to be highly
clustered for most of the users. We tested a sample of
50 randomly selected users and found similar patterns.
The average first-order nearest neighbor index (NNI)
of locations of the tweets by user was 0.23 (p
value ≤ 0.001). The results ranged from extremely
clustered (i.e. NNI = 0.08) to clustered (i.e.
NNI = 0.6) point patterns. Therefore, we concluded
that the spatial median is an appropriate centrographic
statistic to estimate the location around which a user
tweets the most (i.e. a representative location for each
user). The spatial median is defined here as the inter-
section between the median of the X coordinates and
the median of the Y coordinates (Levine, 2013). For
each user, we ordered the X coordinates and the Y
coordinates and chose the median of the X and the
median of the Y coordinates. In the case when one user
has just one location, we kept these coordinates. The
resulting control points set for Pop.CR1 consist of 1354
locations and the set for Pop.CR2 consists of 5445
locations, respectively.

3.3.3. Target zones – validation data
As already mentioned, this study uses target zones for
which population data already exist in order to directly
validate the results of the interpolation method. In
particular, we used the “GEOSTAT 2011” population
grid that is produced by Eurostat in cooperation with
the European Forum for GeoStatistics (Eurostat, 2016).
The grid has a resolution of 1 km2 and contains popu-
lation data for 43 European countries. Regarding
Austria, population is obtained from buildings and
dwellings registered in 2011. It is estimated that
99.99% of all census buildings were georeferenced and
have a positional accuracy of 0.01 m. Also, no disclo-
sure control or confidentiality treatment was applied to
the population of each grid cell. For our analysis,
Austrian grid cells were selected that intersect the
City of Vienna. The cells at the edge of the city extend
beyond its periphery and thus, all intersecting cells
represent a greater population than the population of
the Bezirk areas (i.e. 1,740,953 people in 406 grid cells).
The differences in population values between target
zones and source zones can affect the validation results.
To compensate the difference, only cells having their
centers within the study area were selected. The final
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population grid consists of 352 grid cells and has a total
population of 1,707,800 people. The population for
individual grid cells ranges from 1 to 28,423.

3.3.4. Crime data – evaluation data
Crime data were provided by the Criminal Intelligence
Service Austria (Federal Criminal Police Office) that
stores all reported Austrian crime incidents in a data-
base called Security Monitor. The database contains
data since 2004 for internal investigation and analysis
purposes. For the geocoding of incidents, an Austrian
address register database is used. The database contains
unique addresses for each building shown on the cada-
ster and the captured coordinates of crime incidents
represent a location inside the footprint of the building.
Thus, the positional accuracy of the crime dataset for
crimes that can be readily associated with an address is
considered fairly high with an estimated range of a few
meters. Also, several attribute characteristics are col-
lected and stored for each crime incident. For this
study, the agency provided us with the location and
temporal information in GIS layers. The crime dataset
consists of robberies of a cellphone and robberies of a
purse or a bag that were merged together and referred
to as robberies in the remainder of this paper (in total
854 incidents). All incidents occurred in Vienna during
2011.

3.4. Validation measures

The Pop.CR1 model was evaluated with four error
measures that have been used traditionally in the
field of areal interpolation. The measures compare
the interpolated values (i.e. disaggregated population

values) with the actual values in the target zones (i.e.
validation population values) and are shown in
Table 1.

3.5. Spatial statistics

Pop.CR2 has the temporal characteristics of a
heightened victimization risk for robberies.
Therefore, the spatial distribution should be some-
how correlated to the spatial distribution of the
incidents themselves. Our assumption is that the
spatial correlation between the model and its crimes
will be higher than if a generic population model
was used instead. To test our assumption, we use
the Pop.CR1 model, which represents the distribu-
tion of the residential population, examine its rela-
tionship with the actual locations of robberies, and
expect it to be weaker than the relationship between
the Pop.CR2 and robberies.

The relationship between distributions of the
population models and crime incidents can be cal-
culated using the Pearson correlation coefficient
(i.e. Equation 6). However, we employ spatial sta-
tistics because global estimates can mislead inter-
pretations or hide local relationships. Recent
research shows that variables that appear to be
independent using a global correlation coefficient
can be significantly locally correlated (Kalogirou,
2012, 2013). Two spatial statistical methods were
used to examine the abovementioned relationship,
namely, the local Pearson correlation coefficient
(Lr) (Kalogirou, 2012; Wheeler & Tiefelsdorf,
2005) (Equation 7) and the GWR (Fotheringham,
Brunsdon, & Charlton, 2003) (Equation 8).

Table 1. Error measures of areal interpolation for evaluation purposes.
Name Abbreviation Formula References

Root mean square error RMSE

RMSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNi

i ¼ 1 Di � Við Þ2
Ni

s
(3)

Bakillah et al. (2014), Zhang and Qiu (2011), Fisher and
Langford (1995), Yuan, Smith, and Limp (1997)

Mean absolute error MAE

MAE ¼
XNi

i¼1

Di � Vij j
Ni

(4)
Zhang and Qiu (2011), Langford (2006)

Coefficient of
determination of linear
regression

R2

R2 ¼ explained variation
total variation

(5)
Yuan et al. (1997), Bakillah et al. (2014)

Pearson’s correlation
coefficient

r
r ¼

PNi
i ¼ 1 Vi � �Vð Þ Di � �Dð ÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPNi

i ¼ 1 Vi � �Vð Þ2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Di � �Dð Þ2

qr (6)
Bakillah et al. (2014)

where Vi, Di, are, respectively, the validation population value and the disaggregated population value for each target zone.
Ni is the number of target zones.
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Lri ¼
PK

j¼1 Cj � Ci
� �

Dj � Di
� �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
j¼1 Cj � Ci

� �2q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPK
j¼1 Dj � Di

� �2q (7)

Lri is calculated for every point i, where i is the center
point of each target zone, k is the number of nearest center
points of target zones around this point, Ci and Di are the

mean values of the k nearest neighbors for robberies and
the disaggregated population, respectively.

Yi ¼ β0 ið Þ þ β1 ið Þxi; for i ¼ 1 . . . n (8)

where Yi is the estimated number of robberies, xi = the
disaggregated population of the model, β0 and β1 are

Figure 3. Input data: (a) rasterized source zones overlapping with counts of tweets per cell (tweets collected during workday
sleeping hours), and (b) validation population data.

Figure 4. PopCR1a models: (a) power parameter q = 0.3, (b) q = 0.5, (c) q = 0.7.
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parameters that describe this relationship around a
target zone i.

4. Results

4.1. Interpolation errors for Pop.CR1

The input data of the first model are shown in Figure 3
with three layers of information, namely the rasterized
source zones classified by the population, counts of tweets
per cell, and the distribution of the validation data. The
first model, PopCR1a, was tested using several power
parameters (i.e. “q”). By increasing q, the degree of local
influence that the density of the tweets has on the model
is increased as well. Thus, a smaller q in a model will
deliver a smoother surface compared to a bigger one, as
shown in Figure 4 – maps A, B, and C.

Furthermore, we created a second model, PopCR1b,
using an alternative set of control points. This is a dataset
of schools’ locations (including nursery schools) in Vienna.
The dataset was downloaded from the official platform for
open governmental data in Austria (www.data.gv.at) and
consists of 2588 locations. This type of control data was
also used by Zhang and Qiu (2011) with the original
distance function of the “point-based intelligent approach”.
We similarly applied the distance function to the schools
and tested several q parameters for this model. Then, we
created a third model, PopCR1c, in which the final disag-
gregated value is influenced by both the disaggregated
value using tweets (popCR1a) and using schools
(popCR1b). In Table 2, results of the interpolation errors
are presented for three of the tested parameters for each
model, which yielded the best results, and also show a trend
regarding the error. With respect to the first model based
on tweets, the PopCR1a with a q = 0.5 gave the best results
for three out of the four error measures. Generally, the
interpolation error of a model increases as the absolute
difference of the q value to 0.5 increases. The exception to
this trend is the same R2 value (i.e. 0.68) for both
PopCR1a_q0.5 and PopCR1a_q0.7models. For the second
model, higher q values are associated with better results
compared to the first model. In particular, values between
3.5 and 4.5 gave the best results in our application. R2 and r
values achieved the highest scores within this range. The
RMSE is decreasing with decreasing q values up to q = 1,
though the MAE has an opposite pattern up to a q = 4.5.

Table 2. Interpolation errors for all PopCR1
tested models of different power parameters
(i.e. q = 0.3, 0.5, 0.7, 3.5, 4, 4.5, and weighting
scheme between PopCR1a_q0.5 and
PopCR1b_q3.5 = 0.6 × 0.4, 0.8 × 0.2, 0.9 × 0.1).
Model RMSE MAE R2 r

PopCR1a_q0.3 4001 2615 0.65 0.80
PopCR1a_q0.5 3945 2463 0.68 0.83
PopCR1a_q0.7 4253 2517 0.68 0.82
PopCR1b_q3.5 5412 3145 0.44 0.66
PopCR1b_q4 5509 3133 0.43 0.66
PopCR1b_q4.5 5612 3130 0.43 0.66
PopCR1c_06*04 3691 2172 0.68 0.83
PopCR1c_08*02 3655 2214 0.70 0.84
PopCR1c_09*01 3762 2304 0.69 0.83

Figure 5. PopCR1b and 1c models: (a) best PopCR1b model, (b) best PopCR1c model, and (c) population difference between the
PopCR1c and validation data.
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Summarizing the error results of this model, we conclude
that PopCR1b with a q = 3.5 is the best model based on
schools. In general, all population models that use schools
as control data (school-based models) underperform con-
siderably the population models that use tweets as control
data (tweets-based models). In the last mixed model, the
disaggregated values of the PopCR1a_q0.5 and
PopCR1b_q3.5 are used to calculate the final disaggregated
value based on several weighting schemes (Table 2 shows
again the best three results). The best results were achieved
when PopCR1a_q0.5 weights 0.8 of the final cell value and
PopCR1b_q3.5 weights 0.2 of the final cell value. This
model, PopCR1c_08*02, minimized the RMSE and MAE
and increased R2 and r values, and thus is the best of all
tested models. Models PopCR1b_q3.5 and
PopCR1c_08*02 are shown in Figure 5 (maps A and B).
Note that the school model, due to the distance function,
creates a much smoother surface compared to the mixed
model and the tweets model.

Furthermore, in Figure 5 (map C), we visualized the
population error (i.e. disaggregated population – vali-
dation population) for the best model,
PopCR1c_08*02, to detect if there are any clearly
defined areas for which the model does not perform
well. The classification of the error shows cells with an
error that is higher, lower, or within the – MAE to
MAE. The map does not visualize clustered areas of a
high overestimation or a high underestimation of the
population. This was also tested with spatial autocorre-
lation statistics of the absolute population error in each
cell. The results showed marginally dispersed and clus-
tered patterns with values close to the theoretical ones
(i.e. Getis–Ord General G = 0.03; p value: 0.001,
Geary’s C = 1.03, p value: 0.01, Moran’s I = 0.04, p
value: 0.001).

4.2. Spatial statistical results for Pop.CR2

A similar analytical approach as described above was
employed for the second model. PopCR2_q0.5 (q = 0.5)
and PopCR2_q0.7 (q = 0.7) gave the best spatial

statistical results among several power parameters that
were tested. Table 3 shows the Lr and the GWR results
for the best four tested PopCR2 models and the com-
parison model, which is the best PopCR1 model
(PopCR1c_08*02). PopCR2_q0.7 gives the highest
mean Lr(0.69) and the vast majority of the cells (95%)
are significantly positively correlated. PopCR2_q0.5 has
the highest R2 for the GWR (0.80) and has a mean
absolute residual of 1.16. Generally, all models includ-
ing the PopCR1 have positive local correlation coeffi-
cients in the majority of the cells and also high R2

values. However, PopCR2 models have stronger rela-
tionships with robberies than the PopCR1 model. In
Figure 6, the input data (i.e. source zone and tweets per
cell), the best PopCR2 (q = 0.5), and the difference in
population counts between PopCR1 and PopCR2 are
shown in maps A, B, and C, respectively. Comparing
maps B and C, we notice that the center of the city has
higher population at weekend night times compared to
workday sleeping hours.

The higher local correlation, Lr, of robberies with
PopCR2 compared to robberies with PopCR1 is
visually illustrated in Figure 7 (maps A and B).
Although areas of robberies’ clusters are all posi-
tively correlated with disaggregated populations of
PopCR2, a considerable amount of disaggregated
populations located in the city center of PopCR1
is not significantly correlated with robberies’ clus-
ters. Also, in maps C and D, we see the distribution
of the GWR residuals that are higher, lower, or
within the – MAR to MAR (i.e. mean absolute
residual). The spatial autocorrelation of the absolute
residuals in each cell was tested for both models to
detect, if there are any clearly defined areas for
which the underlying disaggregated population
does not sufficiently estimate the number of rob-
beries. Similar to the interpolation analysis, results
showed nonsignificant or weak clustering and dis-
persed patterns. Results of the indices for PopCR1
are as follows: Getis–Ord General G = 0.05; p value:
0.001, Geary’s C = not significant, Moran’s I = 0.11;

Table 3. Results of the local correlation coefficients and geographically weighted regressions for four
tested models and the comparison model (i.e. PopCR1c).

Local correlation
coefficient

Geographically
weighted regression

Model
Percent of significant
correlationsa (%)

Mean local correlation
coefficient

Mean absolute
residual R2

PopCR1c_08a02 84 0.61 1.29 0.75
PopCR2_q0.3 96 0.62 1.22 0.80
PopCR2_q0.5 96 0.67 1.16 0.80
PopCR2_q0.7 95 0.69 1.15 0.79
PopCR2_q1 92 0.68 1.21 0.76

aCorrelation is significant at the 0.05 significance level.
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Figure 6. Input data and PopCR2 against PopCR1: (a) rasterized source zone overlapping with counts of tweets per cell (tweets
collected during weekend night hours), (b) best PopCR2 model (q = 0.5), and (c) population difference between the PopCR1 and
PopCR2.

Figure 7. Statistical comparison of PopCR1 and PopCR2 (best models): (a) Significant local correlations of PopCR2 with robberies, (b)
significant local correlations of PopCR1 with robberies, (c) geographically weighted regression residuals between PopCR2 and
robberies, (d) geographically weighted regression residuals between PopCR1 and robberies.
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p value: 0.001. Results of the indices for PopCR2 are
as follows: Getis-Ord General G = not significant,
Geary’s C = 1.05; p value: 0.001, Moran’s I = 0.08; p
value: 0.001.

5. Concluding remarks and future directions

This study developed and evaluated spatiotemporal
models that depict the distribution of people prone to
be victimized by burglaries and robberies. The models
were created using a density-weighted interpolation
that disaggregates the source data into smaller spatial
units considering the spatial distribution of the ancil-
lary data. Census data acted as source data for the
existing population and Twitter data as ancillary data
to redistribute the source data more accurately
throughout the space. Although previous studies have
used Twitter data to derive population at risk models
for crime, this is the first attempt in which the tem-
poral and the spatial attributes of the tweets were
processed. The additional preprocessing of tweets
allows creating distributions of a heightened crime
risk that vary for each of the two crime types. The
presented methodology can be used to derive popula-
tion models as parameter estimates in crime prediction
methods or as population information that can be used
to calculate rates of offences more precisely.

To evaluate the models, two additional datasets were
used: a gridded population dataset produced by
Eurostat, and robberies of the study area in Vienna in
2011. The gridded population dataset was compared
with the Pop.CR1 (i.e. the population model for bur-
glaries) to assess the interpolation error. Several initial
models were tested by changing the power parameter
of the interpolation method and examining the results
of the error measures. The best model was the one with
a power parameter of 0.5. Also, additional models were
created with: (a) a distance decay interpolation using
schools as ancillary data and (b) a weighted interpola-
tion between the interpolated values of the two sets of
control points (i.e. schools and Twitter data). Tweets-
based models outperformed all school-based models.
However, the best model was achieved when the popu-
lation value for each target zone was calculated as
weighting function between the interpolated values of
the best tweets-based model and the interpolated values
of the best schools-based model at a ratio of 0.8–0.2,
respectively. Generally, the interpolation error did not
appear to be spatially concentrated.

Robberies were used to examine their spatial
relationship with the Pop.CR2 (i.e. the population
model for robberies). The analysis of the second
model yielded similar results. The power parameters

of 0.5 and 0.7 created models with the highest
spatial correlation to robberies compared to models
of smaller or larger power parameters. The analysis
of residuals of the GWR showed that there were no
concentrated areas where the disaggregated popula-
tion did not estimate the number of robberies well.
More importantly, Pop.CR2 predicted robberies bet-
ter than Pop.CR1. This demonstrates that models
tailored to the characteristic of a crime type has the
potential to improve prediction results, which in
turn raises new research challenges in population
modeling and spatial crime analysis.

A major advantage of our method is the resolu-
tion at which models can be created, which can
range from very fine to very coarse. This may be
decided based on specific application purposes. The
resolution of our models was set to 1 km2 to allow a
direct comparison with the validation data. However,
much smaller units such as street blocks or finer grid
cells could have been used as well. The only precon-
dition is that the model consists of areal units, thus
deriving a point distribution is not possible. Other
benefits are the method’s simplicity and that it relies
on freely available Twitter data. However, we cannot
claim that if it is used solely to disaggregate residen-
tial population, the interpolation results will be as
accurate as other sophisticated interpolation methods
that include a variety of ancillary data (e.g. LiDAR,
OSM POIs, land use and land cover data) such as
those that are referred to in Section 2. Furthermore,
a limitation regarding the application of the method
in this study is the incomplete source zone dataset
that was used for creating Pop.CR2. The amount of
mobile population in Vienna was considered equal to
residents. This assumption does not capture tourists,
people coming to the city for work or pleasure, and
residents that leave the city during weekends. Hence,
if Pop.CR2 is used for the calculation of robbery
rates per grid cell, it may yield to an over or under-
estimation of actual values. Yet, these rates would be
more accurate than rates that are calculated by the
underlying residential population (i.e. Pop.CR1
model).

Upcoming research work will be dedicated to the
application of this method to additional crime types
against persons such as assaults, thefts, and pickpock-
eting. Furthermore, the textual information of tweets
(i.e. the message itself and the profile information)
can be exploited as additional filtering criteria of the
population models. The testing of models should
involve prediction methods such as the GWR that
was used here, as well as the risk terrain method
(Caplan, Kennedy, & Miller, 2011). Also, to further
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improve the calculation of offense rates and to create
more accurate source zone datasets, special attention
should be given to identify additional information on
population flows within a city (e.g. workers and
tourists) and to incorporate this information with
the census population. Apart from the crime analy-
tical purposes, our approach is replicable for popula-
tion at risk studies. In the field of health geography,
the interpolation technique can be used to produce
models that depict exposure to diseases at fine reso-
lutions when detailed population data are not avail-
able. Last, high-resolution spatiotemporal population
models can complement or be combined with recent
methods of modeling ambient population in disaster
management studies (Khakpour & Rød, 2013; Smith,
Martin, & Cockings, 2016).
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