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Abstract

Knowledge-based planning (KBP) can be used to estimate dose–volume histograms

(DVHs) of organs at risk (OAR) using models. The task of model creation, however,

can result in estimates with differing accuracy; particularly when outlier plans are

not properly addressed. This work used RapidPlanTM to create models for the pros-

tate and head and neck intended for large-scale distribution. Potential outlier plans

were identified by means of regression analysis scatter plots, Cook’s distance, coeffi-

cient of determination, and the chi-squared test. Outlier plans were identified as

falling into three categories: geometric, dosimetric, and over-fitting outliers. The

models were validated by comparing DVHs estimated by the model with those from

a separate and independent set of clinical plans. The estimated DVHs were also

used as optimization objectives during inverse planning. The analysis tools lead us

to identify as many as 7 geometric, 8 dosimetric, and 20 over-fitting outliers in the

raw models. Geometric and over-fitting outliers were removed while the dosimetric

outliers were replaced after re-planning. Model validation was done by comparing

the DVHs at 50%, 85%, and 99% of the maximum dose for each OAR (denoted as

V50, V85, and V99) and agreed within �2% to 4% for the three metrics for the final

prostate model. In terms of the head and neck model, the estimated DVHs agreed

from �2.0% to 5.1% at V50, 0.1% to 7.1% at V85, and 0.1% to 7.6% at V99. The

process used to create these models improved the accuracy for the pharyngeal con-

strictor DVH estimation where one plan was originally over-estimated by more than

twice. In conclusion, our results demonstrate that KBP models should be carefully

created since their accuracy could be negatively affected by outlier plans. Outlier

plans can be addressed by removing them from the model and re-planning.
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1 | INTRODUCTION

Knowledge-based planning (KBP) is an emerging field in radiation

therapy which uses machine learning techniques to estimate radia-

tion therapy dose. KBP can be generalized to be the automation of

different steps in the creation of a plan based on past practice.

These steps can range from the estimation of field direction,1

weights of optimization objectives,2 and even dose distribution.3,4

The majority of KBP work, however, has focused on estimating

dose–volume histograms (DVHs)5–9 which are commonly used to

evaluate plan quality and guide the inverse planning process.

Radiation treatment planning is a complex process which can

result in an infinite number of plans; some of which are suboptimal.

This is because the final dose distribution is dependent on the geom-

etry of the organs at risk (OAR) with respect to the target. Other

factors that can potentially affect the quality of the final plan are dif-

ferences in dose prescription,10 treatment technique, and planner

experience.11 It is because of these reasons that plan quality evalua-

tion has been based on user experience primarily making the devel-

opment of quantitative tools necessary.

KBP tools have been in development by different groups over

the past few years. Wu et al. introduced the concept of the overlap

volume histogram and used it to estimate the DVHs for OARs,6 and

automate the treatment planning process in head and neck (HN)

cases.12 Zhu et al. used the distance to target histogram, support

vector regression, and principal component analysis to estimate

DVHs in the context of adaptive radiation therapy.7 Yuan et al.

proved that it is possible to quantify the complex relationship that

different factors have on the final shape of the DVH.9 This group

also used their tool to exchange models that summarize plan creation

strategies among different institutions, hence providing a means to

standardize treatment planning.13,14 Moore et al. introduced a KBP

tool to perform quality assurance on intensity modulated radiation

therapy (IMRT) plans and reduce dosimetric variability.15 Appenzoler

et al. described a mathematical framework to estimate differential

DVHs using a summation of skew-normal distributions whose param-

eters were fitted based on previous plans.8 This work has being fur-

ther expanded to be used in the case of intracranial lesions.5

The work described in the previous paragraph has been done

using tools developed in house. It is only more recently that a com-

mercial application became available (RapidPlanTM, Varian Medical

Systems, Palo Alto, CA). RapidPlan allows the user to estimate DVHs

of OARs using “models” which are trained using principal component

analysis (PCA) and stepwise regression analysis. This training requires

the user to define a number of plans as the training set which can

be done in a number of ways, hence necessitating model perfor-

mance evaluation. Fogliata et al. have evaluated the performance of

RapidPlan using volumetric arc therapy in hepatocellular, lung, and

prostate cancer.16,17 Their results showed that RapidPlan models can

be used to achieve clinically acceptable plans. Tol et al. evaluated

the performance RapidPlan on head and neck and showed the ability

to achieve clinically acceptable plans for this site.18 These studies

identified the need to investigate the proper identification of outlier

plans, that is, plans that do not seem to follow the general trend of

the training set and could have a negative effect on the models.

Delaney et al. systematically introduced dosimetric outliers in KBP

models and found little change in the accuracy of the model.19 This

was attributed to the decreased precision of the estimated DVHs,

whose lower boundary was used for planning. Their study focused

on the effect of dosimetric outliers and briefly mentions the negative

effect of geometric outliers on KBP models. Proper outlier analysis

also helps control model over learning, meaning that the trained

model only reflects the training set and not similar cases.

This manuscript describes the process used to create models to

be used by a wide range of users with emphasis on the steps taken

to address all types of outliers. This is the first study, to the best of

our knowledge, which categorizes the different types of outliers,

provides strategies to address each of them as well as examples of

their effect in the model. This extended outlier analysis will benefit

users who are starting to build their own KBP models. Furthermore,

the models created are included in the commercial distribution of

RapidPlan and we believe it is important for the user to understand

the philosophy used to create the models as well as the accuracy

obtained during their creation. We will show that proper outlier

removal can affect the accuracy of estimated DVHs. This outlier

analysis becomes particularly important when creating models that

have the potential to be used by a wide range of users.

2 | MATERIALS AND METHODS

2.A | Overview of the algorithm

The commercial implementation of KBP uses a DVH estimation algo-

rithm that is different from the algorithms described above. This

algorithm estimates DVHs by dividing the OAR volume into four dif-

ferent regions: the out-of-field, in-field, leaf-transmission, and over-

lap region. All regions contribute to the final DVH but each region is

modeled differently depending on the desired detail and accuracy.

While both the in-field and overlap regions are dependent on flu-

ence modulation, the shapes of DVHs in the overlap region are simi-

lar across all plans. For this reason, and under the assumption that

the target is the primary priority in that area, the overlap region is

modeled by the mean and standard deviation of the DVHs part cor-

responding to that overlap area. In the in-field region, however, the

shapes of the in-field DVHs vary considerably across all the plans. It

is in this region where the major improvements in tissue sparing

could be achieved, under the assumption that the target is the pri-

mary priority in the overlap area. Thus, this in-field region, where

higher modulation is present and higher accuracy is desired, is mod-

eled using principal component analysis (PCA) and regression tech-

niques. PCA is used to transform the histograms into principal

component scores (PCS), thus reducing the dimensionality of the

problem. PCA is also used to parametrize the geometry-based

expected (GED) histogram, a 3D matrix incorporating the target

geometry, target dose, and treatment field geometry. Other parame-

ters that affect the PCS of the DVH include the OAR volume, target
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volume, OAR overlap volume percentage to target, and the propor-

tion of the OAR that is out-of-field.*

2.B | Models creation

2.B.1 | Training plans selection

Two models were created, one for prostate, and one for head and

neck. Once the anatomical sites were identified, patients who

received treatments to these sites were retrospectively selected by

searching our institution database. Using previously treated plans

was desirable since these plans reflect treatment techniques that are

clinically acceptable at our institution.

The models were trained with plans selected to include a wide

range of cases found commonly at our clinic. More specifically, pros-

tate treatments included:

a. Low- and intermediate-risk patients. These patients include those

whose clinical target volume (CTV) consists of the prostate with

or without the seminal vesicles. These patients are treated with a

prescription dose of 78 Gy.

b. Post-op patients. Patients whose CTV is defined as the Prostate

Bed. The prescription dose for this group of patients was 66 Gy.

c. High-risk patients. Patients whose prostate or prostate bed and

pelvic lymph nodes were treated. These groups of patients are

treated using a sequential boost technique. The CTV of the first

phase includes the prostate (or prostate bed) and the pelvic

lymph nodes. The prescription dose for this portion of treatment

is 46 Gy. The CTV of the second phases is that of the two cate-

gories described above but with prescription doses of 32 Gy or

20 Gy.

The training plans used to create the HN models consisted of all

types of HN plans treated at our center. The selection of HN plans

was limited to those treated using volumetric arc therapy

(RapidArc�, Varian Medical Systems, Palo Alto, CA). This was done

in order to minimize the number of variables that could affect the

behavior of the models; for example, differences in treatment tech-

niques (static field IMRT vs RapidArc). This resulted in a total of 177

plans since the implementation of this technique at our center.

Among these 177 plans, 61 plans were assigned to the validation set

(see below) and the reminder 116 plans to the training set. These

training plans included a wide range of HN clinical cases; such as

nasopharynx, oropharynx, and post-op treatments. Table 1 summa-

rizes the number of HN plans used to create the model in terms of

number of targets and dose prescription combinations.

All Prostate plans were treated using RapidArc� with two full

arcs. HN treatments were treated using two partial or full arcs

depending on whether the disease was unilateral or bilateral respec-

tively.

2.B.2 | Model creation process

The prostate model was created by including prostate plans from all

categories (listed in Section 2.B.1) and following a step-by-step pro-

cess. This process consisted of creating a general prostate model

and category-specific models in parallel. The first model consisted of

20 low/intermediate-risk patients plans (all with a prescription dose

of 78 Gy). Twenty plans were used since this was the minimum

number of plans that were allowed in order to create the model. A

second model, specific to the second phase high-risk patients plans,

was created using 20 additional plans (19 of which had a prescrip-

tion dose of 32 Gy and one with a prescription dose of 20 Gy).

These plans were added to the previously created model resulting in

a general model with 20 Intact prostate plans and 20 second phase

plans. Fifteen post-op specific were then added to the general

model, all with prescription doses of 66 Gy. This resulted in a gen-

eral model consisting of 20 intact prostate plans, 15 post-op plans,

and 20 second phase plans. Lastly, 43 plans whose CTV included the

pelvic lymph nodes were added to the general model.

The HN model was created following a different procedure from

the one followed to create the prostate model. Instead of adding

plans to the model in increments, an initial general model was cre-

ated with the entire training set of HN plans available (N = 116).

This approach was followed since it was unclear how HN plans

should be categorized. Even for treatments of the same site (e.g.,

oropharynx); there were multiple combinations of dose prescription,

changes in the relative geometry of the target with respect to OARs,

and number of targets. Using the largest number of plans available,

and using scatter plots to identify clusters resulted in a more effi-

cient (and practical) approach.

The models were evaluated using the coefficient of determina-

tion and the chi-squared test. In order to recognize potential outliers,

the scatter plots (provided by the RapidPlanTM algorithm) were used

to detect cases not fitting to the general model behavior. Scatter

plots show the relationship between the dependent variable DVH

PCS on independent variables and any training case appearing to be

exceptionally far away from the regression line was considered as a

potential outlier. In addition, potentially influential cases were deter-

mined using Cook’s distance (the threshold value being roughly 3.0).

Cook’s distance was used since it provides a measure of influence of

an outlier by omitting the plan from the regression analysis.20 Being

influential means that the single case has a large impact for the

regression line and does not necessarily appear as an outlier in the

scatter plot. Other metrics provided by RapidPlanTM, such as modified

Z scores, studentized residual, etc., were mainly omitted since the

same information was available in the scatter plots. The influence of

the potential outliers was tested by removing them from the training

set and re-training the model. The removal of structures was done

TAB L E 1 Details of the plans used to train the HN model.

Number
of targets

Number of
plans used
for training Dose (Gy) prescription’s combinations

3 62 (70,63,56), (70,59,54), (66,60,54), (66,59,56)

2 35 (70,63), (66,60), (66,56), (60,54), (50,45)

1 19 60, 50
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iteratively by excluding one or two strongest influential cases (or

outliers) at a time and monitoring the improvement in the trained

model. The removal stopped once no more significant improvement

was observed. The chi-squared test was used to monitor over-fitting.

A threshold value of 1.3 was used as an indication of no severe

over-fitting.

2.B.3 | Outlier analysis

Outliers are plans which deviate from the general trend in the analy-

sis. Their effect on a model is typically not immediately clear

because not all outliers affect the overall trend of the data in the

regression analysis.

The first step in addressing identified outlying plans consisted of

re-planning them. An alternative approach would consist of removing

these plans from the model entirely. However, this does not ensure

that the model will work for these patients in the future. Re-planning

also helps to reduce the uncertainty (width of the estimate band) in

the estimate. Care was taken to ensure that dose reduction to an

OAR of interest did not result in an increased dose to another OAR

nor reduce target coverage. Treatment plans for which re-planning

was able to reduce the dose effectively are dosimetric outliers and

the outlying plans were replaced by the new plans. Treatment plans

for which re-planning was unable to reduce the dose for a given

OAR are geometric outliers. Geometric outliers are plans were one or

more OARs differ geometrically from the rest of the training set and

were addressed in two different ways. Geometric outliers with large

Cook’s distances were removed from the model since they can nega-

tively affect the model for the majority of plans. Geometric outliers

which are non-influential were kept in the model as they do not

affect the model in a negative way and may provide useful informa-

tion for the model to estimate DVHs in plans with similar properties.

Over-fitting means that the estimation model only describes the

training set but may not generalize well for other cases. Outliers that

cause over-fitting are a special type of outliers and occurs when a

single plan increases the number of variables needed to predict the

DVHs of the training set. Over-fitting was evaluated by inspecting

all of the scatter plots for each OAR in conjunction with the good-

ness of fit and chi-squared metrics. The ideal way to address this

type of outliers is to find plans with similar characteristics and add

them to the training set. Finding similar plans is challenging (or

potentially impossible) and, hence, plans that caused over-fitting

were removed from the model.

2.C | Models validation

The validation process consisted of using the trained models to esti-

mate DVHs on a group patients with similar characteristics of those

used to train the model. The purpose of the validation process is to

provide confidence that the model does not estimate the DVH varia-

tion in the training set only. The validation set of patients were com-

pletely independent from the patients used for training. These

patients had undergone treatment at our clinic, and so had clinically

acceptable plans. The DVHs of the clinical plans in the validation

patients were compared against the estimated DVHs obtained from

the model. Estimated DVHs were subtracted from the clinical DVHs

at points corresponding to 50%, 85%, and 99% of OAR maximum

dose (which we will refer to a V50, V85, and V99). Yuan et al.9

quantified this difference with respect to the prescription dose but

these metrics would become irrelevant for OARs whose dose is less

than 50% of the prescription dose. Instead, the doses used to com-

pare DVHs were normalized with respect to the maximum OAR

dose. Note that the V50, V85, and V99 metrics used in this study

approach those of Yuan et al. in cases of the bladder and rectum

where the OAR maximum dose approaches the prescription dose

allowing for direct comparison. The mean differences at V50, V85,

and V99 were calculated by averaging over all validation patients

along with the standard error of the mean.

The validation patients used to validate the prostate model con-

sisted of 20 low/intermediate-risk patients (ten plans whose CTV

included the seminal vesicles and ten plans without seminal vesicles),

ten post-op cases, and ten cases corresponding to the second phase

of high risk patients.

As mentioned above, the HN model was created by retrospec-

tively identifying a large number of HN plans. The group of patients

used to validate the HN model was chosen according to the follow-

ing criteria. HN plans whose dose prescription was used once, was

assigned as a validation patient since it is desirable to test the model

in most clinical scenarios. Plans with the same dose prescriptions

were split into training and validation according to the laterality (left,

right, and bilateral), region in the body (superior, middle, and inferior

part of the HN region), and number of targets. This resulted in a

total of 61 HN validations patients for the HN model with the num-

ber of targets and dose prescriptions as indicated in Table 2 below.

Both models were used to create plans as part of the validation

process. The lower boundary of the estimated DVHs were set as

optimization objectives with fixed priorities for all validation plans.

These are called line objectives and were, arbitrarily, set with a prior-

ity value of 50 for the bladder, rectum, and femoral heads. Two

point objectives were set for the planning target volume (PTV) with

a priority of 120: a lower V98% = 100% and an upper V102% = 0%.

The full set of optimization objectives used in the HN model is too

large to be displayed in this manuscript given the large variability of

HN treatments For example, different clinical metrics are requested

depending on the location of the tumor and, hence, the initial opti-

mization objectives of untrained structures. The optimization

TAB L E 2 Summary of plans used to validate the HN model
including different combinations of dose prescriptions.

Number
of Targets

Number
of plans Dose (Gy) prescription’s combinations

3 26 (70,63,56), (70,59,54), (70, 59, 50), (70,56,52),

(66,59,56), (66,60,54)

2 16 (70,63), (70,60), (66,60), (66,56), (66,54),

(60,54), (50,45)

1 19 70, 66, 60, 50, 36, 24
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objectives of trained OARs were always the same and the full set of

optimization objectives can be found in the model data sheet.† In

summary, line optimization objectives with a priority of 40 were

used for the brain, brainstem, cord, cord PRV, mandible, and oral

cavity. A priority value of 65 was given to the line objective of the

parotids following the importance that is given to this OAR at our

institution. Three point objectives were used for each target of HN

plans: (a) a lower V100% = 100% with priority of 130, (b) an upper

V101% <= 15% with priority of 100, and (c) an upper V102% = 0

with priority of 130. A normal tissue objective was also used during

optimization with a priority equal to 100 for the prostate model and

80 for the HN model.

The optimization was run without any user interaction and the

final plans were compared against the original clinical plans. These

runs were done automatically by two of the authors who are inde-

pendent to the institution where the plans were created.

3 | RESULTS

3.A | Model training results

3.A.1 | Prostate model

Figure 1 shows a scatter plot for the bladder obtained with all cate-

gories of prostate plans. The figure shows the dependence of the

DVH 1st principal component score and the GED histogram 1st prin-

cipal component score. The units of the graphs are dimensionless.

Two ellipses are also shown to encircle the clusters that make this

data bipolar. The plans enclosed by the ellipse on the right of the

graph correspond to those whose CTV include the pelvic lymph

nodes while all the reminder of the categories are encircled on the

ellipse on the left. Forty-three plans were added since a higher

number of plans were necessary in order to obtain an evident clus-

ter. Figure 1 also shows the line fitted by the model along with the

lines corresponding to one and two standard deviations. It can be

seen that the line fitted by the model results in a compromise. Given

that treatments involving pelvic lymph nodes are substantially differ-

ent from the other types of prostate plans, these types of plans

were excluded from the general prostate model and a model-specific

for this category would have to be created. Once pelvic lymph nodes

plans were removed, the bladder scatter plot showed that the remin-

der categories of prostate plans followed the same trend.

Table 3 lists the values of the metrics used to evaluate the good-

ness of statistics for the first and final models. Figure 2 shows the

scatter plot for the rectum where a wider spread can be observed

(also reflected on the regression model’s coefficient of determina-

tion) compared to that of the bladder. Twenty more plans (8 low/in-

termediate-risk cases, 6 second phase cases, and 6 Post-op cases)

were added to improve the statistics for the regression of this struc-

ture. The decreased values for both coefficient of determination and

chi-squared test for the final model reflect the reduction in over-fit-

ting (chi-squared test results closer to 1 correspond to better fits16).

Three plans were completely removed from the model and the

following paragraph explains the reasons. Figure 3 below shows the

scatter plot for the femoral heads and the first plan that was
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F I G . 1 . Scatter plot for the bladder including all types of prostate
plans. Points encircled in the left ellipse represent plans whose CTV
excludes the pelvic lymph nodes while those on the right ellipse
include the lymph nodes (as shown by the contours on the inserted
figures).

TAB L E 3 Statistical metrics for the first and final prostate models.

Structure

Regression model coeffi-
cient of determination

Regression model’s
parameter average chi-

squared

First model Final model First model Final model

Bladder 0.934 0.914 1.068 1.031

Rectum 0.756 0.671 1.150 1.086

Femoral heads 0.942 0.919 1.068 1.057
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F I G . 2 . Scatter plot for the rectum of the prostate model after
excluding high-risk patients from the model.
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removed (shown as the data point on the far left) because it was

causing over-fitting. This plan also flagged as an outlier in terms of

the “OAR overlap volume percentage to target” and does not result

in an increase on the chi-square for this structure by itself. The sec-

ond plan that was completely removed is shown in the bottom right

corner of Fig. 4. The plan increases the maximum value of Cook’s

distance to 500 for the rectum compared to 27.7 in its absence. This

plan consisted of a geometric outlier and was therefore removed

from the model. The third plan that was removed flagged as a geo-

metric outlier from the point of view of the “OAR overlap volume

percentage to the target”.

Four dosimetric outliers plans were re-planned in order to reduce

the dose to the rectum without compromising the other structures

of interest. Figure 5 below shows the rectum scatter plots including

the original clinical plans and the plans obtained after re-planning.

This figure shows that these plans were receiving doses larger than

those received by the majority of the plans. The original clinical plans

were replaced by the re-plans.

The final version of the prostate model consisted of a total of 72

training patients: 27 intact prostate plans (10 without seminal vesi-

cles and 17 with seminal vesicles), 19 post-op plans and 26 second

phase plans (25 intact prostate cases and 1 post-op case).

3.A.2 | HN model

Figure 6 shows the scatter plot that was initially obtained for the

parotids (laterality combined as a single training structure, similarly
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F I G . 3 . Scatter plot for the femoral heads showing the presence
of over-fitting.
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F I G . 4 . Scatter plot for the rectum. The figure shows a geometric
outlier in the lower right corner which was eventually removed.
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F I G . 5 . Scatter plot for the rectum showing the effect of re-
planning dosimetric outliers. The original plans (highlighted by four
circles at the beginning of the arrows) were replaced by the new
plans (highlighted by the circles under the arrows).
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F I G . 6 . Scatter plot for the parotids for the first HN model. Plans
whose parotids overlapped with the target are encircled in the upper
right corner.
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to the femoral heads in the prostate model). Figure 7 shows the cor-

responding scatter plot that was obtained after two plans were re-

planned (dosimetric outliers) and the parotids for three plans were

excluded (influential geometric outliers). Further investigations

showed that these three outliers, encircled in the upper right corner,

corresponded to plans with large overlaps of the parotids with the

targets. In fact, similar plans in the validation set showed that these

plans resulted in a third cluster (tri-polar data). These three plans

were then removed since bi-polar and tri-polar data are better

described by separate models. The third group of patients was

excluded from the model and, instead, the model was validated

including these types of plans to investigate its performance under

these circumstances. Figure 7 shows the presence of two clusters

corresponding to contralateral parotids (grouped in the lower left

corner) and the remainder of the parotids. While the accuracy of the

model can be improved by creating separate models for these two

groups, this would require the user to decide which model to use.

This approach is not possible if the proper model cannot be deter-

mined upfront, as was the case here, and so it was decided to merge

both parotids into the same model and evaluate the accuracy result-

ing from this compromise. Note that this approach is different from

that followed to create the prostate model, where a separate model

would have to be created for high risk patients which can be easily

identified.

Merging the bipolar data resulted in a compromise. A direct con-

sequence of this compromise is a larger upper estimate boundary

(e.g., see the long tail of the upper estimate in Fig. 8). This effect is

because the final DVH estimate is obtained by summing the average

DVH (which is calculated from both contralateral parotids and paro-

tids that receive larger doses) with the DVHs reconstructed from the

principal components.

Table 4 below summarizes the changes that were done to the

first HN model along with a description of why they were made.

These changes were done in multiple iterations. Table 4 shows that

a total of 20 structures were removed from the model because they

were causing over-fitting. The majority of these plans resulted in

over-fitting as a result of limitations in the algorithm, such as having

doses on the order of the threshold dose used to define DVHs that

require in-field regression vs those DVHs that do not (and that can

be described by other DVH components, e.g., leaf transmission).

Over-fitting was particularly noticeable for the mandible, where the

stepwise regression also returned terms corresponding to the pro-

duct of PCS (belonging to different and orthogonal principal compo-

nents). These products of PCS have no physical meaning and lead us

to remove more plans in order to avoid them. A total of eight plans

were excluded for the mandible and, even after these eight struc-

tures were removed from the model, over-fitting was still taking
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F I G . 7 . Parotids scatter plot for the final HN model. The figure
shows an insert with parotids DVHs to illustrate the location of
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F I G . 8 . Clinical (black solid line) and estimated (red-dashed lines)
DVHs for a contralateral parotid. The figure shows the effect of
merging the two clusters of parotids into a single structure for
training.

TAB L E 4 Summary of changes done to the original HN model to
obtain the final HN model.

OAR

Number of
structures

available for
training

(remaining)

Number of
geometric
outliers

Number of
re-planned
dosimetric
outliers

Number of
plans resulting
in over-fitting

Brain 94 0 0 0

Brainstem 105 0 0 0

Cord 112 0 1 3

Cord PRV 109 0 1 3

Mandible 107 0 0 8

Oral cavity 105 1 1 4

Parotidsa 150a 3 2 0

Pharyngeal

constrictor

77 3 3 2

aParotids training structure includes left and right parotids, hence the

large number.
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place. This was accepted since this continuous appearance of over-

fitting suggested that multiple degrees of freedom were necessary to

describe the variation in shape for the mandible DVHs. The effect of

this over-fitting can be observed on the estimated DVHs shown on

Fig. 9. Figure 9 also shows the variation in DVH shape for this OAR.

As can be seen from the figure, this mostly affects cases where the

mandible is receiving low doses and would require planners to

attempt to reduce dose to these OAR for low doses. Table 5 shows

the values of statistical parameters for the HN model.

3.B | Validation results

Table 6 lists the average values of the V50, V85, and V99 metrics

(positive values indicate that the estimated DVH is greater than the

clinical DVH). The results indicate that the prostate model is able to

generate bladder estimates within 1% on average. A similar accuracy

can be achieved for rectum doses larger than 85% of the maximum

dose. This is not the case in the intermediate rectum dose range,

where the estimate over predicts the DVH by approximately 4%.

This is likely driven by the shape of the DVH for this structure

which typically has to be “bent down” to meet the clinical “V40 Gy”

goal (Table 8 below). The femoral head estimates are less accurate

(ranging from �2% to 3%) than those achieved for the bladder and

rectum. This reduced accuracy is likely to be due to the planning

technique: femoral heads are planned to remain below a maximum

dose instead of well-defined dose–volume constraints which can

help to shape the DVH. In addition, the DVHs for the femoral heads

exhibit steep dose fall-offs, leading to large errors for small changes

in dose. The values of Table 6 for the bladder and rectum can be

compared to the results of Yuan et al.,9 who found estimated vol-

umes to agree within 6% with the clinical DVHs in 71% of the cases

and within 10% in 85% of the cases. The V50, V85, and V99 metrics

for the bladder model of this study were within 6% in 97.5% of the

cases and within 10% in 99% of the cases. The corresponding differ-

ences in the rectum were within 6% in 85% of the cases and within
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F I G . 9 . Clinical (black solid lines) and boundaries of the estimated (red dashed lines) DVHs for the mandible in 60 validation plans. The x-axis
of all graphs correspond to dose (Gy) while the y-axis to the volume of the structure (in %).

TAB L E 6 Prostate model average differences (�standard error of
the mean) between estimated and clinical DVHs.

Metric (%) Bladder Rectum Femoral heads

V50 0.0 � 0.6 4.0 � 1.2 �2.4 � 1.3

V85 �0.2 � 0.2 0.9 � 0.3 3.4 � 0.7

V99 0.4 � 0.1 0.7 � 0.1 2.6 � 0.4

TAB L E 5 Values of the statistical metrics obtained for the final HN
model.

Structure

Regression model
coefficient of
determination

Regression model’s
parameter average

chi square

Brain 0.901 1.069

Brainstem 0.883 1.049

Cord 0.681 1.033

Cord PRV 0.732 1.044

Mandible 0.896 1.075

Oral cavity 0.758 1.057

Parotid 0.829 1.05

Pharyngeal constrictor 0.683 1.039
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10% in 93% of the cases. Figure 10 shows the clinical and estimated

rectum DVHs for the 40 validation patients as an example.

Note that merging of the femoral heads into a single model

structure (each femoral head was contoured separately) was done

given that the treatment technique used at our center is symmetric.

Merging the femoral heads into a single structure changed the mean

values of the V50, V85, and V99 by values which were within the

uncertainty (standard error of the mean).

Table 7 lists the average differences between the estimated and

clinical DVHs for the HN model. Parotid structures were merged

into a single structure for training. The results of this table show that

the largest deviations happen at the V99 metric which is closely

related to the maximum OAR dose. The mean difference for the

other metrics ranges from �2% to 7% and, with the exception of

two cases (brainstem V85 and Pharyngeal Constrictor V85) is within

�2% to 4%. The reasons for the larger discrepancy close to the max-

imum OAR dose may be related to the long tails of the estimated

DVHs (see Fig. 8 above). The pharyngeal constrictor is the least

accurate structure; however, the steps taken to improve the model

result increased accuracy for this OAR as shown in Fig. 11. Fig-

ure 11 shows the clinical DVH for one validation plan along with an

estimated DVH from a model trained with 47 plans (including 1, 2,

and 3 targets). The mean dose from the clinical plans was 19.2 Gy

while that of the model created with 47 plans was 41.2 Gy. This

result led us to change the creation of the HN model to include as

many plans as possible as explained in Section 2.B.2. The DVH esti-

mate obtained with the final version of the HN models is also shown

in Fig. 11 and corresponds to a mean dose of 17.6 Gy. Figure 12

compares the parotids estimated and clinical mean doses which are

commonly used as a clinical tolerance. The average difference

between the estimated and clinical mean doses was �0.8% � 0.4%

with a standard deviation of 3.6%.

Tables 8 and 9 list the average difference between DVHs of

plans generated using the models and those from the independent

clinical plans. The differences were calculated for the clinical goals

most commonly used (listed in the second column). The results of

Table 8 show an agreement of 0.3% for the V40 Gy metric of the

rectum. This is despite the reduced accuracy of the V50 metric for

the estimated DVH. This is because the line objectives are placed on

the lower boundary of the estimate which coincides with the clinical

DVH in many cases (see Fig. 10). The V50 metric on the other hand,

was calculated based on the estimated average. Table 9 only shows

the results for the highest dose PTV since the results for the other

PTVs (intermediate and low doses) agreed within 1.2%. Table 9 also

includes results for structures which were not trained due to insuffi-

cient data (structures which are contoured less frequently) and opti-

cal structures (which were also excluded from the model). The DVH

metrics for the PTV agreed within 2.0% while the agreement for the

OARs included in the model range from �1.6% to 2.5%. The table

also shows reduced agreement for untrained OARs.

4 | DISCUSSION

This paper summarized the process used to build models with

emphasis on the approach used to address outliers. In terms of KBP

model creation, there is currently no consensus on proper outlier

identification and mitigation. Delaney et al. investigated the effect of

TAB L E 7 HN model average differences (�standard error of the mean) between estimated and clinical DVHs.

Metric (%) Brain Brainstem Cord Cord PRV Mandible Oral cavity Parotid Pharyngeal constrictor

V50 0.24 � 0.20 0.25 � 2.38 1.50 � 1.48 0.02 � 1.55 1.25 � 1.19 5.06 � 2.25 �2.00 � 1.42 �0.56 � 2.35

V85 0.08 � 0.07 7.07 � 2.16 0.11 � 1.86 3.90 � 1.39 1.23 � 0.76 1.93 � 1.82 3.80 � 1.60 5.16 � 2.90

V99 0.08 � 0.04 6.23 � 1.89 7.56 � 1.31 3.73 � 1.03 0.78 � 0.25 2.91 � 1.42 6.46 � 1.17 6.61 � 2.57
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F I G . 10 . Clinical (black solid lines) and estimated (red-dashed lines) DVHs for the rectum of 40 validation patients. The x-axis of all graphs
correspond to dose (Gy) while the y-axis to the volume of the structure (in %).
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dosimetric outliers in the creation of KBP models and their results

suggested that dosimetric outliers have minimal effect on the accu-

racy of KBP models, instead they affected their precision.19 Given

that the models described are available to a potentially large number

of users, the creation of robust models was desirable by removing

influential outliers while keeping plans that provide additional infor-

mation. This included the desire to create models which are both

accurate and precise, hence the need to re-plan dosimetric outliers.

The models presented in this manuscript were created following a

process which required multiple iterations that have to be done

manually by the user and is, hence, time consuming. This made it

impractical to evaluate the effect that an individual outlier would

have on the models. Our results, however, show that the steps taken

to create the models improved the accuracy of DVH estimates and

Fig. 11 shows an example of it. The time and effort required to

address outliers is likely dependent on each institution’s planning

practice; as institutions with highly standardized planning techniques

are likely to have less dosimetric outliers.

The analysis on this paper focused on the accuracy of the esti-

mated DVHs and our results show to be comparable to those of

TAB L E 8 DVH differences between clinical plans and those
obtained using the prostate model.

Structure Clinical goal

Difference

Average Standard deviation

PTV D99% (%) 0.32 1.01

V105% (cm3) �1.95 8.88

Bladdera V80 Gy ≤ 15% �0.04 0.75

V75 Gy ≤ 25% 0.16 0.43

V70 Gy ≤ 35% 0.09 0.29

V65 Gy ≤ 50% �1.61 6.85

V40 Gy ≤ 70% �0.54 3.15

Rectuma V75 Gy ≤ 15% 0.31 0.94

V70 Gy ≤ 20% 0.26 0.94

V65 Gy ≤ 25% �0.97 3.77

V60 Gy ≤ 35% 0.05 1.59

V50 Gy ≤ 50% �0.26 3.02

V40 Gy ≤ 55% 0.27 3.96

Femoral headsa V53 Gy ≤ 5% 0.00 0.00

V50 Gy ≤ 10% �0.01 0.04

aTrained structure.

TAB L E 9 DVH differences between clinical plans and those
obtained using the HN model

Structure Clinical goal

Difference

Average
Standard
deviation

High-dose PTV D99% > 93% of Rx �0.05 3.55

D95% > 100% of Rx 0.24 2.01

D15% < 107% of Rx 1.83 3.07

Dmean < 103% of Rx 1.41 2.68

Braina Dmax < 70 Gy 1.41 6.49

Brainstema Dmax < 54 Gy 0.56 4.19

Cervical esophagus Dmean < 40 Gy 4.12 9.72

Corda Dmax < 40 Gy �0.18 4.25

Cord PRVa V45 Gy < 1% 0.69 2.33

Glottic larynx Dmean < 35 Gy 2.64 6.72

Lens Dmax < 10 Gy 0.38 3.2

Mandiblea Dmax < 70 Gy 1.97 4.83

Optic chiasm Dmax < 45 Gy 0.4 3.77

Optic nerve Dmax < 45 Gy �0.47 3.15

Oral cavitya Dmean < 40 Gy 2.52 11.32

Orbit Dmax < 45 Gy 1.01 3.32

Parotida Dmean < 26 Gy �1.58 4.65

Pharyngeal constrictor+ Dmean < 45 Gy 0.98 4.12

aTrained structure.
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F I G . 11 . Comparison of pharyngeal constrictor DVHs estimated
by the original (dash-dotted lines) and final (dashed lines) HN model.
The clinical plan (solid line) is also shown for comparison.

F I G . 12 . Comparison of the estimated mean doses for the
parotids glands and the mean doses of the validation plans clinically
used. An identity line is also shown for comparison.
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previous tools.9 The models in this study were compared by calculat-

ing the difference between the volume of the DVH curve in the clin-

ical plan and the volume of the estimated DVH. These volumes

were compared at three points along the x axis which corresponded

to the 50%, 85% and, 99% of the maximum dose (of the clinical

plan). These points were used in a previous publication9 and pro-

vided a benchmark for model comparison. The selected metrics can

also be generalized to plans with different prescriptions, where many

clinical goals would be irrelevant. Another advantage of the metrics

used in this study can be seen in the planning results for the femoral

heads (Table 8). Table 8 shows nearly perfect agreement but is due

to fact that the femoral heads maximum dose constraints were easily

met and the accuracy of the KBP model would not be accurately

quantified. Note that the V50 metric used in this study also provides

a point to compare the dose at an intermediate point along each

DVH. This is useful to evaluate what happens with OARs whose

constraints are specified in terms of maximum dose, where DVHs

with different shapes (which would be an incorrect estimate) could

yield the same clinical metric (e.g., maximum dose). This could be

missed if clinical objectives are the only metrics used to evaluate

models. It should be noted that other metrics have been used by

other investigators. Appenzoller et al., for example, used the sum of

residuals8 while Tol et al. used a combination of clinical objectives to

evaluate the performance of their models.18 There is, however, no

evidence that one metric is better than the other and this topic

needs further investigation. The modified V50, V85, and V99 metrics

used in this study can be used to evaluate the accuracy of estimated

DVHs for all plans irrespective of dose prescription and provide a

reasonable way to quantify the shape of the estimated DVH.

The models were also used as optimization objectives as part of

the validation process. It should be noted that while some authors

have benchmarked their models by using them to guide the optimiza-

tion process,18 others have focused entirely on the accuracy of the

estimated DVHs,9,21 and others in both.8 While the need to re-plan all

plans remains debatable, we decided to use our models as optimiza-

tion objectives for the validation process. This provided an end-to-end

test for the models and ensures that the model does not compromise

on untrained structures. The models were therefore evaluated in three

different ways: (a) by analyzing the accuracy of the estimated DVHs

on the training set (summarized in the goodness of fit statistics), (b) by

analyzing the accuracy of estimated DVHs on an independent valida-

tion set, and (c) by using the estimated DVH to guide the inverse plan-

ning process. This therefore resulted in a rigorous model

commissioning approach that gives confidence of its performance.

Planning can be done in a variety of ways, potentially leading to dif-

ferent results. Therefore, the planning of this study was done by means

of an automated run without user interaction. This approach leads to

user independent results and is more practical (due to the large number

of validation patients). However, the approach is limited since the pres-

ence of untrained OARs could not be accounted for. Our results show

that the models can be used by users outside of the institution where

they were originally created yet preserve the planning trend. Additional

planning could be conducted for cases where differences between the

estimated and the original DVHs are significant since it implies poten-

tial for dose reduction (cases where the DVH was under-estimated) or

increased dose (cases the DVH was over-estimated). The question of

what difference is considered significant to require additional planning

is still unknown and is beyond the scope of this publication.

The presence of bipolar data was evident in the bladder of the

prostate model and in the parotids of the HN model. The simplest

way to address bipolar data is to simply separate them as was done

in the prostate model. The bipolar data for the parotids is due to

ipsi- and contra-lateral parotids and its separation is more challeng-

ing as this would require a user to come up with a strategy to accu-

rately identify these groups of parotids. Incorporation of techniques

that aid in cluster classification could improve the accuracy of paro-

tid DVH estimates.22

5 | CONCLUSIONS

The creation of KBP models requires diligence since the presence of

outliers can affect the accuracy of the estimated DVHs. A combina-

tion of multiple tools should be used to identify and address outliers.

The process followed to create models presented in this publication

led to DVH estimates with an accuracy of �2%–4% for the prostate

model and from �2% to 8% for the HN model with agreements in

parotid mean doses off less than 1% on average. More automated

ways to analyze model creation would be desirable and would allow

investigators to handle outliers that would have a negative effect on

a model.
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