Skip to main content
. 2018 Mar 29;19(4):1029. doi: 10.3390/ijms19041029

Table 2.

The prediction ability of the different methods on the Yeast dataset.

Model Testing Set Acc (%) Sen (%) Pre (%) Mcc (%)
Guos’ work [35] ACC 89.3 ± 2.6 89.9 ± 3.6 88.8 ± 6.1 N/A
AC 87.4 ± 1.3 87.3 ± 4.6 87.8 ± 4.3 N/A
Zhous’ work [36] SVM+LD 88.6 ± 0.3 87.4 ± 0.2 89.5 ± 0.6 77.2 ± 0.7
Yangs’ work [37] Cod1 75.1 ± 1.1 75.8 ± 1.2 74.8 ± 1.2 N/A
Cod2 80.0 ± 1.0 76.8 ± 0.6 82.2 ± 1.3 N/A
Cod3 80.4 ± 0.4 78.1 ± 0.9 81.7 ± 0.9 N/A
Cod4 86.2 ± 1.1 81.0 ± 1.7 90.2 ± 1.3 N/A
Yous’ work [38] PCA-EELM 87.0 ± 0.2 86.2 ± 0.4 87.6 ± 0.3 77.4 ± 0.4
Proposed method LRA+RVM 94.6 ± 0.6 94.8 ± 1.0 94.4 ± 0.4 89.6 ± 1.2

ACC: Auto Covariance; LD: Local Description; PCA: Principal Component Analysis; EELM: Ensemble Extreme Learning Machines; N/A: Not Available; Acc: Accuracy; Sen: sensitivity; Pre: precision; Mcc: Matthew’s Correlation Coefficient.