Skip to main content
. 2018 Mar 28;19(4):1009. doi: 10.3390/ijms19041009

Table 1.

Comparison of different classifier designs on five-fold cross-validation.

Performance Measures Predictors Trained and Test on Original Dataset Feature Selection on Original Dataset and Training/Testing on Balanced Original and Reversed Dataset
3-Class RF with All Features a 3-Class RF with 8 Selected Features 2-Layer Predictor with All Features 2-Layer Predictor with 10 Selected Features (PON-tstab) 3-Class RF with All Features 3-Class RF with 5 Selected Features 2-Layer Predictor on 3 Classifiers with All Features 2-Layer Predictor on 3 Classifiers with Selected Features
TP b + 21.6/43.5 9.6/19.0 19/38.3 23.2/46.3 40.8 44.8 42.8 43.4
74.8/40.2 124.4/67.2 90.6/48.1 91.4/49.0 43.4 42 41.6 37.4
no 34 26.4 28.8 30.8 36.2 37.2 37.8 40
TN + 180.6/123.6 32.2/64.4 183.4/125.7 186.2/127.9 125.4 122.2 125.4 123.8
95/130.4 30.2/16.2 85.8/118.1 88.2/122.7 125.4 129.2 126.4 131.4
no 134.6/113.9 57 149/121.6 150.8/125.6 121.4 123.4 121.2 116.4
FP + 57.4/43.2 10.6/8.0 54.6/41.1 51.8/38.9 41.8 45 41.8 43.4
30.2/36.4 71.8/91.6 39.4/48.7 37/44.1 42.8 38 40.8 35.8
no 61.8/52.9 37/38.0 47.4/45.2 45.6/41.2 45.8 43.8 46 50.8
FN + 20.2/39.9 227.4/158.7 22.8/45.1 18.6/37.1 42.8 38.8 40.8 40.2
79.8/43.2 53.4/75.2 64/35.3 63.2/34.4 40.2 41.6 42 46.2
no 49.4 159.4/128.8 54.6 52.6 47.4 46.4 45.8 43.6
Sensitivity + 0.516 0.228 0.455 0.554 0.488 0.537 0.511 0.518
0.483 0.805 0.583 0.59 0.52 0.504 0.498 0.449
no 0.406 0.318 0.339 0.367 0.432 0.445 0.451 0.478
Specificity + 0.759/0.744 0.955/0.953 0.771/0.756 0.783/0.769 0.75 0.732 0.75 0.741
0.755/0.776 0.427/0.451 0.68/0.700 0.701/0.730 0.743 0.772 0.755 0.785
no 0.686/0.683 0.812/0.772 0.757/0.732 0.767/0.756 0.727 0.739 0.725 0.697
PPV + 0.271/0.498 0.463/0.691 0.258/0.481 0.318/0.551 0.492 0.505 0.505 0.502
0.714/0.527 0.635/0.424 0.701/0.503 0.715/0.530 0.505 0.528 0.548 0.513
no 0.354/0.388 0.421/0.413 0.371/0.386 0.399/0.428 0.445 0.462 0.452 0.444
NPV + 0.9/0.757 0.876/0.712 0.89/0.763 0.909/0.774 0.746 0.76 0.755 0.756
0.543/0.75 0.643/0.824 0.57/0.771 0.58/0.781 0.756 0.758 0.75 0.741
no 0.732/0.698 0.737/0.694 0.731/0.690 0.741/0.705 0.719 0.727 0.726 0.728
GC2 0.172/0.078 0.101/0.281 0.121/0.085 0.162/0.112 0.063 0.08 0.068 0.071
CPR 0.466/0.469 0.573/0.450 0.495/0.459 0.520/0.503 0.48 0.495 0.487 0.481

a Normalized performance values are separated by a slash if they are different from the original ones. b GC2, generalized squared correction; CPR, correct prediction ratio; FN, false negative; FP, false positive; NPV, negative predictive value; PPV, positive predictive value; RF, random forest; TN, true negative; TP, true positive.