
Evolutionary Applications. 2018;11:705–717.	 		 	 | 	705wileyonlinelibrary.com/journal/eva

 

Received:	9	February	2017  |  Accepted:	23	October	2017
DOI:	10.1111/eva.12570

O R I G I N A L  A R T I C L E

Differential impact of landscape- scale strategies for crop 
cultivar deployment on disease dynamics, resistance durability 
and long- term evolutionary control

Julien Papaïx1,*  | Loup Rimbaud2,* | Jeremy J. Burdon2 | Jiasui Zhan3 | Peter H. Thrall2

This	is	an	open	access	article	under	the	terms	of	the	Creative	Commons	Attribution	License,	which	permits	use,	distribution	and	reproduction	in	any	medium,	
provided	the	original	work	is	properly	cited.
©	2017	The	Authors.	Evolutionary Applications	published	by	John	Wiley	&	Sons	Ltd

1BioSP,	INRA,	Avignon,	France
2CSIRO	Agriculture	&	Food,	Canberra,	ACT,	
Australia
3Fujian	Key	Laboratory	of	Plant	
Virology,	Institute	of	Plant	Virology,	Fujian	
Agriculture	and	Forestry	University,	Fuzhou,	
China

Correspondence
Julien	Papaïx,	INRA	-	Unité	BioSP,	Avignon,	
France.
Email:	julien.papaix@inra.fr

Abstract
A	multitude	of	 resistance	deployment	 strategies	have	been	proposed	 to	 tackle	 the	
evolutionary	potential	of	pathogens	to	overcome	plant	resistance.	In	particular,	many	
landscape-	based	strategies	rely	on	the	deployment	of	resistant	and	susceptible	culti-
vars	in	an	agricultural	landscape	as	a	mosaic.	However,	the	design	of	such	strategies	is	
not	easy	as	strategies	targeting	epidemiological	or	evolutionary	outcomes	may	not	be	
the	same.	Using	a	stochastic	spatially	explicit	model,	we	studied	the	impact	of	land-
scape	organization	(as	defined	by	the	proportion	of	fields	cultivated	with	a	resistant	
cultivar	 and	 their	 spatial	 aggregation)	 and	 key	 pathogen	 life-	history	 traits	 on	 three	
measures	of	disease	control.	Our	results	show	that	short-	term	epidemiological	dynam-
ics	are	optimized	when	landscapes	are	planted	with	a	high	proportion	of	the	resistant	
cultivar	 in	 low	aggregation.	 Importantly,	 the	 exact	 opposite	 situation	 is	 optimal	 for	
resistance	durability.	 Finally,	well-	mixed	 landscapes	 (balanced	proportions	with	 low	
aggregation)	are	optimal	for	long-	term	evolutionary	equilibrium	(defined	here	as	the	
level	of	long-	term	pathogen	adaptation).	This	work	offers	a	perspective	on	the	poten-
tial	for	contrasting	effects	of	landscape	organization	on	different	goals	of	disease	man-
agement	and	highlights	the	role	of	pathogen	life	history.
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1  | INTRODUCTION

The	use	of	resistant	crop	cultivars	against	pathogens	typically	reduces	
epidemic	development	and	associated	yield	losses	in	agricultural	pro-
duction	 systems.	However,	 such	 cultivars	may	 rapidly	 become	 inef-
fective	owing	to	the	well-	documented	ability	of	pathogens	to	evolve	
and	overcome	plant	resistance	genes	(Burdon,	Zhan,	Barrett,	Papaïx,	&	
Thrall,	2016;	Zhan,	Thrall,	&	Burdon,	2014;	Zhan,	Thrall,	Papaïx,	Xie,	&	

Burdon,	2015).	The	development	of	new	crop	cultivars	carrying	novel	
resistance	genes	is	usually	long,	expensive	and	frequently	constrained	
by	available	resistance	sources.	As	a	consequence,	there	is	significant	
merit	in	considering	how	different	spatiotemporal	deployment	strate-
gies	for	resistant	cultivars	may	impact	on	resistance	durability	(Burdon,	
Barrett,	 Rebetzke,	&	Thrall,	 2014;	Gilligan	&	van	den	Bosch,	 2008).	
To	maximize	 any	 advantages	 to	 be	 gained,	 such	 approaches	 should	
explicitly	address	and	integrate	epidemiological	and	evolutionary	per-
spectives	of	pathogens	(Thrall	et	al.,	2011),	noting	that	the	definition	
of	 an	optimal	 strategy	may	vary	 between	different	 stakeholders	 for	
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crop	production	systems.	The	epidemiological	perspective	is	focused	
on	reductions	in	pathogen	population	size	and	the	severity	of	disease,	
and	consequently	its	impact	on	farm	profitability.	In	this	context,	the	
goal	 is	for	resistance	deployment	to	persist	as	 long	as	possible;	that	
is,	 resistances	must	be	 still	 effective	 after	 a	 long	period	of	 use,	 de-
spite	 the	pathogen’s	evolutionary	abilities.	However,	 the	medium	to	
long-	term	control	and	the	short-	term	epidemiological	control	offered	
by	a	resistant	cultivar	are	not	necessarily	correlated	(Johnson,	1984).	
Therefore,	 the	 design	 of	 deployment	 strategies	 that	 optimize	 both	
epidemiological	 and	evolutionary	outcomes	 is	not	an	easy	 task,	 and	
both	criteria	must	be	used	to	fully	assess	the	performance	of	different	
disease	management	options	(Burdon	et	al.,	2014;	Zhan	et	al.,	2015).

The	epidemiological	 impact	of	using	a	 resistant	plant	cultivar	on	
pathogen	populations	mostly	depends	on	the	type	of	resistance.	Two	
resistance	types	are	usually	described	in	the	literature.	Qualitative	re-
sistance,	 also	 called	 “major-	gene	 resistance,”	 refers	 to	 the	 gene-	for-	
gene	model	(Flor,	1955).	This	resistance	relies	on	the	noncompatible	
interaction	of	a	specific	host	resistance	protein	with	a	pathogen	avir-
ulence	effector,	usually	leading	to	complete	immunity	of	the	host	(i.e.,	
avirulent	strains	of	the	pathogen	cannot	successfully	 infect	resistant	
hosts,	while	they	can	infect	susceptible	hosts).	When	deployed	homo-
geneously	across	large	areas	and	over	extended	time	periods,	qualita-
tive	resistance	imposes	strong	and	directional	selection	on	pathogen	
populations.	In	such	situations,	new	infectivity	may	quickly	emerge	in	
pathogen	populations,	resulting	in	total	breakdown	of	the	resistance	
gene	 (Johnson,	 1983,	 1984).	 In	 contrast,	 quantitative	 resistance	 re-
sults	from	the	additive	effect	of	multiple	minor	genes.	It	does	not	block	
infection	but	constrains	disease	as	compared	to	susceptible	cultivars	
(Mundt,	2014)	due	to	reduced	pathogen	fitness	(e.g.,	colonization,	re-
production	and	transmission—Brown,	2015;	Lannou,	2012;	Parlevliet,	
2002;	Stuthman,	Leonard,	&	Miller-	Garvin,	2007).	In	this	system,	the	
loss	of	resistance	efficiency	is	best	described	as	a	progressive	erosion,	
due	to	pathogen	evolution	consisting	of	an	 increase	 in	one	or	more	
aggressiveness	traits	(Brown,	2015;	Mundt,	2014).	In	either	qualitative	
or	quantitative	host–pathogen	 interactions,	evolution	of	a	pathogen	
towards	increased	infectivity	or	aggressiveness	on	a	resistant	host	is	
often	penalized	by	 a	 fitness	 cost	 on	 susceptible	 hosts	 (Leach,	Cruz,	
Bai,	&	Leung,	2001;	Montarry,	Cartier,	Jacquemond,	Palloix,	&	Moury,	
2012;	Thrall	&	Burdon,	2003).	As	a	consequence,	generalist	pathogens	
(able	to	infect	a	wide	range	of	host	genotypes)	are	often	less	adapted	
to	a	particular	host	than	specialist	pathogens,	indicating	the	existence	
of	life-	history	trade-	offs	in	many	pathogens	(Laine	&	Barrès,	2013).

As	 resistance	 breakdown	 or	 high	 levels	 of	 erosion	 results	 in	 re-
sistant	cultivars	becoming	ineffective,	several	approaches	have	been	
proposed	 to	 improve	 their	durability	 including	 the	use	of	chemicals,	
agronomic	practices,	varying	crop	diversity	either	temporally	(i.e.,	crop	
rotations)	or	spatially	(e.g.,	pyramiding,	mixtures,	mosaics	of	fields),	or	
combinations	of	some	or	all	of	these	cultural	practices	(Brown,	2015;	
Burdon	et	al.,	2014;	Mundt,	2014;	Stuthman	et	al.,	2007;	Zhan	et	al.,	
2015).	The	efficiency	of	some	of	these	approaches	has	been	experi-
mentally	evaluated,	as	exemplified	by	the	large-	scale	assessment	of	rice	
mixtures	to	control	rice	blast	in	China	(Zhu	et	al.,	2000).	However,	em-
pirical	data	are	often	difficult	to	obtain	for	landscape-	scale	strategies	

in	 spite	 of	 considerable	 evidence	 from	modelling	 studies	 that	 land-
scape	organization	 can	affect	pathogen	population	 size	 and	 impede	
adaptation	to	host	resistance	(for	reviews,	see	Plantegenest,	Le	May,	
&	Fabre,	2007;	Real	&	Biek,	2007).	Empirical	evidence	of	the	impact	
of	 landscape	 organization	 originates	 mostly	 from	 studies	 in	 natural	
systems	 (Allan,	Keesing,	&	Ostfeld,	2003;	Condeso	&	Meentemeyer,	
2007;	Haas,	Hooten,	Rizzo,	&	Meentemeyer,	2011;	Langlois,	Fahrig,	
Merriam,	 &	Artsob,	 2001).	 For	 example,	 these	 studies	 have	 shown	
that	 spatiotemporal	 heterogeneity	 in	 environmental	 conditions	 (in-
cluding	host	genetic	structure)	plays	a	crucial	role	in	determining	the	
potential	 for	 species	 and	 genotypes	 to	 coexist	 and	 in	 shaping	 the	
evolution	of	populations	and	species.	Host–pathogen	systems	are	no	
exception;	metapopulation	processes	were	shown	to	be	key	determi-
nants	of	observed	patterns	of	disease	and	genetic	diversity	 (Burdon	
&	Thrall,	1999;	Jousimo	et	al.,	2014;	Laine,	Burdon,	Dodds,	&	Thrall,	
2011;	Smith,	Ericson,	&	Burdon,	2003;	Soubeyrand,	Laine,	Hanski,	&	
Penttinen,	2009;	Tack	&	Laine,	2014).

In	the	few	simulation	models	developed	to	investigate	the	case	of	
agricultural	systems,	most	describe	agricultural	landscapes	of	suscep-
tible	and	resistant	cultivars	allocated	to	different	fields	as	a	mosaic.	In	
this	way,	the	impact	of	several	landscape	characteristics	(e.g.,	cultivar	
composition	within	fields,	aggregation	of	fields	sharing	the	same	com-
position,	presence	of	a	wild	reservoir)	on	disease	control	was	evaluated	
in	different	pathosystems.	One	general	result	that	emerges	from	many	
spatially	explicit	but	purely	demographic	models	 (Holt	&	Chancellor,	
1999;	Papaïx,	Touzeau,	Monod,	&	Lannou,	2014;	Papaïx,	Adamczyk-	
Chauvat	et	al.,	2014;	Skelsey,	Rossing,	Kessel,	&	van	der	Werf,	2010)	
is	that	an	“optimal”	landscape	in	the	context	of	epidemiological	control	
of	disease	should	be	composed	of	a	high	proportion	of	fields	occupied	
by	the	resistant	cultivar,	hereafter	referred	to	as	the	“cropping	ratio”	
(i.e.,	the	proportion	of	fields	where	the	resistant	cultivar	is	deployed)	
and	a	low	degree	of	landscape	aggregation	(i.e.,	the	mean	proportion	
of	neighbouring	fields	that	share	the	same	cultivar).	The	effect	of	ag-
gregation	is,	however,	not	straightforward	as	highly	aggregated	land-
scapes	can	perform	better	when	considering	quantitative	resistances	
(Papaïx,	Touzeau	et	al.,	2014).

In	 models	 that	 explicitly	 integrate	 pathogen	 evolution,	 the	 im-
pact	of	 cropping	 ratio	may	 strongly	depend	on	 the	 type	of	host	 re-
sistance	 (Lo	 Iacono,	 van	 den	 Bosh,	 &	 Paveley,	 2012)	 and	 epidemic	
intensity	(Fabre,	Rousseau,	Mailleret,	&	Moury,	2012,	2015).	However,	
as	these	models	(Fabre	et	al.,	2012,	2015;	Lo	Iacono	et	al.,	2012)	are	
not	spatially	explicit,	the	effect	of	landscape	aggregation	could	not	be	
explicitly	 evaluated.	 In	 addition,	 Fabre	 et	al.	 (2015)	 did	 not	 simulta-
neously	 evaluate	 epidemiological	 and	 evolutionary	measures	 of	 the	
effectiveness	 of	 different	 strategies.	 However,	 van	 den	 Bosch	 and	
Gilligan	(2003)	emphasized	that	different	measures	of	resistance	du-
rability	 (time	 to	establishment	of	a	population	carrying	a	new	 infec-
tivity,	infectivity	frequency	and	yield)	could	potentially	be	affected	in	
different	ways	by	the	cropping	ratio	of	the	resistant	cultivar.	Using	a	
demogenetic	model	to	study	how	the	spatial	and	temporal	distribution	
of	remnant	wild	vegetation	patches	embedded	in	an	agricultural	land-
scape	can	 influence	the	ability	of	a	pathogen	to	evolve	onto	a	crop,	
Papaïx,	Burdon,	Zhan,	and	Thrall	(2015)	also	found	that	the	emergence	
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of	a	crop	pathogen	and	its	subsequent	specialization	on	the	crop	host	
were	impacted	in	a	different	way	by	landscape	organization	(composi-
tion	and	spatial	structure	of	remnant	wild	vegetation	patches).	Indeed,	
landscape	 organizations	 that	 promoted	 larger	 pathogen	 populations	
on	 the	wild	 host	 facilitated	 the	 emergence	of	 a	 crop	pathogen,	 but	
such	landscape	organizations	also	reduced	the	potential	for	the	patho-
gen	population	to	adapt	to	the	crop.

Here,	we	developed	a	spatially	explicit	model	to	study	the	impact	
of	landscape	organization	on	both	the	efficiency	and	evolutionary	du-
rability	of	crop	resistance	following	deployment.	Although	the	model	
was	loosely	based	on	rusts,	a	group	of	foliar	fungal	diseases	consisting	
many	economically	important	pathogens	(Chen,	Wellings,	Chen,	Kang,	
&	 Liu,	 2014;	Park,	 2008),	 our	 aim	was	 to	 examine	how	 spatial	 het-
erogeneity	of	 resistance	may	 shape	 the	epidemiology	and	evolution	
of	agricultural	pathogens	in	general	contexts	rather	than	focusing	on	
any	particular	pathosystem.	We	thus	provide	here	a	theoretical	anal-
ysis	of	an	ideal	situation	where	the	landscape	structure	is	simple	and	
remains	 unchanged	 across	 time	 to	 focus	 on	 the	 role	 of	 spatial	 het-
erogeneity	 in	shaping	the	epidemiology	and	evolution	of	agricultural	
pathogens.	 Using	 this	 approach,	 a	 resistant	 cultivar	 consisting	 of	 a	
pyramid	of	 both	qualitative	 and	quantitative	 resistances,	 and	 a	 sus-
ceptible	cultivar	are	allocated	to	different	fields	as	a	mosaic	across	an	
agricultural	 landscape.	The	choice	of	 considering	a	 resistant	cultivar	
carrying	both	qualitative	and	quantitative	resistances	was	motivated	
by	empirical	evidences	of	increased	durability	of	qualitative	resistance	
when	combined	with	quantitative	ones	(e.g.,	Brun	et	al.,	2010).	Three	
model	outputs	are	used	as	optimization	criteria	for	this	resistance	de-
ployment	strategy:	short-	term	epidemiological	dynamics	(defined	here	
as	the	average	proportion	of	healthy	plants	for	the	susceptible	cultivar	

before	the	resistant	cultivar	 loses	 its	 immunity),	resistance	durability	
(defined	here	as	the	first	year	the	resistant	variety	loses	its	immunity)	
and	 long-	term	 evolutionary	 equilibrium	 (defined	 here	 as	 the	 stable	
level	of	long-	term	pathogen	adaptation).	The	model	is	stochastic	and	
based	on	 the	Susceptible-	Exposed-	Infectious-	Removed	 (SEIR)	 archi-
tecture	to	describe	the	life	cycle	of	the	pathogen.	In	addition	to	the	
impact	of	 landscape	organization,	we	also	assessed	 the	 influence	of	
some	life-	history	traits	of	the	pathogens	on	the	different	outputs.

2  | MODEL AND STATISTICAL ANALYSES

2.1 | Model

2.1.1 | Model overview and definitions of 
disease risk

The	model	we	 developed	 describes	 the	 epidemiological	 and	 evolu-
tionary	 dynamics	 of	 a	 pathogen	 population	 in	 an	 agricultural	 land-
scape.	 It	 assumes	 that	 the	 pathogen	 disperses	 passively	 across	 the	
whole	landscape	(e.g.,	via	wind	dispersed	propagules).	The	landscape	
is	composed	of	fields	where	a	susceptible	crop	cultivar	and	a	resistant	
crop	cultivar	are	sown	in	controlled	proportions	and	degree	of	spatial	
aggregation.	The	crop	is	present	all	year-	round	although	plant	cover	
is	 reduced	during	the	off-	season.	For	a	given	simulation,	 the	spatial	
structure	of	the	landscape	is	assumed	to	remain	the	same	across	years.

The	two	crop	cultivars	impose	selection	pressure	on	the	pathogen	
population	through	a	single	life-	history	trait,	the	efficacy	of	infection.	
Thus,	pathogen	genotypes	are	characterized	by	their	associated	ability	
to	infect	the	two	host	cultivars.	We	assumed	that	the	resistant	cultivar	

F IGURE  1 Genetic	composition	
(frequencies	of	the	different	genotypes,	
black	=	100%,	white	=	0%)	of	the	pathogen	
population	(a	and	b,	RC	=	resistant	cultivar,	
SC	=	susceptible	cultivar);	and	evolution	
of	the	healthy	area	duration	(HAD,	c	
and	d,	1	=	no	disease,	0	=	maximum	of	
disease)	during	50	years	of	simulation	for	
the	susceptible	cultivar	(dashed	line)	and	
the	initially	resistant	cultivar	(solid	line).	
The	blue	line	indicates	the	time	when	
the	resistant	cultivar	loses	its	immunity	
(referred	as	resistance	durability).	The	
values	of	the	parameters	used	in	these	
simulations	are	as	follows:	β	=	1,	r = 5 and 
μ0=10	(a,	b,	c	and	d);	the	landscape	is	
composed	by	90%	of	the	resistant	cultivar	
with	a	grouped	aggregation	(a	and	c),	or	by	
70%	of	the	resistant	cultivar	with	a	mixed	
aggregation	(b	and	d)
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consists	of	a	pyramid	of	both	qualitative	and	quantitative	resistances.	
Thus,	at	the	beginning	of	a	simulation,	the	pathogen	population	is	only	
adapted	 to	 the	 susceptible	 cultivar	 and	 cannot	 attack	 the	 resistant	
cultivar.	 However,	 new	 pathogen	 genotypes	 can	 progressively	 arise	
through	mutation,	resulting	in	the	emergence	of	genotypes	associated	
with	gradually	 increasing	 infection	efficacy	on	 the	 resistant	 cultivar.	
These	new	pathogen	genotypes	are	only	partially	adapted	to	the	re-
sistant	cultivar	because	of	the	presence	of	quantitative	resistance.	In	
addition,	 they	 are	 penalized	by	 decreasing	 infection	 efficacy	 on	 the	
susceptible	cultivar	to	account	for	life-	history	trade-	offs,	as	has	been	
documented	for	several	rust	pathogens	(Laine	&	Barrès,	2013).

Using	this	modelling	framework	in	a	theoretical	context,	we	quan-
tified	the	impacts	of	the	cropping	ratio	of	the	resistant	cultivar	and	its	
spatial	aggregation	on	three	measures	representing	different	phases	
of	pathogen	adaptation	to	the	resistant	cultivar	(Figure	1):	short-	term	
epidemiological	 dynamics,	 resistance	 durability	 and	 long-	term	 evo-
lutionary	equilibrium.	For	 this,	 the	healthy	area	duration	 (HAD)—the	
integral	of	healthy	green	canopy	area	during	the	yield	forming	period	
(Waggoner	&	Berger,	 1987)—of	plant	 cover,	 for	 either	 the	 suscepti-
ble	cultivar	or	the	resistant	cultivar,	is	computed	by	integrating,	each	
year,	the	proportion	of	healthy	individuals	during	the	cropping	season.	
This	reflects	the	cumulative	photosynthetic	tissue	available	for	grain	
production	and	filling.	Then,	 the	three	model	outputs	are	computed	
after	 a	 50-	year	 simulation	 (see	 Figure	1	 for	 an	 example)	 as	 follows.	
The	 short-	term	 epidemiological	 dynamics	 is	 assessed	 by	 computing	
HAD	for	the	susceptible	cultivar	and	averaged	over	the	period	from	
the	beginning	of	the	simulation	to	the	time	when	the	resistant	cultivar	
loses	 its	 immunity	 (following	the	emergence	of	pathogen	genotypes	
able	to	infect	the	resistant	cultivar).	In	this	study,	this	time	is	defined	
as	the	first	year	when	HAD	of	the	resistant	cultivar	dropped	by	5%	and	
is	 thereafter	 referred	 as	 resistance	 durability.	 Finally,	 the	 long-	term	
evolutionary	equilibrium	 is	assessed	at	 the	end	of	 the	simulation	by	
averaging	HAD	of	both	cultivars	over	the	final	5	years,	assuming	that	
pathogen	evolutionary	dynamics	reached	their	equilibria.

2.1.2 | Landscape model

A	landscape	pattern	composed	of	approximately	155	fields	is	gen-
erated	by	simulating	a	set	of	fields	using	a	T-	tessellation	algorithm	
that	 makes	 it	 possible	 to	 control	 the	 size,	 number	 and	 shape	 of	
fields	 (Kiêu,	 Adamczyk-	Chauvat,	 Monod,	 &	 Stoica,	 2013;	 Papaïx,	
Adamczyk-	Chauvat	 et	al.,	 2014).	 Following	 this	 step,	 a	 suscepti-
ble	crop	cultivar	and	a	 resistant	crop	cultivar	are	deployed	across	
the	simulated	landscape	using	controlled	spatial	arrangements	de-
fined	by	their	proportions	in	terms	of	surface	coverage	(10%,	30%,	
50%,	70%	and	90%	of	the	resistant	cultivar)	and	aggregation	level	
(Figure	2).	The	landscape	patterns	are	replicated	five	times,	and	the	
allocations	of	cultivars	to	fields	are	replicated	twice,	by	means	of	a	
simulated	 annealing	 algorithm.	 Although	 simulated	 landscapes	 do	
not	represent	the	full	complexity	of	agricultural	systems,	their	use	
in	theoretical	studies	makes	it	possible	to	consider	a	variety	of	land-
scapes	with	 controlled	 features	 as	well	 as	 stochastic	 variations	 in	

the	 landscape	structure	 rather	 than	a	unique	situation,	which	 lim-
its	 the	 generality	 of	 the	 results	 (Papaïx,	Adamczyk-	Chauvat	 et	al.,	
2014).

2.1.3 | Pathogen demogenetic dynamics

We	consider	a	Susceptible-	Exposed-	Infectious-	Removed	(SEIR)	model	
with	foliar	sites	as	individuals	(i.e.,	a	site	where	a	lesion	can	develop).	
The	host	 population	 is	 composed	of	 two	genotypes	 (corresponding	
to	the	susceptible	and	resistant	cultivars)	and	the	pathogen	popula-
tion	of	p	genotypes.	The	initial	pathogen	genotype	corresponds	to	the	
full	specialist	on	the	susceptible	cultivar	(it	cannot	infect	the	resistant	
cultivar)	and	the	other	genotypes	correspond	to	those	associated	with	
gradually	increasing	infection	efficacy	on	the	resistant	cultivar.	These	
genotypes	are	considered	as	generalists	with	different	degrees	of	spe-
cialization	as	they	can	 infect	both	cultivars,	at	 least	to	some	extent.	
The	model	then	describes	the	dynamics	of	the	number	of	foliar	sites	
in	each	of	the	following	states	and	for	each	field	 i	 (i = 1,…,I):	healthy	
sites	(Si),	latent	sites	infected	by	pathogens	of	genotype	p	(Ei,p),	infec-
tious	sites	infected	by	pathogens	of	genotype	p	(Ii,p)	and	removed	sites	
infected	by	pathogens	of	genotype	p	(Ri,p).	Spores	produced	by	infec-
tious	sites	correspond	to	the	propagule	state.

Epidemics	 were	 simulated	 over	 50	years,	 each	 composed	 of	
12	months	of	30	days.	This	duration	was	chosen	to	ensure	detection	
of	 the	 long-	term	 impact	of	 the	deployment	strategy	on	disease	epi-
demics	and	pathogen	evolution.	The	cropping	season	formed	the	first	
120	days	of	the	year,	whereas	the	off-	season	was	represented	by	the	
remaining	240	days	of	the	year.	Below,	we	describe	each	sequential	
step	of	the	model	as	it	occurs	during	a	cropping	season.	The	full	de-
scription	is	given	in	the	Appendix	S1.

Initial conditions
For	each	simulation,	the	pathogen	population	is	initially	composed	of	
the	specialist	of	the	susceptible	cultivar	(p = 1).	Epidemics	are	initiated	
by	 assuming	 that	 plants	 in	 susceptible	 fields	 are	 randomly	 infected	
with	a	probability	of	.01	(infected	plants	at	t = 0	are	at	an	infectious	
stage).

Reproduction and mutation
Infectious	sites	produce	r = 5	or	10	effective	spores	per	day	resulting	
from	the	number	of	spores	effectively	landing	on	new	hosts	after	dis-
persal,	and	the	propensity	of	hosts	to	be	infected	(Soubeyrand,	Sache,	
Lannou,	 &	 Chadoeuf,	 2007).	 Spores	 are	 associated	 with	 the	 same	
genotype	as	their	parental	lesion	with	probability	mpp	=	0.996.	When	
a	mutation	occurs	(with	p = .004),	we	assume	that	the	pathogen	popu-
lation	evolves	gradually:	a	new	genotype	arises	from	closely	related	
genotypes	by	mutation	with	small	gains	or	losses	in	infection	efficacy	
by	setting	mp(p-1)	=	mp(p+1)	=	0.002.	The	exceptions	are	pathogen	geno-
types	with	the	highest	infection	efficacy	on	either	susceptible	or	the	
resistant	cultivars—these	mutate	towards	 less	specialized	genotypes	
with	a	probability	of	.004	to	ensure	their	overall	mutation	rate	is	equal	
to	that	of	other	genotypes.
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Spore dispersal
Spores	migrate	from	field	i	to	field	j	with	probability	μij	computed	from:

Where	Ai and Aj	are	the	areas	of	fields	 i and j,	respectively	(Bouvier,	
Kiêu,	Adamczyk,	&	Monod,	2009).	g

(
||z−z�||

)
	is	the	individual	disper-

sal	function	with	an	inverse	power	law	shape:

where ||z−z�||	 is	 the	 Euclidean	 distance	 between	 locations	 z	 and	 z′	
b > 0	is	a	scale	parameter	and	a > 2	determines	the	weight	of	the	dis-
persal	tail.	The	parameter	a	is	fixed	at	3.4	to	simulate	a	fat-	tailed	dis-
persal	function.	The	mean	dispersal	distance	is	defined	by	μ=2b∕(a−3) 
and	is	varied	to	represent	2.5%,	10%	and	25%	of	the	landscape	length	
(noting	that	the	simulated	landscape	is	square).

Invasion of healthy sites
Spores	 arriving	 in	 a	 field	 invade	 a	healthy	 site	with	probability	π(xi(t)),	 
where π(⋅)	is	an	increasing	function	of	xi(t),	the	proportion	of	healthy	sites	
in	field	i	at	time	t.	Indeed,	all	of	the	infection	sites	on	an	individual	plant	are	
not	equally	accessible	to	spores,	for	instance	because	of	the	plant	physi-
cal	structure.	Then,	the	possible	new	infections	are	distributed	among	the	
pathogen	genotypes	according	to	their	proportion	 in	the	set	of	spores	
arriving	in	the	field	i	at	time	t	and	following	a	multinomial	distribution.

Infection of invaded sites
A	healthy	site	receiving	a	spore	(invaded	site)	becomes	infected	with	
probability	ep,v(i)	the	infection	efficacy	associated	with	pathogen	geno-
type	p	on	crop	cultivar	v(i)	cultivated	in	field	i.

We	assume	a	trade-	off	in	infection	efficacy	on	the	two	crop	culti-
vars	(respectively,	ep,RC and ep,SC	for	the	resistant	and	the	susceptible	
cultivars):	a	gain	in	infection	efficacy	on	the	resistant	cultivar	has	a	cost	

in	terms	of	reduced	infection	efficacy	on	the	susceptible	cultivar	(and	
vice	versa).	Gain	and	cost	are	linked	through	the	relationship	(Débarre	
&	Gandon,	2010):

with	emax	=	0.4	 the	 infection	 efficacy	of	 a	 fully	 specialist	 and	β	 the	
global	shape	of	the	trade-	off	curve:	the	curve	 is	concave	when	β is 
below	unity,	 linear	when	β	=	1	and	convex	otherwise.	We	will	 refer	
hereafter	to	concave	curves	as	weak	trade-	offs,	because	they	corre-
spond	to	cases	where	the	cost	of	being	a	generalist	is	low.	Similarly,	
convex	curves	will	be	referred	to	as	strong	trade-	offs;	β	can	then	be	
referred	 as	 the	 trade-	off	 strength	 (Ravigné,	 Dieckmann,	 &	Olivieri,	
2009).	The	infection	efficacies	associated	with	the	different	pathogen	
genotypes	 are	 computed	 from	Equation	1,	 by	varying	 the	 infection	
efficacy	on	the	resistant	cultivar	between	0	and	emax and by consider-
ing	three	values	for	the	trade-	off	strength,	β	=	0.8,	β	=	1	and	β	=	1.2.

Transition from latent (E) to infectious (I) sites
Once	infected,	the	invaded	sites	remain	latent	for	an	average	of	τ=5 
days	(Azzimonti,	2012)	before	becoming	infectious.

Removal of infectious sites
After	an	average	of	T = 10	days	of	sporulation	(i.e.,	the	length	of	the	
infectious	period;	Azzimonti,	2012),	infectious	sites	are	removed	and	
unable	to	produce	new	propagules.

Host growth and removal of sites
To	 initiate	a	cropping	season,	plant	cover	 is	 set	 to	10%	of	 the	 field	
acreage.	 The	 crop	 then	 grows	 locally	 until	 it	 reaches	 the	 carrying	
capacity	 of	 the	 field,	Ki,	where	Ki	 is	 assumed	 to	 be	 proportional	 to	
the	area	of	field	i.	In	the	following,	results	are	expressed	as	ratios	so	
that	they	are	independent	of	the	constant	of	proportionality	(except	
for	when	very	 low	carrying	capacities	are	considered,	 in	which	case	
demographic	 stochasticity	 can	 be	 very	 important,	 which	 is	 not	 the	
case	in	this	study).	In	addition,	we	consider	that	only	healthy	sites	(Si)	

μi,j=

∫
Ai

∫
Aj

g
(
||z−z�||

)
dzdz�

Ai

,

g
(
||z−z�||

)
=
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2πb2

(
1+

||z−z�||
b

)−a

,
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1
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F IGURE  2 Simulated	landscapes	with	30%	of	the	crop	being	represented	by	the	resistant	cultivar	and	an	increasing	aggregation	level	(a:	low;	
b:	intermediate;	c:	high)



710  |     PAPAÏX et Al.

contribute	 to	biomass	production	 (equivalent	 to	a	 castrating	patho-
gen).	 At	 the	 end	 of	 the	 cropping	 season	 an	 arbitrary	 proportion	 of	
99.9%	of	the	sites	is	removed	randomly,	regardless	of	their	infection	
state,	and	the	total	number	of	sites	 is	kept	constant	during	the	off-	
season	(i.e.,	no	host	growth).

2.2 | Statistical analyses

Simulations	were	performed	using	a	complete	factorial	design	to	explore	
the	five	input	parameters	of	interest:	cropping	ratio	(five	values—10%,	

30%,	50%,	70%	and	90%),	landscape	aggregation	(three	values—low,	in-
termediate	and	high),	strength	of	the	trade-	off	between	infection	effica-
cies	(three	values—0.8,	1	and	1.2),	spore	production	rate	(two	values—5	
and	10	spores.day−1)	and	mean	distance	of	spore	dispersal	 (three	val-
ues—2.5%,	10%	and	25%	of	the	landscape	length).	For	each	combination	
of	these	five	parameters,	20	replicates	were	simulated	(five	landscape	
pattern	replicates,	two	allocation	replicates	and	two	model	replicates	to	
account	for	stochasticity).	This	resulted	in	a	total	of	5400	simulations.

Firstly,	we	 analysed	 the	 simulations	 by	 fitting	 generalized	 linear	
models	to	the	three	model	outputs	including	the	effect	of	the	five	input	

TABLE  1 Best	models	retained	after	the	stepwise	selection	based	on	the	Bayesian	information	criterion	(BIC)	for	the	three	model	outputs	
computed	from	the	healthy	area	duration	(HAD),	along	with	the	direction	of	correlations	between	input	parameters	and	model	outputs	and	
effect	sizes	(total	sensitivity	indices)

Definition of disease risk (HAD-based model outputs)

Short-term epidemiological dynamics Resistance durability Long-term evolutionary 
equilibrium
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F IGURE  3 Relationship	between	landscape	organization	(proportion	of	the	resistant	cultivar	and	spatial	aggregation)	and	the	three	model	
outputs	based	on	the	computation	of	the	healthy	area	duration	(HAD—a,	d,	g	and	j,	short-	term	epidemiological	dynamics;	b,	e,	h	and	k,	
resistance	durability;	c,	f,	i	and	l,	long-	term	evolutionary	equilibrium).	A	baseline	scenario	(a,	b	and	c—values	of	parameters:	β	=	0.8,	r = 5 and 
μ0=25%)	is	compared	to	a	scenario	with	decreased	pathogen	dispersal	(d,	e	and	f—values	of	parameters:	β	=	0.8,	r = 5 and μ0=2.5%),	with	
increased	spore	production	(g,	h	and	i—values	of	parameters:	β	=	0.8,	r = 10 and μ0=25%)	and	with	a	linear	trade-	off	(j,	k	and	l—values	of	
parameters:	β	=	1,	r = 5 and μ0=25%)



     |  711PAPAÏX et Al.

parameters	 and	 their	 second	 order	 interactions.	 Stepwise	 selection	
based	on	the	Bayesian	information	criterion	(BIC)	allowed	us	to	retain	
the	most	parsimonious	models	(Table	1).	Secondly,	we	computed	the	

total	sensitivity	 indices	of	the	different	 input	parameters,	 relative	to	
the	three	model	outputs	(Table	1).	Lastly,	we	put	emphasis	on	the	role	
of	landscape	organization	(cropping	ratio	and	landscape	aggregation)	
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using	meta-	models	consisting	of	second	degree	Legendre	polynomi-
als	(Sudret,	2008).	This	allowed	us	to	establish	the	response	surfaces	
(Figure	3).

3  | RESULTS

In	all,	7.2%	of	simulations	were	discarded	because	the	pathogen	popu-
lation	went	extinct	 in	 the	 initial	 stages	of	 the	simulation	as	a	 result	
of	demographic	stochasticity	during	the	off-	season	(when	only	a	few	
hosts	were	available).	Pathogen	extinction	occurred	most	frequently	
in	mixed	 landscapes	with	a	high	proportion	of	 the	 resistant	cultivar	
and	when	life-	history	trait	parameters	were	clearly	to	the	disadvan-
tage	of	the	pathogen	(low	dispersal	ability,	low	spore	production	and	
a	strong	trade-	off).

In	the	remaining	simulations,	 the	epidemics	are	characterized	by	
an	initial	period	of	immunity	of	the	resistant	cultivar	(Figure	1).	Then,	
new	 infectivity	 emerges	 in	 the	 pathogen	 population	 through	muta-
tion.	From	this	point	time,	the	qualitative	component	of	resistance	is	
overcome	and	 the	quantitative	component	begins	 to	erode	 through	
subsequent	mutations	 in	 the	pathogen	genotypes	able	 to	overcome	
qualitative	resistance	(Figure	1).

3.1 | Short- term epidemiological dynamics

In	 the	 short	 term	 (during	 the	 phase	when	 the	 resistant	 crop	 culti-
var	 is	 still	 immune	 to	disease),	 the	HAD	of	 the	 susceptible	cultivar	
ranged	 from	11.7%	 to	73.2%	over	 all	 simulations	 (the	median	was	
~50%).	 From	 the	 GLM	 analysis,	 a	 lower	 amount	 of	 disease	 in	 the	
short	term	occurred	with	lower	spore	production	capacity	(Table	1).	
In	addition,	higher	dispersal	ability	was	associated	with	lower	disease	
in	 the	 short	 term	 (Table	1)	 probably	 due	 to	 an	 increased	 alloinfec-
tion/autoinfection	ratio.	The	trade-	off	strength	was	not	retained	in	
the	best	model	 (Table	1).	The	adjusted	response	surfaces	 indicated	
that	 both	 cropping	 ratio	 and	 the	 spatial	 aggregation	 of	 crop	 culti-
vars	have	a	 strong	 impact	on	 short-	term	epidemiological	 dynamics	
(Figure	3	and	Table	1).	As	expected,	we	found	that	the	HAD	of	the	
susceptible	cultivar	 increases	with	greater	proportion	of	 the	resist-
ant	cultivar	and	lower	spatial	aggregation.	The	cropping	ratio	had	the	
largest	effect	with	the	proportion	of	the	immune	cultivar	explaining	
60%	(r = 5)	or	40%	(r = 10)	of	the	variability	in	short-	term	disease	dy-
namics	(Table	1).

3.2 | Resistance durability

The	emergence	of	infectivity	in	the	pathogen	population	was	observed	
in	88.5%	of	the	simulations.	In	almost	40%	of	the	simulations,	the	re-
sistant	cultivar	 lost	 its	 immunity	after	only	1	or	2	years	 (the	median	
was	5	years)	postintroduction.	Increases	in	pathogen	dispersal	ability	
and	spore	production	decreased	resistance	durability	while	stronger	
trade-	offs	 resulted	 in	more	 durable	 resistance	 (Table	1).	 Resistance	
durability	was	the	highest	with	low	cropping	ratios	(i.e.,	deployment	
of	 the	 resistant	 cultivar	 on	 a	 low	proportion	of	 fields;	 Figure	3	 and	

Table	1).	Interestingly,	we	found	a	positive	effect	of	spatial	aggrega-
tion	(Figure	3	and	Table	1):	increases	in	the	aggregation	of	fields	where	
the	resistant	cultivar	was	sown	increased	the	durability	of	resistance.	
The	sensitivity	analysis	showed	that	the	cropping	ratio	was	always	the	
most	influential	parameter	on	resistance	durability	(Table	1).

3.3 | Long- term evolutionary equilibrium

Following	the	emergence	of	new	infectivity	in	pathogen	populations,	
both	 cultivars	were	 susceptible	 to	disease	 (at	 least	 to	 some	extent)	
and	the	HAD	of	the	agricultural	landscape	at	the	end	of	the	simulation	
was	dependent	on	the	global	level	of	adaptation	of	the	pathogen	pop-
ulation.	Over	all	simulations,	the	HAD	of	the	entire	landscape	ranged	
from	17.2%	 to	62.4%	 (the	median	was	26.7%).	 In	72.6%	of	 simula-
tions,	two	pathogen	genotypes	coexisted	in	the	population	at	the	end	
of	the	simulation;	each	of	them	being	more	adapted	to	one	of	the	two	
cultivars	(e.g.,	Figure	1a).	In	the	other	27.4%	of	simulations,	only	one	
pathogen	genotype	was	maintained	in	the	population	(e.g.,	Figure	1b).	
Consistent	with	 the	 results	 for	 resistance	durability,	 increases	 in	ei-
ther	pathogen	dispersal	ability	or	spore	production	capacity	increased	
the	 long-	term	 level	 of	 adaptation	 of	 the	 pathogen	 while	 stronger	
trade-	offs	led	to	reduced	levels	of	adaptation	(Table	1).	The	long-	term	
evolutionary	equilibrium	leading	to	the	lower	amount	of	disease	was	
achieved	 by	 combining	 both	 cultivars	 in	 balanced	 proportions	with	
low	spatial	aggregation	(Figure	3	and	Table	1).	Depending	on	the	val-
ues	 of	 the	 pathogen	 life-	history	 traits,	 such	 landscape	 organization	
may	result	 in	either	the	selection	of	one	generalist	pathogen	or	the	
selection	of	 two	different	genotypes	but	with	a	 low	degree	of	spe-
cialization.	The	sensitivity	analysis	showed	that	the	cropping	ratio	was	
always	the	most	influential	parameter	but	aggregation	still	explained	
between	25%	(r = 5)	and	35%	(r = 10)	of	the	variability	of	 long-	term	
evolutionary	equilibrium	(Table	1).

4  | DISCUSSION

To	go	beyond	the	blanket	deployment	of	resistance	genes,	the	sus-
tainable	management	of	crop	resistance	to	disease	needs	a	better	un-
derstanding	of	 the	demogenetic	dynamics	of	pathogen	populations	
from	the	initial	release	of	a	new	resistant	cultivar	to	the	breakdown/
erosion	of	 its	 resistance	 and	 further	 adaptation	of	pathogen	popu-
lations.	The	present	study	 is	a	first	attempt	to	characterize,	using	a	
theoretical	 framework,	 the	dynamics	of	HAD	following	 the	deploy-
ment	of	an	initially	resistant	cultivar	and	a	susceptible	cultivar	across	
a	 landscape	(with	a	deployment	strategy	combining	pyramiding	and	
mosaic	as	well	as	qualitative	and	quantitative	resistance)	in	response	
to	 pathogen	 demography	 and	 evolutionary	 dynamics.	 This	 study	 is	
based	on	a	stochastic	and	spatially	explicit	SEIR	model	applied	to	a	
foliar	fungal	disease	as	typified	by	cereal	rusts.	It	offers	a	perspective	
on	the	strong	differences	that	may	exist	between	management	strat-
egies	 of	 resistance	 deployment	 accounting	 for	 different	 measures	
of	disease	 risk,	derived	either	 from	epidemiological	or	evolutionary	
perspectives.
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The	effect	of	the	combination	of	susceptible	and	resistant	culti-
vars	at	field	(mixtures)	and	landscape	(mosaic)	scales	on	disease	de-
velopment	has	been	classically	studied	in	the	literature	(Mundt,	2002;	
Papaïx,	Touzeau	et	al.,	 2014;	Skelsey	et	al.,	 2010).	 It	has	generally	
been	found	that	the	best	epidemiological	control	is	obtained	when	
the	cropping	landscape	is	composed	of	a	high	proportion	of	the	re-
sistant	cultivar	and	weak	spatial	aggregation.	However,	these	results	
are	typical	of	mixtures	and	mosaics	governed	by	qualitative	plant– 
pathogen	 interactions	 but	 must	 be	 mitigated	 when	 considering	
quantitative	 plant–pathogen	 interactions	 as	 spillover	 from	 the	
susceptible	 to	 the	partially	 resistant	variety	may	decrease	disease	
control	in	landscapes	with	low	spatial	aggregation	(Papaïx,	Touzeau	
et	al.,	2014).	Our	results	are	in	agreement	with	these	studies	as	low	
spatial	aggregation	was	found	to	increase	HAD.	Note	that	our	short-	
term	criterion	deals	only	with	complete	resistance	as	 it	was	calcu-
lated	over	 the	period	when	the	resistant	cultivar	was	still	 immune	
to	disease.

The	optimal	spatial	structure	of	the	landscape	is	different	when	
our	 second	 criterion	 (resistance	 durability)	 is	 taken	 into	 account.	
Durability	of	resistance	genes	as	a	function	of	the	deployment	strat-
egy	 has	 previously	 been	 studied	 using	 nonspatial	 models	 (but	 see	
Sapoukhina,	Tyutyunov,	Sache,	&	Arditi,	2010	for	an	example	at	the	
field	scale).	The	basic	finding	of	such	studies	is	that	a	low	cropping	
ratio	 of	 the	 resistant	 cultivar	 minimizes	 selection	 pressure	 on	 the	
pathogen	population	and	thus	 increases	the	durability	of	 the	resis-
tance	gene	(Fabre	et	al.,	2012;	Pietrevalle,	Lemarié,	&	van	den	Bosch,	
2006;	Pink	&	Puddephat,	1999).	However,	high	cropping	ratios	can	
also	delay	the	breakdown	of	resistance	by	drastically	reducing	patho-
gen	 population	 size,	 resulting	 in	 a	U-	shaped	 function	 of	 durability	
against	 cropping	 ratio	 (van	 den	 Bosch	 &	 Gilligan,	 2003).	 Using	 a	
spatially	explicit	model,	we	also	found	such	a	pattern	but	with	 low	
cropping	ratios	always	being	more	durable.	However,	our	model	has	
refined	this	result	on	the	effects	of	cropping	ratio	as	increasing	spa-
tial	aggregation	and	thus	decreasing	fragmentation	of	the	landscape	
were	found	to	favour	resistance	durability.	Indeed,	in	our	simulations	
epidemics	typically	proceeded	on	the	resistant	cultivar	via	spillover	
from	the	susceptible	cultivar.	Thus,	more	aggregated	spatial	patterns	
of	cultivar	deployment	 lead	to	a	smaller	 interface	between	suscep-
tible	 and	 resistant	 crop	 cultivars,	which	 limits	 immigration	 and	 the	
emergence	of	resistance-	breaking	genotypes	in	the	pathogen	popu-
lation.	As	a	consequence	of	the	effect	of	this	interface,	we	observed	
a	 strong	 interaction	between	 the	 cropping	 ratio	 and	 spatial	 aggre-
gation.	Indeed,	the	influence	of	cropping	ratio	was	stronger	for	high	
levels	of	aggregation.

Time	 to	 emergence	 of	 new	 infectivity	 in	 crops	 treated	 by	 fun-
gicides	was	studied	by	Bourget,	Chaumont,	and	Sapoukhina	 (2013)	
using	 a	 nonspatial	 model.	 They	 identified	 a	 particular	 situation	 for	
which	a	 strategy	based	on	a	 small	 proportion	of	 treated	 fields	was	
not	as	durable	as	one	based	on	treating	a	high	proportion	of	fields.	
This	arose	if	the	pathogen	population	had	a	low	growth	rate	and	high	
migration	abilities.	In	our	model,	we	also	found	that	increasing	patho-
gen	 dispersal	 ability	 decreases	 resistance	 durability.	 However,	 low	
cropping	ratios	were	never	found	to	significantly	decrease	resistance	

durability	 compared	 to	high	 cropping	 ratios.	 Indeed,	 in	most	 cases,	
resistance	durability	was	preserved	by	hindering	pathogen	dispersal	
between	the	resistant	and	susceptible	crop	(i.e.,	when	dispersal	was	
low,	aggregation	was	high)	and	preferentially	when	the	resistant	crop	
was	at	 low	proportion.	The	main	difference	between	Bourget	et	al.	
(2013)	and	our	results	comes	from	the	fact	that	we	did	not	explore	
situations	with	 low	pathogen	growth	 rates	 as	we	 focused	on	 foliar	
fungi	 that	 typically	 have	 high	 growth	 rates.	 Finally,	 durability	 was	
found	to	be	sensitive	to	the	shape	of	 the	trade-	off	 function,	which	
influences	 the	ability	of	 the	pathogen	to	perform	well	on	both	cul-
tivars.	This	is	consistent	with	Fabre	et	al.	(2012)	who	found	that	the	
cost	of	virulence	was	the	most	 important	parameter	with	regard	to	
explaining	resistance	durability.

The	long-	term	evolutionary	equilibrium	as	assessed	by	HAD	at	the	
end	of	a	simulation	was	also	found	to	be	highly	sensitive	to	the	spa-
tial	structure	of	the	landscape.	As	for	qualitative	resistance,	increase	
in	the	area	covered	by	the	resistant	cultivar	 is	expected	to	 increase	
the	 speed	of	 pathogen	 evolution	 and	 thus	 the	 erosion	of	 quantita-
tive	resistance	(Lo	Iacono	et	al.,	2012).	However,	as	demonstrated	by	
Lo	Iacono	et	al.	(2012),	the	integrated	gain	on	yield	over	time,	which	
comes	from	cultivating	high	ratios	of	the	resistant	cultivar,	may	out-
weigh	 the	more	 rapid	evolution	of	 the	pathogen.	 In	addition	 to	 the	
speed	of	 resistance	 erosion,	 cropping	 ratio	 also	 affects	 the	 level	 of	
adaptation	 of	 the	 pathogen	 population	 at	 equilibrium.	 Consistent	
with	previous	studies	 (e.g.,	Papaïx,	David,	Lannou,	&	Monod,	2013),	
we	found	that	balanced	proportions	of	susceptible	and	resistant	culti-
vars	and	low	spatial	aggregation	reduced	the	long-	term	impact	of	the	
disease.	 In	the	present	work,	we	focused	on	the	role	of	host	spatial	
heterogeneity	 and	 considered	 that	 quantitative	 resistance	 only	 af-
fected	one	pathogen	trait,	infection	efficacy.	According	to	Lo	Iacono	
et	al.	 (2012),	 quantitative	 resistance	 that	 targets	 infection	 efficacy	
is	 indeed	more	efficient	in	controlling	disease	(in	an	epidemiological	
sense)	 than	quantitative	resistance	targeting	pathogen	reproduction	
rate	 (but	 see	Bourget,	Chaumont,	Durel,	&	 Sapoukhina,	 2015).	The	
role	of	quantitative	resistance	in	driving	pathogen	adaptation	is	gain-
ing	 attention	 in	 the	 literature	with	 emphasis	 on	 determining	which	
pathogen	life-	history	traits	are	affected	by	host	resistance	(Azzimonti,	
Lannou,	Sache,	&	Goyeau,	2013;	Pariaud,	Ravigné	et	al.,	2009).	When	
a	high	penalty	exists	for	the	new	infectivity	against	a	resistance,	com-
pensation	via	other	 traits	may	operate	 to	 improve	pathogen	 fitness	
on	resistant	hosts.	 In	this	case,	susceptible	cultivars	may	also	be	af-
fected	 as	 they	will	 suffer	 the	effects	of	higher	 aggressiveness	 from	
the	pathogen	population	(van	den	Berg,	Lannou,	Gilligan,	&	van	den	
Bosch,	 2013;	Gandon,	Mackinnon,	Nee,	&	Read,	 2001).	The	 evolu-
tionary	 consequences	 of	 possible	 correlations	 between	 life-	history	
traits	(trade-	off,	pleiotropy)	are	also	important	as	they	determine	the	
adaptive	landscape	for	pathogen	populations	(Lannou,	2012;	Pariaud,	
Robert,	Goyeau,	&	Lannou,	2009).	For	example,	Bourget	et	al.	(2015)	
showed	that	resistances	affecting	pathogen	life-	history	traits	that	are	
in	conflict	with	each	other	are	more	durable.

The	significance	of	the	current	study	is	that	it	jointly	analyses	evo-
lutionary	and	epidemiological	outputs	of	a	landscape-	scale	strategy	of	
resistance	deployment	using	a	stochastic	and	spatially	explicit	model.	
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It	clearly	shows	that	the	management	of	disease	risk	through	spatial	
organization	of	the	agricultural	landscape	faces	strong	constraints	de-
pending	on	whether	short-	term	epidemiological	dynamics,	resistance	
durability	 or	 long-	term	 evolutionary	 equilibrium	 is	 targeted.	 Indeed,	
we	found	that	low	aggregation	combined	with	a	high	proportion	of	the	
resistant	cultivar	is	optimal	for	short-	term	epidemiological	dynamics,	
whereas	the	exact	opposite	(high	aggregation	and	low	cropping	ratio)	
is	optimal	for	resistance	durability.	Finally,	well-	mixed	landscapes	(low	
aggregation	with	balanced	proportions)	are	optimal	for	long-	term	evo-
lutionary	equilibrium	of	pathogen	populations.

Nevertheless,	these	conclusions	must	be	nuanced	by	the	theoret-
ical	context	of	this	study.	The	target	of	this	work	was	to	specifically	
explore	the	short-		to	 long-	term	impacts	of	spatial	heterogeneity	on	
resistance	durability	and	disease	control.	Thus,	we	considered	that	the	
landscape	organization	remained	the	same	for	the	whole	simulation	
run.	In	practice,	the	same	resistance	genes	may	be	introgressed	into	
many	commercial	cultivars	and	continuously	used	for	long	periods	of	
time	although	particular	cultivars	containing	these	resistance	genes	
may	turn	over	frequently	(Johnson,	1984;	Niks,	Qi,	&	Marcel,	2015;	
Stuthman	et	al.,	2007).	However,	when	genes	are	used	in	successive	
cultivars,	 they	 are	 generally	 associated	with	different	 combinations	
of	 qualitative	 resistances	 or	 with	 different	 genetic	 backgrounds,	
modifying	 the	 selective	 pressure	 over	 the	 period	 during	which	 the	
genes	are	used	(e.g.,	Goyeau	&	Lannou,	2011).	More	specifically,	our	
results	could	be	modified	 in	different	ways	by	 the	consideration	of	
temporal	heterogeneity,	mainly	depending	on	its	shape	(arm	race	vs.	
boom-	and-	bust	cycles)	and	on	the	life-	history	traits	that	are	impacted	
(Débarre	&	Gandon,	2011).	Temporal	heterogeneity	implies	a	stron-
ger	 bottleneck	because	of	 the	need	 for	 the	pathogen	 to	 reach	 the	
new	host	sown	to	different	fields	in	the	following	season,	potentially	
leading	to	the	loss	of	adaptive	mutations	through	drift	and	thus	de-
laying	 resistance	breakdown.	However,	 temporal	heterogeneity	can	
also	 increase	 pathogen	 diversity	 by	 increasing	 the	 possibilities	 for	
specialist	and	generalist	genotypes	to	coexist	in	different	geographic	
locations	 in	 the	 landscape	because	of	asynchrony	 in	 crop	 rotations	
(Papaïx,	 Burdon,	 Lannou,	 &	 Thrall,	 2014).	 It	 is	 then	 unclear	 if	 this	
diversity	 increases	or	not	disease	severity	and	pathogen	abilities	to	
adapt	to	new	cultivars.	In	the	case	of	directional	gradual	changes	(e.g.,	
due	 to	 selection	of	 cultivars	more	and	more	 resistant),	 the	outputs	
are	 extremely	 sensitive	 to	 the	 speed	 at	which	 growers	 are	 able	 to	
produce	new	cultivars	with	respect	to	the	speed	at	which	the	patho-
gen	evolves	(Polechová,	Barton,	&	Marion,	2009).	Thus,	similar	to	co-
evolving	systems	(Burdon	&	Thrall,	2009),	the	dynamics	of	resistance	
evolution	depend	also	on	the	adaptive	response	to	pathogen	evolu-
tion	of	stakeholders	for	crop	production	systems	(Zhan	et	al.,	2015).	
Currently,	crop	rotations	are	recommended	to	provide	disease	breaks	
(Bennett,	Bending,	Chandler,	Hilton,	&	Mills,	2012)	as	they	may	re-
duce	pathogen	population	size	 from	year	 to	year,	given	 that	only	a	
portion	of	pathogen	population	may	successfully	land	and	survive	on	
newly	sown	susceptible	fields.	For	example,	Fabre	et	al.	(2015)	found,	
with	a	spatially	implicit	model	for	virus	epidemics,	that	a	combination	
of	mosaics	and	rotations	performed	better	than	mosaics	alone	from	
both	 epidemiological	 and	 evolutionary	 perspectives.	 However,	 the	

efficiency	of	crop	rotations	could	be	limited	in	regions	where	the	crop	
is	cultivated	over	large	areas,	particularly	for	diseases	spread	by	aerial	
primary	inoculum.	For	example,	a	combination	of	a	6-	year	rotation	(to	
reduce	the	soil	 inoculum)	with	a	delayed	sowing	 (to	avoid	the	peak	
of	 the	 aerial	 inoculum)	was	 recommended	 by	McDonald	 and	 Peck	
(2009)	 to	 control	Ascochyta	blight	 on	 field	 peas	 (Pisum sativum L.).	
In	our	model,	 temporal	heterogeneity	was	considered	 through	sea-
sonality	 in	host	density.	 Indeed,	for	biotrophic	pathogens,	host	har-
vest	 can	 represent	 a	 severe	bottleneck,	 potentially	 eliminating	 rare	
adaptive	mutations.	We	 assumed	 that,	 during	 the	 off-	season,	 host	
genotypes	remain	the	same	as	during	the	cropping	season	and	that	
individual	plants	are	homogenously	distributed	within	a	field.	These	
assumptions	 limit	the	effect	of	spatial	structure	on	both	off-	season	
eco-	evolutionary	 dynamics	 (Tack	 &	 Laine,	 2014)	 and	 the	 inoculum	
for	the	new	cropping	season	(Mundt,	Leonard,	Thal,	&	Fulton,	1986)	
and	 imply	 homogeneity	 in	 the	 direction	 of	 selection	 between	 the	
off-	season	and	the	cropping	season	(Papaïx	et	al.,	2015).	Finally,	we	
assumed	that	infectivity	was	absent	from	the	initial	pathogen	popu-
lation.	However,	 resistance	 genes	 can	 originate	 from	wild	 relatives	
of	crops.	In	that	case,	a	pathogen	population	may	have	already	been	
exposed	 to	 the	 resistance	gene	and	 consequently	 evolved	 towards	
new	infectivity	(Leroy,	Le	Cam,	&	Lemaire,	2014).	The	pre-	existence	
of	infectivity	in	the	pathogen	population,	even	at	low	frequency,	can	
change	dramatically	the	durability	of	the	resistance	gene	in	the	crop	
as	well	as	which	deployment	strategy	is	optimal	(Lof,	de	Vallavieille-	
Pope,	&	van	der	Werf,	2017).

Future	 investigations	 using	 our	 modelling	 approach	 may	 include	
consideration	of	additional	temporal	heterogeneity	in	the	landscape	as	
well	as	the	simulation	of	more	complex	resistance	deployment	strate-
gies,	which	are	likely	to	be	better	approaches	to	deploy	plant	resistance	
(Fabre	et	al.,	2015).	Furthermore,	the	use	of	quantitative	resistance	tar-
geting	different	pathogen	life-	history	traits	possibly	in	combination	with	
a	diversity	of	major	resistance	genes	should	be	investigated	in	the	con-
text	of	spatiotemporal	deployment	strategies	given	its	potential	to	keep	
pathogen	population	maladapted	 (Brown,	2015;	Zhan	et	al.,	2015).	 In	
addition,	disease	control	is	better	achieved	using	a	combination	of	agri-
cultural	practices	(Meynard,	Doré,	&	Lucas,	2002).	In	particular	consid-
ering	pesticide	treatments	in	combination	with	high	diversity	in	genetic	
resistance	will	 provide	additional	 guidance	 for	more	 realistic	manage-
ment	 strategies.	 Lastly,	 the	definition	of	management	 strategies	 for	a	
specific	agricultural	region	has	to	be	based	on	actual	landscape	patterns	
with	 crop	 species	 and	varieties	 allocated	 through	decision	 rules	 inte-
grating	technical	and	socio-	economic	constrains	(Rounsevell	&	Arneth,	
2011).
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