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Abstract. The aim of the present study was to reveal the 
potential molecular mechanisms of microsatellite instability 
(MSI) on the prognosis of gastric cancer (GC). The investiga-
tion was performed based on an RNAseq expression profiling 
dataset downloaded from The Cancer Genome Atlas, including 
64 high‑level MSI (MSI‑H) GC samples, 44 low‑level MSI 
(MSI‑L) GC samples and 187 stable microsatellite (MSI‑S) GC 
samples. Differentially expressed genes (DEGs) were identi-
fied between the MSI‑H, MSI‑L and MSI‑S samples. Pathway 
enrichment analysis was performed for the identified DEGs 
and the pathway deviation scores of the significant enrichment 
pathways were calculated. A Multi‑Layer Perceptron (MLP) 
classifier, based on the different pathways associated with the 
MSI statuses was constructed for predicting the outcome of 
patients with GC, which was validated in another independent 
dataset. A total of 190 DEGs were selected between the MSI‑H, 
MSI‑L and MSI‑S samples. The MLP classifier was estab-
lished based on the deviation scores of 10 significant pathways, 
among which antigen processing and presentation, and inflam-
matory bowel disease pathways were significantly enriched 
with HLA‑DRB5, HLA‑DMA, HLA‑DQA1 and HLA‑DRA; 
the measles, toxoplasmosis and herpes simplex infection path-
ways were significantly enriched with Janus kinase 2 (JAK2), 
caspase‑8 (CASP8) and Fas. The classifier performed well on 
an independent validation set with 100 GC samples. Taken 
together, the results indicated that MSI status may affect GC 

prognosis, partly through the antigen processing and presenta-
tion, inflammatory bowel disease, measles, toxoplasmosis and 
herpes simplex infection pathways. HLA‑DRB5, HLA‑DMA, 
HLA‑DQA1, HLA‑DRA, JAK2, CASP8 and Fas may be 
predictive factors for prognosis in GC.

Introduction

Microsatellite instability (MSI) is a form of genetic hyper‑muta-
bility on account of impairment of DNA mismatch repair (1,2), 
which comprises repeated nucleotides, predominantly GT/CT 
repeats. An increasing number of MSI target genes have been 
reported (3). Increasing studies have confirmed the importance 
of MSI in the pathogenesis of several types of cancer, including 
colon cancer (4,5), gastric cancer (GC) and ovarian cancer (6).

GC is one of the most common types of cancer and is the 
third leading cause of cancer‑associated mortality around the 
world (7). MSI at a high level (MSI‑H), a hallmark of heredi-
tary nonpolyposis colorectal cancer, has been found in GC. 
MSI tends to increase from precancerous lesions to GC (8), 
and the MSI phenotype in early gastric cancer is an important 
precursor lesion of GC (9). It has been reported that MSI‑H has 
different molecular characteristics, compared with MSI at a 
low level (MSI‑L)/stable MSI (MSI‑S); MSI‑H tends to predict 
a better prognosis than MSI‑L/MSI‑S (10). Marrelli et al (11) 
provided evidence that, in patients with intestinal type 
non‑cardia GC, the 5‑year survival rate was significantly higher 
in the MSI‑H group relative to the MSI‑S group, and MSI 
status was a potential predictor of the long‑term outcome of 
patients with intestinal type non‑cardia GC. However, An et al 
observed a different outcome that MSI status did not appear 
to significantly affect the disease‑free survival rate of patients 
with GC receiving 5‑fluorouracil‑based chemotherapy (12). 
Therefore, the association between GC prognosis and MSI 
status remains controversial. In addition, the underlying 
molecular mechanisms remain to be fully elucidated.

In the present study, a series of bioinformatics approaches 
were applied on GC samples with MSI to identify the possible 
genes and pathways involved in the prognosis of patients with 
GC and MSI. The differentially expressed genes  (DEGs) 
were identified between MSI‑H, MSI‑L and MSI‑S samples. 
Subsequently, the associations between the DEGs were analyzed 
using Pearson's correlation analysis for each MSI status, and three 
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gene co‑expression networks were constructed for the MSI‑H, 
MSI‑L and MSI‑S samples, separately. Pathway enrichment 
analysis was performed for the identified DEGs, and pathway 
deviation scores were calculated to select the potential pathways 
associated with the prognosis of patients with GC. Furthermore, 
using the pathway deviation scores of these selected pathways, 
a Multi‑Layer Perceptron (MLP) classifier was constructed for 
the survival prediction of patients with GC, which was then 
tested on an independent validation set of patients with GC. The 
present study aimed to provide further insights into the associa-
tions between MSI status and GC prognosis.

Materials and methods

RNAseq expression data preprocessing. The present study 
involved the secondary examination of an RNAseq expres-
sion profiling dataset downloaded from The Cancer Genome 
Atlas (TCGA; cancergenome.nih.gov/). It included 295 GC 
samples and the corresponding 20,532 genes. These GC 
samples comprised 64 MSI‑H samples, 44 MSI‑L samples and 
187 MSI‑S samples. The clinical information of the patients is 
shown in Table I. The raw data was standardized using z‑score 
normalization (13).

DEG screening. The gene expression values of the MSI‑H, 
MSI‑L and MSI‑S samples were compared by one‑way anal-
ysis of variance function in R 3.2.0 (r‑project.org/) (14) with 
P<0.05 as a strict threshold. The coefficient of variation (CV) 
of each gene was then calculated. The DEGs between the 
MSI‑H, MSI‑L and MSI‑S samples were identified with 
10% CV cut‑off values.

Reverse Phase Protein Array (RPPA) data and analyses. The 
corresponding RPPA data was downloaded from the TCGA 
database (cancergenome.nih.gov/). The samples were classified 
into MSI‑H, MSI‑L and MSI‑S groups as above. The protein 
expression levels were compared using Limma package 3.34.0 
in R3.4.1 (bioconductor.org/packages/release/bioc/html/limma.
html) (15). P<0.05 was set as the threshold.

Correlation analysis and construction of gene co‑expression 
networks. Pearson's Correlation Analysis (16) was performed 
to analyze the associations between DEGs. The co‑expressed 
genes were screened at Pearson's correlation coefficient (R) 
>0.5  or  <0.5. With these co‑expressed genes, three gene 
co‑expression networks were constructed, with the genes 
represented as nodes, and Pearson's correlation coefficients 
between two genes presented as edges between two nodes. 
The degree of a gene was determined as the number of the 
edges possessed by a node. The topological properties of 
the networks were analyzed using Cytoscape software 3.6.0 
(cytoscape.org/) (17).

Hierarchical cluster analysis. Unsupervised hierarchical 
cluster analysis of the DEGs in all samples was performed using 
the R heatmap 2 package in R version 3.2.0 (cran.r‑project.
org/web/packages/gplots/).

Pathway enrichment analysis. In order to elucidate the 
DEG‑associated functional and metabolic pathways, the 

Database for Annotation, Visualization and Integrated 
Discovery (version 83.2; david.ncifcrf.gov/) (18) was utilized to 
perform Kyoto Encyclopedia of Genes and Genomes (KEGG) 
enrichment analysis for the identified DEGs with P<0.05 as a 
strict cut‑off value.

Pathway deviation scores. In order to screen the functional 
pathways showing different expression levels between the 
MSI‑H, MSI‑L and MSI‑S samples, the pathway deviation 
scores of potential KEGG pathways were calculated based on 
the enriched genes in each potential pathway (19):

In the equation, m stands for the number of upregulated genes 
enriched in pathway P; n stands for the number of downregu-
lated genes enriched in pathway P; µ stands for the averaged 
expression value of gene G in all samples. A higher score (P) 
indicates that a pathway is increasingly upregulated, whereas 
a lower score  (P) signals that a pathway is increasingly 
downregulated.

MLP classifier. In order to determine the pathways and 
genes significantly associated with GC prognosis, MLP (20) 
was used to generate a classifier for predicting the outcomes 
of patients with GC. MLP is a feed‑forward artificial neural 
network (ANN). The number of iterations was 1,000. The acti-
vation function used was sigmoid function. The ANNs were 
organized in a number of input nodes showing the deviation 
score of each pathway. The hidden layers contained five and 
three nodes; there was one output node showing the output of 
the network. The backpropagation algorithm (21) was used for 
training the MLP. The patients were divided into two groups; 
in the ‘good outcome’ group, patients had a survival time of 
≥12 months and the final survival status was alive, whereas 
the ‘poor outcome group’ was defined as having survival time 
<12 months and the final survival status as deceased.

Testing of the classifier on an independent validation set. The 
dataset including 100 gastric cancer samples (22) downloaded 
from cBioPortal for Cancer Genomics (cbioportal.org/) was 
used as a validation set. The MLP classifier was tested on this 
validation set. A Receiver Operating Characteristic (ROC) 
curve was drawn using pROC package (version  1.9.1) in 
R 3.2.0 (23‑25) to examine the performance of the classifier.

Results

DEGs. A total of 190 DEGs were screened between the 
MSI‑H, MSI‑L and MSI‑S samples with CV >33.8 or <‑35.1 
and P<0.05 as the thresholds (Fig. 1). Fig. 1A and B revealed 
the distribution and threshold of the P‑value and the CV 
of the genes, respectively. The majority of genes did not 
demonstrate significantly different expression (Fig.  1A) 
in the MSI‑H patients there were an increased number of 
lower expression genes compared with the number of higher 
expressed genes (Fig. 1B). The DEGs account for 2.25% of 
all genes (Fig. 1C). Fig. 1D demonstrated the distribution of 
the DEGs in all genes using a volcano plot. The expression 
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of these DEGs at the protein level was also determined in the 
RPPA dataset. There were 12 genes significantly differentially 
expressed at the protein level when using the cut‑off value of 
P<0.05 (Table II). However, these expression changes require 
further validation in in vitro and in vivo experiments.

Analysis of gene co‑expression networks. The DEGs with R 
>0.5 or <‑0.5 were identified. The top 30 co‑expressed genes 
based on the R values are shown in a heatmap (Fig. 2). As 
shown in Fig. 3, three co‑expression networks were constructed 
for the co‑expressed genes in the MSI‑H, MSI‑L and MSI‑S 
samples, separately. The degree and average shortest path 
length of the three networks were analyzed (Fig. 4A and B) 
and genes tended to have higher degrees and longer average 
shortest path lengths in the MSI‑H samples, compared with 
those in the MSI‑L and MSI‑S samples. This indicated that 
the correlations between DEGs were weaker in the MSI‑H 
samples, compared with those in the MSI‑L and MSI‑S 
samples.

Unsupervised hierarchical cluster analysis of DEGs. The 
unsupervised hierarchical cluster analysis of the DEGs showed 
that the expression levels of DEGs were significantly different 

between GC patients in the good outcome group and patients 
in the poor outcome group (Fig. 5).

Figure 1. DEG screening. (A) P‑value distribution. The black vertical line represents the threshold of P=0.05 [‑log (0.05)=1.3]. (B) CV distribution. Two black 
vertical lines represents 10% CV and 90% CV, respectively (‑35.1, 33.8). (C) Ratio of DEGs in all genes. (D) DEG distribution; green points represent DEGs 
and grey points represent other genes. DEGs, differentially expressed genes; CV, coefficient of variation.

Table I. Demographic and clinical information of the training set and validation set.

Dataset	 Age (years)	 Sex (M/F)	 MSS/MSI‑L/MSI‑H	 Survival status	 OS (months)

Training	 65±5	 182/113	 187/44/64	 230 alive/57 deceased	 12.7±13.4
Validation	 67±6	 61/39	 90a/10	 NA	 10.1±12.6

aMSS+MSIL; NA, survival times were unavailable; M, male; F, female; MSI, microsatellite instability; MSI‑L, low‑level MSI; MSI‑H, high‑level 
MSI; MSS, stable MSI; OS, overall survival.

Table II. Significantly differentially expressed genes at the 
protein level.

Gene	 P‑value

TLDC1	 0.0001
CRABP2	 0.0019
C1ORF116	 0.0075
C6ORF132	 0.0121
CAPNS2	 0.0213
HSD3B2	 0.0272
GPR157	 0.0290
HEPN1	 0.0306
KLK12	 0.0315
HOXB2	 0.0329
FOXI2	 0.0371
C12ORF54	 0.0479
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Survival analysis of patients in the training set. As shown 
in Table III, 25 of the 36 MSI‑L samples and 47 of the 168 
MSI‑S samples had a poor prognosis, with no significant differ-
ence in prognosis. By contrast, only 2/59 MSI‑H samples had 
a poor prognosis (Table III). There was a significant difference 
in prognosis between the MSI‑H and MSI‑L/MSI‑S samples.

Taking into account the similarity between the patients 
with MSI‑L and MSI‑S in prognosis and characteristics of 
the gene co‑expression networks, these two groups of patients 
were combined as a single group in subsequent analysis.

Pathway functional annotation. KEGG pathway enrichment 
analysis was performed for the DEGs. As shown in Table IV, 
these DEGs were significantly enriched in pathways, including 
herpes simplex infection, intestinal immune network for IgA 
production pathway, leishmaniasis, antigen processing and 
presentation, and measles.

The pathway deviation scores of the significant enrichment 
pathways were calculated in order to investigate functional 
differences in the pathways between the different samples. 
The measles pathway (Fig.  6A and  B) and leishmaniasis 
pathway  (Fig.  7A and  B) were upregulated in the MSI‑L 
samples and downregulated in the MSI‑H samples, compared 
with those in the MSI‑S samples. In addition, the deviation 
score of the leishmaniasis pathway was higher in the good 
prognosis samples, compared with that in the poor prognosis 
samples (Fig. 7B).

In order to detecting the potential pathways significantly 
associated with the prognosis of patients with GC, 10 pathways 

with significantly different pathway deviation scores between 
the MSI‑H and MSI‑S/MSI‑L samples (P<0.05), and between 
the good outcome and poor outcome samples (P<0.05) were 
selected from the 20 significant enrichment pathways (Table V), 
including measles, antigen processing and presentation, rheu-
matoid arthritis, phagosome, systemic lupus erythematosus, 
herpes simplex infection, inflammatory bowel disease, tuber-
culosis, type I diabetes mellitus, and toxoplasmosis.

MLP classifier construction. An MLP classifier was constructed 
with pathway deviation score input for predicting the prognosis 
of patients with GC (Fig. 8). In addition, the ROC curve method 

Figure 2. Heatmap of top 30 co‑expressed genes. Genes are shown on the horizontal and vertical axes. The red lattice represents a positive correlation, the blue 
lattice represents a negative correlation. The color bar indicates the R value.

Table III. Outcome of patients in the training set.

	 Prognosis
	 ‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑‑
MSI	 Good (n)	 Poor (n)

MSI‑H	 57	 2
MSI‑L	 11	 25
MSS	 121	 47

Good indicates patient survival at 12 months following diagnosis. 
Poor indicates patient succumbed to mortality 12 months following 
diagnosis. MSI, microsatellite instability; MSI‑L, low‑level MSI; 
MSI‑H, high‑level MSI; MSS, stable MSI.
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Figure 3. Gene co‑expression networks of gastric cancer samples of different MSI status. (A) MSI‑S samples; (B) MSI‑L samples.
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was used to assess the performance of the MLP classifier, 
compared with logistic regression (LR). As shown in Fig. 9A, 
the area under the curve (AUC) of the MLP classifier and LOR 
was 0.85 and 0.73, respectively, indicating that the performance 
of the classifier was superior to that of LOR in predicting the 
outcome of patients with GC.

The MLP classifier was further validated on an independent 
validation set of 100 GC samples. The clinical information of 
the 100 samples is shown in Table I. As shown in Fig. 9B, the 
MLP classifier had an elevated AUC value, compared with that 
in the LR model (0.81 vs. 0.73). This confirmed the superior 
performance of the MLP model, compared with the LOR model.

Survival analysis of the independent validation set. Using 
the survival durations of the samples, the 100 GC samples 
of the independent validation set were classified into good 
prognosis (survival ≥12 months) and poor prognosis (survival 
<12 months) groups using the MLP classifier. As shown in 
Fig. 10, the survival rate of patients was higher in the good 
outcome group, compared with that in the poor outcome group 
(P=0.0279). This finding confirmed the performance of the 
MLP classifier in predicting GC prognosis.

Discussion

GC is one of the most frequent malignancies. It has been reported 
that MSI‑H GC samples exhibit clinical and molecular features 

distinct from MSI‑S GC samples (26,27). The present study found 
that, in the training set, 74 of 295 patients with GC had a poor 
prognosis. Of these 74 patients, only two patients were of MSI‑H 
status, whereas the other 72 patients were of MSI‑S/MSI‑L 
status, which was in accordance with a previous finding that 
MSI‑H GC tended to have improved overall survival rates, 
compared with MSI‑S GC (11).

An MLP classifier, based on the pathway deviation score 
of 10 significant pathways, was constructed in the present 
study, which predicted the outcome of patients with GC with 
proficiency. The performance of the MLP classifier was veri-
fied on an independent validation set of 100 GC samples. The 
pathway deviation score of each pathway was significantly 
different between the MSI‑H and MSI‑S/MSI‑L samples, 
and between the good prognosis and poor prognosis samples. 
These findings confirmed that MSI status was associated with 
the survival rate of patients with GC. In addition, the effect 
of MSI status on GC prognosis may be partly mediated by 
10 significant pathways, comprising the measles, antigen 
processing and presentation, rheumatoid arthritis, phagosome, 
systemic lupus erythematosus, herpes simplex infection, 
inflammatory bowel disease, tuberculosis, type I diabetes 
mellitus, and toxoplasmosis pathways.

An increasing number of studies have established the 
integral role of inflammation and immune in the development 
of GC (28‑30). Nissen et al found that inflammatory bowel 
disease was a risk factor for the development of GC  (31). 

Figure 3. Continued. (C) MSI‑H samples. Red rectangles represent upregulated genes, green rectangles represent downregulated genes. MSI, microsatellite 
instability; MSI‑S, stable MSI; MSI‑L, low‑level MSI; MSI‑H, high‑level MSI.
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Consistent with these findings, the present study found that 
the inflammation‑ and immune‑related antigen processing 

and presentation, and inflammatory bowel disease pathways 
were associated with the MSI status and the prognosis of 

Figure 5. Heatmap of unsupervised hierarchical cluster analysis of DEGs. Samples are on the vertical axis; genes are on the horizontal axis. Among samples on 
the vertical axis, the samples with a good outcome are in green, and the samples with a poor outcome are in red. In the heatmap, upregulated genes are shown 
in red and downregulated genes are shown in green.

Figure 4. Topological properties of 3 gene co‑expressed networks. (A) Degree of genes in the three networks; (B) Average shortest path length of the three 
networks. MSI, microsatellite instability; MSS, stable MSI; MSI‑L, low‑level MSI; MSI‑H, high‑level MSI.
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patients with GC. Furthermore, these two pathways were 
significantly enriched with major histocompatibility complex 
(MHC), class II, DRβ5 (HLA‑DRB5), MHC class II, DMα 
(HLA‑DMA), MHC class II, DQα1 (HLA‑DQA1), and MHC 
class II, DRα (HLA‑DRA), which encode important MHC 
class II molecules on antigen‑presenting cells. Ribeiro et al 

found that the expression of MHC class I‑related chains A and 
B in tumors may be involved in the progression of GC and be 
of predictive value for prognosis in GC with large tumors (32). 
This suggested that HLA‑DRB5, HLA‑DMA, HLA‑DQA1 
and HLA‑DRA may be of predictive value for survival rates 
of patients with GC.

Table IV. Significant pathways enriched with differentially expressed genes.

Term	 Count	 P‑value	 Genes

Graft‑vs.‑host disease	 8	 2.52E‑08	CD 86, CD80, HLA‑DRB5, FAS, HLA‑E, HLA‑DMA,
			   HLA‑DQA1, HLA‑DRA
Allograft rejection	 8	 5.89E‑08	CD 86, CD80, HLA‑DRB5, FAS, HLA‑E, HLA‑DMA, 
			   HLA‑DQA1, HLA‑DRA
Type I diabetes mellitus	 8	 1.48E‑07	CD 86, CD80, HLA‑DRB5, FAS, HLA‑E, HLA‑DMA, 
			   HLA‑DQA1, HLA‑DRA
Autoimmune thyroid disease	 8	 6.80E‑07	CD 86, CD80, HLA‑DRB5, FAS, HLA‑E, HLA‑DMA, 
			   HLA‑DQA1, HLA‑DRA
Viral myocarditis	 8	 1.29E‑06	 CD86, CD80, CASP8, HLA‑DRB5, HLA‑E, HLA‑DMA, 
			   HLA‑DQA1, HLA‑DRA
Herpes simplex infection	 12	 1.59E‑06	 DDX58, HMGN1, IFIH1, GTF2IRD1, CASP8, HLA‑DRB5,
			   JAK2, FAS, HLA‑E, HLA‑DMA, HLA‑DQA1, HLA‑DRA
Tuberculosis	 10	 5.85E‑05	 FCGR1A, CASP8, HLA‑DRB5, FCER1G, ATP6V1H, 
			   JAK2, CLEC7A, HLA‑DMA, HLA‑DQA1, HLA‑DRA
Cell adhesion molecules 	 9	 7.58E‑05	C LDN16, CD86, CD80, HLA‑DRB5, L1CAM, HLA‑E, 
			   HLA‑DMA, HLA‑DQA1, HLA‑DRA
Intestinal immune network for IgA	 6	 9.50E‑05	 CD86, CD80, HLA‑DRB5, HLA‑DMA, HLA‑DQA1, 
production			   HLA‑DRA
Phagosome	 9	 1.28E‑04	 FCGR1A, HLA‑DRB5, ITGB5, ATP6V1H, CLEC7A, 
			   HLA‑E, HLA‑DMA, HLA‑DQA1, HLA‑DRA
Asthma	 5	 2.05E‑04	 HLA‑DRB5, FCER1G, HLA‑DMA, HLA‑DQA1, HLA‑DRA
Rheumatoid arthritis	 7	 2.26E‑04	 CD86, CD80, HLA‑DRB5, ATP6V1H, HLA‑DMA, 
			   HLA‑DQA1, HLA‑DRA
Influenza A	 9	 3.11E‑04	 DDX58, IFIH1, HLA‑DRB5, JAK2, CPSF4, FAS, HLA‑DMA,
			   HLA‑DQA1, HLA‑DRA
Systemic lupus erythematosus	 8	 3.50E‑04	 HIST1H2AC, CD86, CD80, FCGR1A, HLA‑DRB5, 
			   HLA‑DMA, HLA‑DQA1, HLA‑DRA
Leishmaniasis	 6	 6.70E‑04	 FCGR1A, HLA‑DRB5, JAK2, HLA‑DMA, HLA‑DQA1, 
			   HLA‑DRA
Antigen processing and presentation	 6	 9.15E‑04	 KLRC4, HLA‑DRB5, HLA‑E, HLA‑DMA, HLA‑DQA1, 
			   HLA‑DRA
Toxoplasmosis	 7	 1.09E‑03	 CASP8, HLA‑DRB5, JAK2, BIRC3, HLA‑DMA, HLA‑DQA1,
			   HLA‑DRA
Staphylococcus aureus infection	 5	 1.98E‑03	 FCGR1A, HLA‑DRB5, HLA‑DMA, HLA‑DQA1, HLA‑DRA
Inflammatory bowel disease	 5	 3.69E‑03	 IL18RAP, HLA‑DRB5, HLA‑DMA, HLA‑DQA1, HLA‑DRA
HTLV‑I infection	 7	 4.18E‑02	 IL2RB, HLA‑DRB5, HLA‑E, HLA‑DMA, HLA‑DQA1, 
			   HLA‑DRA, APC
Measles	 5	 4.34E‑02	 DDX58, IL2RB, IFIH1, JAK2, FAS

Term, pathway identity; count, number of genes enriched in a pathway.
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Janus kinase 2 (JAK2), a member of the JAK family, is 
a non‑receptor tyrosine kinase. Judd et al provided in vitro 
and in vivo evidence that GC cell growth was compromised 
by suppressing the JAK2/signal transducer and activator 
of transcription 3 pathway  (33). It has been reported that 
the overexpression of JAK2 promotes GC cell migration 
and invasion  (34). The caspase‑8 (CASP8) gene encodes 
caspase‑8 protein, which is critical in the execution‑phase of 
cell apoptosis. Tumor necrosis factor receptor superfamily 
member  6 (Fas), known as apoptosis antigen‑1, interacts 

with its natural ligand (FasL), leading to apoptosis in respon-
sive cells  (35). It has been demonstrated that CASP8 gene 
mutation may be involved in the pathogenesis of GC (36). 
Yang et al  (37) reported that Fas signaling facilitated GC 
metastasis. Wang et al (38) found that the expression of Fas 
was downregulated in GC, and that CASP8 was associated 
with outcome in patients with GC. These findings suggest 
that JAK2, CASP8 and Fas are involved in the pathogenesis 
of GC. In the present study, JAK2 was significantly enriched 
in the measles, toxoplasmosis, and herpes simplex infection 

Figure 7. Pathway deviation score of leishmaniasis pathway. (A) Pathway deviation score of leishmaniasis pathway in MSI‑H, MSI‑L and MSS samples; 
(B) pathway deviation score of leishmaniasis pathway in good outcome samples and poor outcome samples. MSI, microsatellite instability; MSI‑L, low‑level 
MSI; MSI‑H, high‑level MSI; MSIS, stable MSI.

Figure 6. Pathway deviation score of measles pathway. (A) Pathway deviation score of measles pathway in MSI‑H, MSI‑L and MSS samples; (B) pathway devia-
tion score of measles pathway in good outcome samples and poor outcome samples. MSI, microsatellite instability; MSI‑L, low‑level MSI; MSI‑H, high‑level 
MSI; MSS, stable MSI.
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pathways. CASP8 and FAS were significantly enriched in 
the measles and toxoplasmosis pathways. This indicated that 
JAK2, CASP8 and Fas may be associated with GC prognosis 
mediated by MSI status.

The MLP classifier is based on the minimization of the 
number of misclassified vectors of a training set (empirical 
risk), whereas the support vector machine (SVM) minimizes 
a functional sum of the empirical risk and controls the ability 

Figure 8. Multi‑Layer Perceptron neural network. A black edge linking any two neural nodes (circles) represents the correlation between the two nodes, with 
the bias term indicated by the black number. Blue edges and numbers represent the weight value of the correlation between any two neural nodes.

Table V. Analysis of pathway deviation scores.

Pathway	 P‑value prognosis	 P‑value MSS

Measles	 2.03E‑29	 3.32E‑03
Antigen processing and presentation	 7.42E‑19	 4.80E‑02
Rheumatoid arthritis	 1.70E‑13	 1.25E‑03
Phagosome	 5.84E‑12	 2.48E‑02
Systemic lupus erythematosus	 1.31E‑11	 6.02E‑03
Herpes simplex infection	 1.18E‑06	 1.67E‑02
Inflammatory bowel disease 	 1.14E‑05	 4.63E‑02
Tuberculosis	 3.57E‑04	 3.98E‑04
Type I diabetes mellitus	 1.28E‑03	 7.13E‑03
Toxoplasmosis	 1.64E‑03	 4.82E‑03
Cell adhesion molecules 	 7.99E‑03	 9.63E‑02
Viral myocarditis	 1.11E‑02	 9.75E‑03
Asthma	 1.21E‑02	 2.01E‑02
HTLV I infection	 4.21E‑02	 3.54E‑02
Autoimmune thyroid disease	 8.06E‑02	 7.13E‑03
Allograft rejection	 8.86E‑02	 7.13E‑03
Staphylococcus aureus infection	 1.50E‑01	 4.63E‑02
Graft versus host disease	 2.26E‑01	 7.13E‑03
Leishmaniasis	 2.52E‑01	 1.03E‑02
Influenza A	 2.99E‑01	 1.79E‑02
Intestinal immune network for IgA production	 3.91E‑01	 7.66E‑03

MSS, microsatellite stability.
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of the machine to learn any training set without error (39). 
The comparison between MLP and SVM has been reported 
previously, and there is debate regarding the effect and choice 
of these two classifiers. However, one thing is certain for the 
two classifiers, that is, the performance of the SVM classifier 
is better when the sample size is smaller, whereas the MLP 
classifier performance is better when the sample size is larger. 
In the present study, the sample size was relatively large, and 
this is the reason why the MLP method was used in the present 
study. The results were satisfactory and achieved the aim of 
the study; the MLP classifier performed well in predicting the 
prognosis of patients with GC.

The present study has several limitations. It is a secondary 
study of an RNA‑seq expression profiling dataset, and lacks 
experimental evidence to validate these findings. Additionally, 
the sample size of the independent validation set was limited 
by the number of available datasets.

In conclusion, the results of the present study suggested 
that MSI status may affect GC prognosis, partly through 
the antigen processing and presentation, inflammatory 
bowel disease, measles, toxoplasmosis, and herpes simplex 

infection pathways. In addition, HLA‑DRB5, HLA‑DMA, 
HLA‑DQA1, HLA‑DRA, JAK2, CASP8 and Fas may be 
recommended as potential predictive factors of prognosis in 
GC. These results contribute to an improved understanding 
of the association between MSI status and GC prognosis, 
and the underlying molecular mechanisms. Further 
experimental investigations are warranted to verify these 
findings.
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Figure 9. ROC curve of the MLP classifier. (A) Curve for training set; (B) curve for validation set. The vertical axis represents sensitivity and the horizontal 
axis represents specificity. ROC, Receiver Operating Characteristic; MLP, Multi‑Layer Perceptron; AUC, area under the curve; LR, logistic regression.

Figure 10. Survival analysis of patients using the log‑rank test in the valida-
tion set. The vertical axis represents ratio of patient survival; the horizontal 
axis represents the survival time.
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