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Objectives. Empirical analyses in health services research and health economics
often require implementation of nonlinear models whose regressors include one or
more endogenous variables—regressors that are correlated with the unobserved ran-
dom component of the model. In such cases, implementation of conventional regres-
sion methods that ignore endogeneity will likely produce results that are biased and
not causally interpretable. Terza et al. (2008) discuss a relatively simple estimation
method that avoids endogeneity bias and is applicable in a wide variety of nonlinear
regression contexts. They call this method two-stage residual inclusion (2SRI). In the
present paper, I offer a 2SRI how-to guide for practitioners and a step-by-step protocol
that can be implemented with any of the popular statistical or econometric software
packages.
Study Design. We introduce the protocol and its Stata implementation in the context
of a real data example. Implementation of 2SRI for a very broad class of nonlinear
models is then discussed. Additional examples are given.
Empirical Application. We analyze cigarette smoking as a determinant of infant
birthweight using data fromMullahy (1997).
Conclusion. It is hoped that the discussion will serve as a practical guide to implemen-
tation of the 2SRI protocol for applied researchers.
Key Words. Endogeneity, instrumental variables, causal interpretability,
estimation protocol, computer implementation

Empirical analyses in health services research and health economics often
require implementation of nonlinear models whose regressors include one or
more endogenous variables—regressors that are correlated with the unobserved
random components of the model. Failure to account for such correlation
leads to biased estimation results that are not causally interpretable. Terza,
Basu, and Rathouz (2008) discuss a relatively simple estimation method that
avoids endogeneity bias and is applicable in a wide variety of nonlinear regres-
sion contexts. They call this method two-stage residual inclusion (2SRI). This
study focuses on the practical aspects of 2SRI implementation.
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The discussion begins with an example, by way of reviewing the 2SRI
protocol. We revisit Mullahy’s (1997) model of prenatal smoking and infant
birthweight. He estimated the model using the generalizedmethod of moments
(GMM); we re-estimate the model with 2SRI implemented in Stata/Mata 14.
In this example, both stages of the model are specified as exponential regres-
sions in keeping with the non-negativity of the outcome (Y � birthweight) and
the endogenous variable (Xe� cigarette smoking by the mother). We show that
the 2SRI protocol can be easily implemented using packaged Stata commands.
We also outline how asymptotically correct standard errors (ACSE) for the
2SRI parameter estimates can be calculated. Analytic details and requisite Stata
code for the ACSE are detailed in Appendix SA1. We extend the discussion to
a very general version 2SRI framework. In this context, as in the birthweight
example, we note that the 2SRI protocol can be easily applied via packaged
Stata commands that implement either nonlinear least squares (NLS) or maxi-
mum-likelihood (ML) methods. In particular, the discussion makes clear that
NLS orML can be used in any combination in the first and second stages of the
2SRI estimator. We also discuss the formulation and calculation of ACSE for
the general 2SRI estimator. Details are given in Appendix SA2 along with a
heuristic for practical implementation of the 2SRI estimation protocol in the
general case. Examples of applications of the general 2SRI protocol are also
provided therein. Corresponding Stata code for these examples are given in
Appendices SA3–SA6. The final section summarizes and concludes.

TWO-STAGE RESIDUAL INCLUSION BY EXAMPLE

Consider the regression model of Mullahy (1997) in which the objective is to
draw causal inferences regarding the effect of prenatal smoking (Xe) on infant
birthweight (Y) while controlling for infant birth order (PARITY), race
(WHITE), and sex (MALE). The regression model for the birthweight out-
come that he proposed can be written as1

Y ¼ expðX ebe þ Xobo þ XubuÞ þ e ð1Þ
where Xu is a scalar representing unobservable variables that are potentially
correlated with prenatal smoking (e.g., general “health mindedness” of the
mother), e is the regression error term, Xo = [PARITY WHITE MALE] is a
row vector of regressors that are uncorrelated with Xu, and e, and the bs are the
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regression parameters.2 At issue here is the fact that there exist unobservables
(as captured by Xu) that are correlated with both Yand Xe . In other words, Xe is
endogenous. Such endogeneity confounds the identification and estimation of
the possible causal effect of prenatal smoking (or any of the other regressors in
the model for that matter). If, for instance, the presence of Xu is ignored in
applying a conventional regression method to (1), then the estimates of be and
bo will likely be biased because they will be picking up effects that should
instead be attributed to Xu. Terza, Basu, and Rathouz (2008) discuss a method,
which they call two-stage residual inclusion (2SRI), designed to correct for
such endogeneity bias. They show that for a very broad class of nonlinear
regression models [which subsumes (1) as a special case], 2SRI produces unbi-
ased (consistent) parameter estimates. To apply 2SRI to (1), one must first
specify an auxiliary regression model of the following form

Xe ¼ expðW aÞ þ Xu ð2Þ
where a is a column vector of regression parameters, W = [Xo W

+] andW + =
[EDFATHER EDMOTHER FAMINCOMCIGTAX] with

EDFATHER = paternal schooling in years
EDMOTHER =maternal schooling in years
FAMINCOME = family income
and
CIGTAX = cigarette tax.

Equation (2) formalizes the correlation between Xu and Xe—the essence
of the endogeneity problem. The variables inW+ are the identifying instrumen-
tal variables which, by definition, must satisfy the following three conditions:
(1) they are correlated with neither Xu nor e; (2) they can be legitimately
excluded from the outcome regression (1); and (3) they are strongly corre-
lated with Xe. Under these assumptions, the relevant version of the 2SRI esti-
mation protocol is as follows:

First Stage

To get a consistent estimate of a, apply NLS to (2). This can be accomplished
with one line of computer code via the Stata “glm” command.3 The residuals
from this regression are

X̂ u ¼ Xe � expðW âÞ ð3Þ
where â denotes the first-stage consistent estimate of a. The residuals (3) can
be saved using the Stata “predict” postestimation command.4
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Second Stage

To obtain a consistent estimate of b0 ¼ ½be b0o bu�, apply NLS to (1) with Xu

replaced by X̂ u. This too can be accomplished with just one line of computer
code via the Stata “glm” command.5

As is made clear by the present example, consistent estimation of the
model parameters via the 2SRI method is very easy. The correct standard
errors of the estimates (for use in confidence interval estimation and hypothe-
sis testing) cannot, however, be obtained as direct regression outputs from a
statistical package. Nonetheless, because the more popular computer pack-
ages offer matrix programming capability, calculating the correct standard
errors typically requires only a modicum of additional coding.6 There are
three possible approaches to calculation of the corrected standard errors: (1)
bootstrapping; (2) the resampling method proposed by Krinsky and Robb
(1986, 1990) [KR]; and (3) ACSE derived from standard asymptotic theory.
For detailed discussions, and pro/con evaluations, of the bootstrapping and
KR methods, see Dowd, Greene, and Norton (2014).7 In Appendix SA1, we
show how the relatively simple general ACSE formulations suggested by
Terza (2016b) can be implemented in Stata for the present example. In this
illustration, the ACSE for the kth element of b̂ is the square root of the kth
diagonal element of the following matrix

B1
�1 B2 V ðâÞ B 0

2 B1
�1 þ V ðb̂Þ ð4Þ

where â and b̂0 ¼ ½b̂e b̂0o b̂u� are the first- and second-stage 2SRI estimates;
V ðâÞ and V ðb̂Þ are the estimated variance–covariance matrices of the first-
and second-stage 2SRI estimators of a and b, respectively, as output by Stata;
and B1 and B2 are matrices that are functions of the observable data and the
estimated parameters.8 V ðâÞ and V ðb̂Þ are routinely saved by Stata; B1 and B2

are not. Stata coding for the latter must be user supplied. In Appendix SA1,
we detail the formulations of B1 and B2 for the present example and give the
corresponding requisite Stata code. Confidence interval estimates and hypoth-
esis tests for the kth element of b can be based on the following asymptotic “t-
statistic”

b̂ðkÞ � bðkÞffiffiffiffiffiffiffiffiffiffiffi
D̂ðkÞ

q ð5Þ

where b̂ðkÞ [b(k)] denotes the kth element of b̂ [b] and D̂ðkÞ denotes the kth
diagonal element of (4).
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I applied the 2SRI estimation protocol to the same dataset analyzed by
Mullahy (1997) and obtained the estimates of a and b reported in Tables 1 and
2, respectively. The correct asymptotic t-statistics for the 2SRI estimate of b,
reported in column 2 of Table 2, were calculated using (4) and (5). In Table 2,
we also display Mullahy’s GMM estimates and, as a baseline, we report the
conventional NLS estimates that ignore potential endogeneity. As an indicator
of the strength of the instrumental variables (i.e., the elements ofW+), we con-
ducted a Wald test of their joint significance. The value of the chi-square test
statistic is 49.33 so that the null hypothesis that their coefficients are jointly
zero is roundly rejected at any reasonable level of significance. The second-
stage 2SRI estimates shown in Table 2 (column 1) are virtually identical to
Mullahy’s GMM estimates (column 4), but the former, unlike the latter, pro-
vide a direct test of the endogeneity of the prenatal smoking variable via the
asymptotic t-stat (5) for the coefficient of Xu [ b̂u ¼ b̂ð5Þ] withH0:bu = b(5) = 0.
According to the results of this test, the exogeneity null hypothesis is rejected
at nearly the 1% significance level. To obtain a sense of the bias from neglect-
ing to take account of the two-stage nature of the estimator in the calculation
of the asymptotic standard errors, in Table 2 (last column), we also display the
“packaged” second-stage glm t-stats as reported in the Stata output. The mean
absolute bias across these uncorrected asymptotic t-stats for the four control
variables and Xu is nearly 9 percent.

THE GENERAL 2SRI FRAMEWORK

The framework underlying the above example generalizes to a very
broad class of nonlinear models. The general forms of the outcome and

Table 1: 2SRI First-Stage Estimates

Variable Estimate Asymp. t-stat

PARITY 0.04 1.14
WHITE 0.28 0.86
MALE 0.15 �1.84
EDFATHER �0.03 �3.34
EDMOTHER �0.10 �2.65
FAMINCOM �0.02 1.44
CIGTAX 0.02 5.60
Constant 2.04 0.56

n = 1,388.
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auxiliary regressions exemplified in (1) and (2), respectively, can be
defined based on minimal parametric (MP) regression structure [as in
(1) and (2)] or they can be derived from more fully parametric (FP)
assumptions. In the 2SRI framework, one can specify the outcome
model [exemplified in (1)] as either:

Y ¼ lðXe ;Xo;X u;bÞ þ e ½minimally parametric (MP) specification� ð6Þ
or f ðY jXe ;Xo;X u; bÞ ½fully parametric (FP) specification� ð7Þ
where l(Xe , Xo , Xu; b) denotes the conditional mean of Y given Xe , Xo , and
Xu; b is a vector of parameters; and f (Y | Xe , Xo , Xu; b) is the conditional
probability density function of Y given Xe , Xo , and Xu. Similarly, for the auxil-
iary regression, one can posit either:

Xe ¼ rðW ; aÞþX u ½MP specification� ð8Þ
or g ðX e jW ; aÞ ½FP specification� ð9Þ

where r(W; a) denotes the conditional mean of Xe given W and g(Xe | W; a)
is conditional probability density function of Xe given W. Equation (8) [or (9)]
formalizes the correlation between Xu and Xe which, as we saw in the above
example, lies at the heart of the endogeneity problem. In the example dis-
cussed in the previous section, both the outcome and the auxiliary regression
specifications wereMP. Specifically, we had

lðXe ;Xo;Xu; bÞ ¼ expðX ebe þ Xobo þ XubuÞ ð10Þ

rðW ; aÞ¼ expðW aÞ: ð11Þ

Table 2: 2SRI Second Stage, GMM, and NLS Estimates

Variable

2SRI GMM NLS

Estimate
Correct

Asymp. t-stat
Uncorrected
Asymp. t-stat Estimate

Asymp.
t-stat Estimate

Asymp.
t-stat

CIGS �0.01 �3.68 �4.08 �0.01 �3.46 0.00 �5.62
PARITY 0.02 3.18 3.41 0.02 3.33 0.01 2.99
WHITE 0.05 4.22 4.55 0.05 4.44 0.06 4.75
MALE 0.03 3.13 3.35 0.03 2.95 0.03 2.90
Xu 0.01 2.56 2.83 – – – –
Constant 1.95 117.64 123.74 1.94 121.71 1.93 133.70

n = 1,388.
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The general 2SRI protocol is as follows:

First Stage

Apply the appropriate NLS [or maximum-likelihood (ML)] estimator to (8)
[or (9)] to obtain a consistent estimate of a.9 This can usually be accomplished
with one line of computer code in Stata. The residuals from this regression are

X̂u ¼ Xe � rðW ; âÞ ð12Þ
where â denotes the first-stage consistent estimate of a. Note that the FP speci-
fication in (9) will always imply the existence of a regression specification akin
to (8) from which residuals, as defined in (12), can be obtained. To complete
the 2SRI first stage, save the residuals (12) using the appropriate Stata postesti-
mation command.

Second Stage

To obtain a consistent estimate of b, apply the appropriate NLS [ML]
estimator to (6) [(7)] with Xu replaced by X̂u.10 This too can typically be accom-
plished with just one line of Stata code.11

Note that one can use any combination of MP/FP specifications for the
first and second stages of the 2SRI estimator.

Here, as in the birthweight example, the second-stage standard errors as
output by Stata are incorrect. As Terza (2016b) shows, the exact form of the
ACSE depends on the estimation method used in the second stage of 2SRI—
NLS vs. MLE. When NLS is used in the 2SRI second stage, the ACSE will be
the square roots of the diagonal elements of an estimated variance–covariance
matrix with a formulation akin to that of (4). On the other hand, if MLE is used
in the second stage, the ACSE for the kth element of b̂ is the square root of the
kth diagonal element of a matrix of the following form

V ðb̂ÞAV ðâÞA0V ðb̂Þ þ V ðb̂Þ ð13Þ
where A is a matrix that is formulated exclusively in terms of the observable
data and the estimated parameters. As was the case for (4), V ðâÞ and V ðb̂Þ are
routine Stata postestimation outputs but the formulation of A, and its coding
in Stata, must be user supplied. In Appendix SA2, we offer a heuristic for prac-
tical implementation of the 2SRI estimation protocol in the general case, com-
plete with details on deriving and coding B1 and B2 (A) for MP (FP) outcome
models for which the second-stage 2SRI estimator is NLS (ML).
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SUMMARYAND DISCUSSION

We discuss practical aspects of the 2SRI method for consistent estimation of
nonlinear models with endogenous regressors and illustrate its application in
Stata for the case in which bothXe andYare non-negative. The implementation
of the 2SRI protocol is detailed in the context of this illustration and general-
ized to a very broad class of nonlinear applications. Details of the relevant
mathematics and computer coding are given in the supplementary appendices.
Therein, we also detail Stata/Mata applications of the protocol for four addi-
tional oft encounteredmodel configurations involving binary and/or fractional
Xe and Y. It is hoped that these additional examples will serve to demonstrate
the ease with which the protocol can be extended to models involving other
variable type configurations not explicitly covered here. In particular, the class
of nonnegative-dependent variables encompasses important subtypes, for
example, count variables, continuous variables whose support includes 0 (e.g.,
two-part models), and continuous variables for which 0 is excluded.
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NOTES

1. Mullahy does not explicitly specify the model in terms of the unobservable Xu.
Nevertheless, (1) is substantively the same asMullahy’s model (see Terza [2006]).

2. When a is a row vector and b is a column vector, ab denotes their vector (or dot)
product. For example, Xobo denotes the dot product of Xo and the column vector of
corresponding coefficient parameters for its elements, bo.

3. See Appendix SA1.
4. See Appendix SA1.
5. See Appendix SA1.
6. “Mata” is the matrix programming option in Stata.
7. Dowd, Greene, and Norton (2014) also discuss the ASCE approach, but the formu-

lation they offer (in particular, equation (18)) is based on an assumption that is sel-
dom valid in empirical HSR. See Terza (2016a) for details.
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8. C -1 and F0 denote the matrix inverse of the square matrix C and matrix transpose
of the rectangular matrix F, respectively.

9. The first-stage ML estimator is the maximizer of
Pn
i¼1

ln½gðXei jWi ; aÞ�with respect to

a where Xei andWi denote the observed values of Xe andW for the ith observation

in the sample; and i = 1, . . ., n.
10. The second-stage ML estimator is the maximizer of

Pn
i¼1

ln½f ðYi j Xei ; Xoi ; X̂ui ; bÞ�
with respect to b where Yi and Xoi denote the observed values of Y and Xo for the

ith observation in the sample; and X̂ui is the first-stage residual for the ith observa-

tion in the sample.
11. See Appendix SA2 for generic computer code for this general 2SRI protocol. A

variety of examples are also detailed therein.
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SUPPORTING INFORMATION

Additional supporting information may be found online in the supporting
information tab for this article:

Appendix SA1: Analytic and Stata Coding Details for Mullahy Birth-
weight Example.
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Appendix SA2: Analytic and Stata Coding Details for the General 2SRI
Framework.

Appendix SA3: Stata/Mata Code for Example in Section B.1 of
Appendix SA2.

Appendix SA4: Stata/Mata Code for Example in Section B.2 of
Appendix SA2.

Appendix SA5: Stata/Mata Code for Example in Section B.3 of
Appendix SA2.

Appendix SA6: Stata/Mata Code for Example in Section B.4 of
Appendix SA2.
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