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Objective. To identify the most appropriate imputation method for missing data in
the HCUP State Inpatient Databases (SID) and assess the impact of different missing
data methods on racial disparities research.
Data Sources/Study Setting. HCUP SID.
StudyDesign. Anovel simulation study compared four imputationmethods (random
draw, hot deck, joint multiple imputation [MI], conditional MI) for missing values for
multiple variables, including race, gender, admission source, median household
income, and total charges. The simulation was built on real data from the SID to retain
their hierarchical data structures andmissing data patterns. Additional predictive infor-
mation from the U.S. Census and American Hospital Association (AHA) database was
incorporated into the imputation.
Principal Findings. Conditional MI prediction was equivalent or superior to the best
performing alternatives for all missing data structures and substantially outperformed
each of the alternatives in various scenarios.
Conclusions. Conditional MI substantially improved statistical inferences for racial
health disparities research with the SID.
Key Words. Missing data, multiple imputation, racial disparities

The Healthcare Cost and Utilization Project (HCUP) is a family of health care
databases, related software tools, and products sponsored by the Agency for
Healthcare Research and Quality (AHRQ). The State Inpatient Databases
(SID), a member of the HCUP family since 1990, contain inpatient discharge
abstracts from community hospitals in 28 participating states as of 2014. With
such comprehensive information, the SID provide a unique and powerful
platform for a broad range of health care and medical research (Hellinger
2004; Hamlat et al. 2012; Vosseller, Karl, and Greisberg 2014; Chan et al.
2016).
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As with any large-scale data collection effort, the SID have a moderate
amount of missing data from several patient-level variables. These variables
are continuous (e.g., total hospital charges), ordered categorical (e.g., median
household income), and unordered categorical (e.g., race, admission source).
Patient race has a particularly high proportion of missingness across multiple
states and years. Figure 1 shows race data missingness patterns from 2004 to
2010 for five racially diverse states in the SID. Although rates of incomplete
race data decreased over time in some states (e.g., North Carolina and Color-
ado), a large amount of race data was still missing (>5 percent) in 2010. The
availability of high-quality, valid, and reliable data is critically important for
identifying the causes of racial health disparities and, ultimately, developing
solutions. Due to the lack of knowledge or tools to address missing data issues
in public-use databases, researchers often rely on crude strategies that either
conduct complete case analysis (CCA) by eliminating incomplete cases or
impute the missing data with a single set of replacement values. Unfortunately,
these outdated methods, which not only affect the quality of research, but also
lead to inconsistent results across studies, are still widely used in practice. In a
systematic review of missing race/ethnicity data in Veterans Health Adminis-
tration (VHA) based health disparities research, CCAwas found in over half
of 114 health disparities articles using administrative data (Long et al. 2006).
Although simple to implement, CCA has two fundamental problems. First, it
produces biased parameter estimates when subjects with missing values are
systematically different from those with complete observations. Second, it can
discard a large number of cases, resulting in inefficient estimation. If CCAwas
applied to the SID, it would cause a significant loss of sample due to substan-
tial race data missingness.

Imputation methods were developed to address the issue of incomplete
data by filling in missing observations. A naive imputation method is the ran-
dom draw, which imputes missing data with a randomly drawn nonmissing
value from the same variable. A more sophisticated method is “hot deck”
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imputation. This approach involves replacing missing values from a nonre-
spondent (recipient) with observed values from a respondent (donor) that is
similar to the nonrespondent with respect to a subset of other fully observed
(“deck”) variables (Andridge and Little 2009). Although the hot deck method
has been used by federal agencies to impute missing data in public-use datasets
(Coffey et al. 2008; National Hospital Ambulatory Medical Care Survey
2008), it has limitations. In principle, the more deck variables considered, the
more predictive information can be used to increase the accuracy of the impu-
tation. However, dimensionality problems can quickly arise, dramatically lim-
iting the number of deck variables that can be included (Andridge and Little
2009). In addition, both random draw and hot deck are single imputation
methods, which treat imputed values as known. As a result, the variability in
imputed values is underestimated. For this reason, single imputation has been
criticized for more than two decades (Madow, Olkin, and Rubin 1983; Rubin
1987; Rubin and Little 2002; Scheuren 2005).

Multiple imputation (MI) is an advanced statistical method that handles
missing data by replacing each missing value with a set of plausible values,
producing a set of imputed datasets. As opposed to single imputation meth-
ods, multiple imputation methods account for the uncertainty of the imputed
data. Each imputed dataset is analyzed using standard methods for complete

Figure 1: Missing Race Data in Selected SID Participating States from 2004
to 2010
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data, and results are pooled using Rubin’s rule (Rubin 1987). MI is particu-
larly effective in large datasets and has been used to impute missing data in
several well-respected nationwide health studies, including the National
Health and Nutritional Examination Survey III (Schafer et al. 1996), the
National Health Interview Survey (Schenker et al. 2006), Cardiovascular
Health Survey (Arnold and Kronmal 2003), Cancer Care Outcomes
Research and Surveillance (CanCORS) Consortium (He et al. 2010), and
several others. However, there are no imputed datasets available to SID
users. Improved imputation methodology for the SID is crucial given the
anticipated impact of national databases on health policy and medical prac-
tice. In 2013, we began a project to impute missing data for the SID with
funding provided by the AHRQ. Our goal is to generate imputed compan-
ion datasets to the SID that will allow public users to perform analysis on
complete data using existing software. To identify the appropriate imputa-
tion methods for the SID, we compared the performance of two MI meth-
ods (joint MI, conditional MI) with three other methods (complete case
analysis, random draw method, hot deck imputation) through a novel simu-
lation study. We also assessed the impact of different missing data methods
on health disparities research.

METHODS

To understand which imputation methods are most appropriate and how best
to apply them, one must first determine the patterns and mechanisms of the
missing data. In this section, we will first describe the characteristics of the
missing data in the SID. This will be followed by a review of the two MI
approaches (conditional and joint). For illustrative purposes, we will focus on
the 2005 SID Colorado (SID-CO) data. This dataset contains patient baseline
characteristics (e.g., age, gender, race, median household income for patient
zip code), admission information (e.g., admission type and source, insurance
type, length of hospital stay), comorbidities, diagnosis, procedure, and dis-
charge status (e.g., mortality, disposition of patient at discharge) for 474,057
admissions from 79 hospitals in CO.

Missing Data in SID-CO

The majority of missing data were found in five variables across 30.5 percent
(n = 144,337) of the admissions in the 2005 SID-CO (Table 1). In particular,
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patient race had the highest rate of missingness. This missingness could be
caused by a variety of factors. Registration staff are usually not trained in inter-
viewing and may feel uncomfortable soliciting these data from patients.
Patients, meanwhile, may refuse to provide race data because of concerns
about privacy and their own uncertainty as to why these data are needed.
Under these circumstances, missing data are inevitable. Logistic regression
also revealed that race missingness was related to many observed patient char-
acteristics (e.g., age, gender, admission source, mortality, admission type,
insurance type, disposition of patient, diagnosis and procedure type, comor-
bidities, length of hospital stay).

The statistical literature has defined three types of missingness mecha-
nisms: missing completely at random (MCAR), missing at random (MAR),
and missing not at random (MNAR). In MCAR, data missingness is inde-
pendent of both unobserved and observed data. In MAR, data missingness
depends only on observed information. In MNAR, data missingness
depends on unobserved information. Data in the SID-CO were clearly not
MCAR as the probability of missingness depended on observed data. How-
ever, it is impossible to determine whether data are MAR or MNAR solely

Table 1: Summary of Missing Data in the 2005 SID-CO

Variable Name Variable Type

Total Number
of Missing

Observations (%) Description

Total charges Continuous 9,156 (1.93) Total hospital charges
Gender Binary 161 (0.034) Male/female
Median income
quartile

Ordinal 14,191 (2.99) 1 1st quartile median household income
2 2nd quartile median household income
3 3rd quartile median household income
4 4th quartile median household income

Admission
source

Unordered
categorical

13,755 (2.90) 1 Emergency
2 Another hospital
3 Other health facility
4 Court/Law enforcement
5 Routine

Race Unordered
categorical

136,955 (28.9) 1 White
2 Black
3 Hispanic
4 Asian or Pacific Islander
5 Native American
6 Mixed-race
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based on observed data. The SID are de-identified to prevent tracking
patients for follow-up or prior information, so the MNAR assumption can-
not be tested. Because of this de-identification, it is impossible to impute
missing race data based on name and census tract (Elliott et al. 2013). Nev-
ertheless, the MAR assumption is generally considered to be realistic for
well-conducted surveys (Rubin, Stern, and Vehovar 1995) and has been rec-
ommended for practical applications (Verbeke and Molenberghs 2000). The
assumption of MAR becomes more reasonable as more predictors are
included in the imputation model (Little and Rubin 2003; Gelman and Hill
2006). As the SID contain high-quality data with a large amount of predic-
tive information, the MAR assumption can be justified. Additional predic-
tive information was obtained from the U.S. Census (e.g., racial and
socioeconomic status distributions) and the American Hospital Association
(AHA) database (e.g., hospital level characteristics) and taken into account
in our imputation.

The SID contain missing data not only on race, but also on gender, total
charge, admission source, and median income. The issue is complicated by
the fact that these variables have different distributions. There are two general
MImethods for handlingmultivariate missing data: joint modeling and condi-
tional specification. Next, we discuss these twomethods in detail.

Multiple Imputation Methods

The joint MI assumes that data follow a joint distribution, typically a multi-
variate normal (MVN), and draws imputed values from this distribution.
Unless stated otherwise, the joint MI in this paper refers to the joint MVN
MI. Under this assumption, discrete variables must be treated as if they
were continuous. Continuous imputed values are then often converted back
to discrete values by rounding to the nearest category. However, this round-
ing approach has been criticized for reduced accuracy (Horton, Lipsitz, and
Parzen 2003; Horton and Kleinman 2007; Yucel, He, and Zaslavsky 2008;
Honaker, King, and Blackwell 2011). The disadvantages of rounding are
even more salient for the imputation of binary or ordinal variables with
asymmetric distributions (Yucel, He, and Zaslavsky 2008). An alternative
approach is to transform the continuous imputed values to probabilities
from Bernoulli, binomial, and multinomial distributions for binary, ordinal,
and nominal variables, respectively (Honaker, King, and Blackwell 2011).
For binary and ordinal variables, the imputed values that are outside the
range of the categories are first rounded to the nearest (either the lowest or
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the highest) category. The continuous values imputed for binary variables
are within [0, 1] and are treated as probabilities from independent Bernoulli
distributions, where an imputed value of 0 or 1 is randomly generated from
each distribution. The continuous values for ordinal variables are scaled
into [0, 1] and then used as probabilities from independent binomial distri-
butions. A categorical imputed value can then be drawn from each distribu-
tion. To retain the unordered nature of nominal variables, a binary
indicator is created for each category. Continuous values from MVN are
assigned to these binary variables and constrained so that they are within
[0, 1] and can sum to 1. The transformed values are then treated as proba-
bilities from independent multinomial distributions. A value is then drawn
from each distribution for each nominal variable. For example, the six-cate-
gory race variable in the SID can be imputed using the following steps.
First, the variable is broken into five dummy variables (i.e., one for each
racial category besides the reference category). These dummy variables are
treated as continuous variables and imputed simultaneously using draws
from a MVN distribution. The continuous imputed values are then appro-
priately scaled into probabilities for each of the six race categories from a
multinomial distribution. The missing race data are then replaced with
draws from the multinomial distribution. This procedure can be imple-
mented using the Amelia package in R.

Conditional MI imputes data in a variable-by-variable fashion rather
than relying on a joint distribution. Raghunathan et al. (2001) formalized this
concept using a sequential regression multivariate imputation approach. This
method provides substantial flexibility for handling complex data structures
(e.g., bounds, skip patterns) where it is difficult to formulate a joint distribu-
tion. Conditional MI also allows variables of different types to be modeled
separately. For example, continuous, binary, ordinal, and nominal variables
are modeled using linear, logistic, ordinal logistic, andmultinomial regression,
respectively. Incomplete variables are imputed consecutively and iteratively
from their respective conditional distributions. In each iteration of the proce-
dure, one incomplete variable is regressed on the observed and imputed val-
ues for the other variables in the data. Incomplete predictors in each
regression model are replaced with imputed values from the last iteration. The
missing outcome values are drawn from the corresponding predictive distri-
bution given the observed values. Conditional MI can be implemented in R
by the mice (Van Buuren and Oudshoorn 2011) and mi (Su et al. 2011) pack-
ages. The mi package uses Bayesian versions of linear, logistic, and ordered
logistic regression as imputation models for continuous, binary, and ordered
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categorical variables, respectively, while mice runs standard regressions. In
our study, we compared imputation results from these two packages.
Throughout the paper, “conditional MI (mi)” and “conditional MI (mice)”
refer to conditional multiple imputation implemented in mi and mice,
respectively.

Joint MI and conditional MI are the most accessible MI methods
because they can be implemented in almost all standard statistical software
including R, SAS, and Stata (Royston 2004; Yuan 2010; Honaker, King, and
Blackwell 2011). Prior comparisons of these methods were limited by multiple
factors. First, previous comparisons used less complex data structures than the
SID and tested fewer variable types (Yu, Burton, and Rivero-Arias 2007; Lee
and John 2010). For example, Raghunathan et al. (2001) compared condi-
tional MI with a general location model (Little and Schluchter 1985; Belin
et al. 1999). The latter model is a more plausible alternative to multivariate
normal imputation for mixed categorical and continuous data. However, the
comparison in Raghunathan’s study was limited to imputation of missing con-
tinuous and binary data. Second, prior comparisons were not comprehensive
as they focused solely on either the accuracy of the imputed values (Yu, Bur-
ton, and Rivero-Arias 2007) or the impact of imputation on regression analysis
(Yu, Burton, and Rivero-Arias 2007; Lee and John 2010). Third, MI methods
were only compared with CCA. Other methods such as hot deck, a widely
used imputation procedure for survey data, were not included in prior com-
parisons. Therefore, the existing literature does not provide adequate guid-
ance on the use of MI methods, and the most appropriate method for
imputing the SID is unknown. To fill the gap, we performed a comprehensive
simulation study.

SIMULATION STUDY

Statistical simulation has become popular for comparing the performance of
competing methods. However, classic simulations are built entirely on fake
data. Given the large sample size and complex data structure, the SID would
be almost impossible to simulate. Therefore, we developed a novel simulation
using real data from the 2005 SID-CO.

Missing Data Generation

Missing data were generated with the following steps:
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Step 1. Missing data patterns were identified.Missing observations were found
in 28.9 percent of race and less than 5 percent on all other variables (e.g., total
charges, admission source, median household income, gender).

Step 2. A complete subset of the 2005 SID-COwas left after removing the par-
tially observed cases that had missing data on the aforementioned variables in
Step 1. This complete dataset, denoted by Z, includes a total of n = 329,720
admissions, a 69.5 percent sample of the original dataset. The values of the
data in Zwere referred to as true values (i.e., gold standard) when assessing the
accuracy of the imputed values in the simulation study. The dataset Zwas fur-
ther split into two datasets, X and Y, where X is a (n 9 p) matrix containing a
set of p variables and Y a (n 9 5) matrix containing five variables. For ease of
computation, categorical variables in Xwere broken into dummy variables. In
this simulation, there were a total of p = 155 variables in X, including patient
age, admission type, insurance type, disposition of patient, weekend admis-
sion status, length of hospital stay, comorbidities, mortality, and major diag-
nostic and procedure categories. The variables in Y were those found to have
missing data in the original dataset, including race, total charges, admission
source, median household income, and gender. Variables in X and Y were all
from the SID, not generated by statistical models. Hence, the data structure
and correlations between these variables remained intact.

Step 3. To mimic the missing data patterns identified in Step 1, missingness
was generated for the variables in Y under the assumption of MAR: 25 per-
cent missingness on race and 5 percent on total charge, gender, median
household income, and admission source. As the true values of these miss-
ing data were known from Y, the accuracy of imputed values could be
assessed. The missingness was generated through a logistic regression on
the p predictors in X. Let h =Xb, where b denotes the (155 9 5) matrix of
regression coefficients associated with the predictors in X. As the correla-
tions between predictors and missingness indicators are unknown, elements
in the matrix b were independently generated from the standard normal
distribution. The rows of b correspond to the 155 predictors in X, and the
columns of b correspond to the aforementioned five variables that have
missing data.

Step 4. A matrix Ω of the same dimensions as h was randomly generated
from a multivariate normal distribution MVN(l,Σ), where l was a vector of
0 and Σ a random correlation matrix (Lewandowski, Kurowicka, and
Joe 2009). The columns of Ω could be correlated as Σ was not constrained
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to be diagonal in our study. Let W = h + Ω. By adding Ω to h, these
correlations were integrated into missing data generation such that
observations missing on one variable would be likely to be missing on
another variable—a phenomenon that occurs in many real samples. Then,
the elements of W were transformed to probabilities p using the logistic dis-
tribution function.

Step 5. LetU be a matrix of the same dimensions as p. The elements ofUwere
independently drawn from the uniform distribution on [0,1]. LetΠ = p�U. In
the first column of Π, the highest 25 percent of observations were selected to
be missing in race. In the other four columns of Π, the highest 5 percent were
selected to be missing in total charge, gender, median income quartile, and
admission source, respectively. Following this procedure, we obtained a data-
set with simulated missing observations. This dataset is denoted by
~Z ¼ ðX ; ~Y Þ, where ~Y contains the same variables in Y with missing
observations.

Imputation Procedure

Missing data were imputed using four statistical methods, including ran-
dom draw, hot deck, joint MI, and conditional MI. Each MI generated
five imputed datasets. Predictive variables used for the imputation
included patient age, mortality, weekend admission status, disposition of
patient, admission type, insurance type, length of hospital stay, comorbidi-
ties, and major diagnostic and procedure categories. The original dataset
contains a total of 231 procedure categories. For analytic simplicity, we
collapsed the categories into 33 groups based on guidance from clinicians
(detailed information can be found in Data S1 in Appendix SA2). To fur-
ther improve the prediction of missing data, additional predictive informa-
tion was incorporated in the imputation from the U.S. Census and the
AHA databases. This information included zip code racial distribution,
median household income, poverty and education levels, and hospital
characteristics such as bed size, service type, hospital teaching status, and
hospital location. These additional data were linked to the SID via patient
zip code or hospital ID.

To reduce the computational burden caused by the large sample size, we
split the population into 10 age groups: newborn, 1–17 (years old), 18–25, 26–
34, 35–44, 45–54, 55–64, 65–74, 75–84, and age greater or equal to 85. Impu-
tation was performed for each age group separately. This approach also cap-
tures the characteristics of age-dependent variables such as admission type,
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insurance type, and comorbidities. Sample R code of all imputation strategies
can be found in Data S2 in Appendix SA2.

Evaluation of Imputation Performance

Upon the completion of imputation, the following procedures were carried
out to evaluate the performance of imputation methods over 100Monte Carlo
replications.

Hellinger Distance. We calculated Hellinger distances (HDs; Escofier 1978;
Pollard 2002) for all variables to assess the similarity between the marginal dis-
tributions of the imputed and true values. Smaller values of HD imply more
similarity between the distributions. The HD between two continuous distri-

butions is given by
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5

R ð ffiffiffiffiffiffiffiffiffi
f ðxÞp � ffiffiffiffiffiffiffiffiffi

g ðxÞp Þ2dx
q

, where f (.) and g (.) are den-

sity functions. For two discrete distributions P and Q taking k values with

probabilities ðp1; � � � pkÞ and ðq1; � � � qkÞ, the HD can be expressed asffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:5

Pk
l¼1ð

ffiffiffiffi
pi

p � ffiffiffiffi
qi

p Þ2
q

.

Brier Score. We also calculated squared errors of prediction, also called Brier
scores, for categorical variables. Brier scores have been used to measure the
accuracy of probabilistic predictions for discrete outcomes in MI (Heltshe
et al. 2012; Held et al. 2016). Let X be a K-level (K > 1) categorical variable
with M missing observations xiði ¼ 1; . . .;M Þ and p̂ij denote the predicted
probability of a specific level jðj ¼ 1; . . .;K Þ of X. For a MI with five itera-
tions, p̂ij ¼ P5

i¼1ðxil ¼ jÞ=5, where xil is the imputed value of xi from the lth
iteration, l ¼ 1; . . .; 5. The Brier score is given by

PM
i¼1

PK
j¼1ðIij � p̂ij Þ2,

where Iij ¼ 1ð0Þ, if the true value of xi is (not) j. A smaller Brier score implies
a more precise imputation. The average Brier score was obtained across all
simulation iterations. As the predicted probability is calculated based on mul-
tiply imputed data, Brier scores were used to compare multiple imputation
methods only.

Post-Imputation Analysis. We assessed the impact of each imputation method
on inferences from regression analysis. For illustrative purposes, we chose
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three outcomes of interest in total knee arthroplasty (TKA) racial disparities
research: length of hospital stay (a continuous outcome), any surgical compli-
cations (a binary outcome), and utilization of high TKA volume hospitals (an
ordinal outcome: low [<200], medium [200–400], high annual TKA volume
[400+]). Linear regression, logistic regression, and multinomial logistic regres-
sion were conducted for length of hospital stay, complications, and TKA vol-
ume, respectively. In addition to race, regression model covariates included
age, gender, comorbidity index (Deyo, Cherkin, and Ciol 1992), median
household income, admission type, admission source, insurance type, hospital
bed size, teaching status, and location. Each regression was performed using
the true dataset Z, complete cases in ~Z , and the imputed datasets. Regression
coefficient estimates from regression analyses of complete cases and imputed
datasets were compared with those calculated from the true dataset Z. Let b
denote the coefficient estimates from the analyses of true data and b̂i (i = 1,
2,. . .,100) the coefficient estimates from the analyses of imputed data or com-
plete cases in the ith simulation, respectively. We computed the root mean
square difference (RMSD) of each coefficient estimate usingffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP100

i¼1ðb̂i � bÞ2=100
q

.

Figure 2: Evaluation of Imputation Performance: Ratio of Hellinger Dis-
tances for EachMethod versus Conditional MI (mi)
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Simulation Results

The ratios of HDs for each method versus conditional MI (mi) are summa-
rized in Figure 2. In the following discussion, unless otherwise stated, “con-
ditional MI” refers to conditional multiple imputation implemented in both
mice and mi. Among different imputation methods, conditional MI was
associated with the smallest HD for all variables (Figure 2), implying that
the marginal distributions of imputed data from conditional MI were most
similar to the marginal distributions of true data. Results from conditional
MI implemented in mice and mi were very close or equivalent. Random
draw had consistently inferior performance for all variable types. Joint and
conditional MI performed similarly for binary and continuous variables,
but joint MI had significantly larger HD than conditional MI for nominal
and ordinal variables. For example, the HDs for race were 43 percent
greater for joint MI than for conditional MI (mi). The HDs for income
were 70 percent greater for joint MI than for conditional MI (mi). Hot deck
had significantly larger HDs for continuous, ordinal, and nominal variables
than both MI methods. Specifically, hot deck had nearly 200 percent
greater HD for total charge than joint or conditional MI, and 100 percent
greater HD for income than conditional MI. Hot deck had 15 percent and
73 percent larger HDs than conditional MI for race and admission source,
respectively.

The ratios of Brier scores for joint MI and conditional MI (mice) versus
conditional MI (mi) are summarized in Figure 3 for all categorical variables.
Conditional MI methods had smaller Brier scores than joint MI in all cases,
implying that conditional MI was associated with more accurate predicted
probabilities than joint MI. Such differences were pronounced for nominal
variables. For example, conditional MI had 22 and 60 percent lower Brier
score than joint MI for race and admission source, respectively. Results from
conditional MI implemented in mice and mi were nearly equivalent for all
variables.

The RMSDs of regression coefficient estimates are summarized in Fig-
ures 4–6. Among the covariates, admission source, admission type, and race
had comparatively larger RMSDs for all methods in all models, but the mag-
nitudes of these RMSDs were highly heterogeneous between different meth-
ods. Random draw, joint MI, and hot deck had significantly inflated RMSDs
for admission source, admission type, and race in all models. The perfor-
mance of CCA varied by the type of regression. Logistic regression based on
CCA tended to have the highest RMSDs for all covariates (the RMSDs for all
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covariates can be found in Figures S1–S3 in Data S3 in Appendix SA2). For
linear regression and multinomial logistic regression, CCA had higher
RMSDs than other methods for income, comorbidity index, age, hospital bed
size, gender, and insurance type. Conditional MI using mice or mi tended to
have the smallest RMSDs for nearly all coefficient estimates in all three regres-
sion models (Figures S1–S3).

DISCUSSION

Eliminating racial disparities in health care continues to be an important
goal for our nation. Large hospital administrative datasets have been used
widely to study racial health disparities. However, incomplete race data are
a serious and persistent problem that hampers the progress of research in
health disparities. Fortunately, multiple procedures have been developed to
address this issue both retrospectively and prospectively. Some efforts aim
to improve future race/ethnicity data collection and reporting. For example,
the AHRQ and the Institute of Medicine have been collaborating to iden-
tify standardized categories for race and ethnicity (Institute of Medicine

Figure 3: Evaluation of Predicted Probability for Categorical Variable:
Ratio of Brier Scores for Joint MI and Conditional MI (mice) versus Condi-
tional MI (mi)
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2009). Other efforts, such as imputation, aim to reduce the impact of exist-
ing missing data on disparities research (Mulugeta et al. 2012). This project
was funded by AHRQ to impute missing data, including race, in the SID.
Upon completion of the study, an imputed version of the SID will be avail-
able for public use.

To find the most appropriate imputation method for the SID, we sys-
tematically compared multiple approaches through a novel simulation study
built on real data from the 2005 SID-CO. Among the tested imputation
approaches, conditional MI provided the most accurate imputed data for all
types of variables. Joint MI, which is built on the assumption of the multi-
variate normal distribution, generated severe bias when imputing categorical
data. Hot deck provided suboptimal imputation for continuous, nominal,
and ordinal data, which affected its statistical inferences in regression analy-
sis. Further, we assessed the impact of imputed data on analysis of racial dis-
parities among TKA patients. Regression coefficient estimates from analyses
of datasets imputed with conditional MI were most similar to those from
analyses of true datasets. In contrast, the popular, naive approaches (CCA
and random draw) gave substantially different coefficient estimates.

Collection of race data can be influenced by a variety of factors,
including patient perceptions, culture, staff discomfort, legal concerns, or

Figure 4: Evaluation of Post-Imputation Performance: Root Mean Square
Difference (RMSD) of Coefficient Estimates for Linear Regression for Length
of Stay
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lack of appropriate categories. These factors could induce complicated miss-
ingness mechanisms. Nevertheless, MI can provide reasonably stable results
under the assumption of MAR (Schafer et al. 1996; Schenker et al. 2006).
Our study is limited by a number of issues inherent to secondary data anal-
ysis of large administrative databases. The SID lack patient-level clinical
and socioeconomic status data, so we were unable to incorporate such infor-
mation into our imputation. To address this limitation, we used zip code–
level information (e.g., racial distribution, income, education, and poverty
level) from the U.S. Census. In addition to the simulation study presented
in this paper, we conducted the same set of regression analyses using real
data from 2005 SID-CO to study racial disparities in TKA. The results
from this real data analysis using different imputation methods are available
in Data S4 in Appendix SA2).

CONCLUSIONS

Conditional MI prediction was uniformly equivalent or superior to the best
performing alternatives for all missing data structures, while substantially out-
performing each of the alternatives in various scenarios. The validated

Figure 5: Evaluation of Post-Imputation Performance: Root Mean Square
Difference (RMSD) of Coefficient Estimates for Logistic Regression for Any
Complications
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imputed datasets generated from this study will improve the value of the SID
as a data source for a variety of future studies. The approaches used in this study
can be applied to other large datasets and tested in other priority populations
and health conditions, yielding benefits that extend beyond the current study.
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