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Abstract

Quantitative single cell measurements have shown that cell cycle duration (the time between cell 

divisions) for diverse cell types is a noisy variable. The underlying distribution is mean scalable 

with a universal shape for many cell types in a variety of environments. Here we explore through 

both experiment and theory the response of these distributions to large environmental 

perturbations. In particular, we discuss how the stochasticity of the ensemble may be related to the 

response. Our findings show that slow growing, noisy populations are more adaptive than those 

which are fast growing. We suggest that even non-cooperative cells in exponential growth phase 

may not optimize fitness through growth rate alone, but also optimize adaptability to changing 

conditions. In this work, we wish to emphasize that in a manner similar to genetic evolution, noise 

in biochemical processes may be important to allow for cells to adapt to rapid to environmental 

changes.

I. Introduction

The concept of biological fitness is a starting point of discussion in many questions in 

evolutionary biology.1 At the most basic level, fitness is still often defined to be the “birth-

rate” or the rate at which new individuals are added to the population. Cooperative and 

mutlicellular systems may require a more complicated definition; but often even these 

phenomena are shown to derive from the maximization of total sustainable single-cell 

number.2–5 In the case of non-cooperative, single-cell species (e.g. bacteria at low cell 

density), fitness as birth-rate is accepted. For such a population during exponential growth, 

the number of cells in an ensemble can be well described as a function of time if we know 

the initial number N0, and the cell cycle duration τ, yielding N(t) = N0 exp(ln(2)t/τ). In this 

way the constant r = ln(2)/τ, often labeled the “growth-rate”, is used to measure fitness – the 

larger r and the faster an organism grows, the fitter it is.

†Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ib00119j
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However, the growth rate for a single cell is often hard to define. Experiments conducted in 

constant environments maintained in microfluidic devices (so called “Mother Machines”) 

show that the cell cycle duration6 is stochastic and exhibits large variations for both 

prokaryotes and eukaryotes.7 Thus one should consider a statistical distribution of cell cycle 

durations P(τ), where τ is the time between 2 successive cell divisions (septum formations). 

Owing to the fact that synthesis of new proteins and replication of DNA require finite time, 

there is perhaps a physical lower limit for the cell cycle duration, τ* (dependent on the 

environment), below which no intact cells can divide. From an evolutionary perspective, we 

quickly see that to optimize fast growth, P(τ) should be a narrow distribution centered as 

close to τ* as possible; however, the measured distribution for E. coli stands in stark 

opposition to this idea6,7 (Fig. 1), exhibiting a significant variance in τ. Quite strikingly, P(τ) 

is mean scaleable:8,9 the coefficient of variation CV = 〈δτ2〉 〈τ〉 where δτ = τ − 〈τ〉 and

〈τ〉 = ∫ dττP(τ) (1)

is generally a constant across a wide variety of conditions, with shape conservation spanning 

cell types from E. coli to human dermal fibroblast cells.7 In Fig. 1 we display the 

distributions and corresponding statistics for the ensembles investigated in this work and 

verify that they reflect the features discussed here.

These observations, in conjunction with established cell cycle models10,11 and more recent 

experimental results for protein synthesis and volume regulation, have given rise to the 

present discussion about whether a cell is best described as regulating its time until division, 

a “timer” mechanism; volume at division, a “sizer” mechanism; or mass added over a single 

generation, a “constant adder” mechanism.12–14

Nevertheless, stochasticity in the cell cycle dynamics and heterogeneity in cell growth rate 

seems universal, which begs the question “Why is this important?” Specifically, we wish to 

probe the effects of programmed non-genetic heterogeneity apparent in this trend: that slow 

growing cultures exhibit greater variability in their cell cycle regulation. Perhaps, the costs/

benefits of this noise may be better understood in a non-constant environment: we show 

below that slower growing cultures under stressed conditions are able to return to a fast 

growth state when introduced to rich media at a greater rate than faster growing, less-

stressed cultures. Perhaps fitness, even for exponentially growing cultures, should take 

adaptability to environmental variability into consideration as well. The question we will 

focus on for this investigation is, “does increasing the noise in the mechanisms regulating 

the cell cycle correlate with decreased cell fitness?” We would like to note here that we will 

talk about adaptation to environmental shock throughout the paper and before we continue 

want to state we will use this definition for “adaptabl”: a culture is considered to be 

adaptable if it is able to maintain the highest growth rate possible for as long as possible.

Rochman et al. Page 2

Integr Biol (Camb). Author manuscript; available in PMC 2018 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



II. Methods

A. Experimental design

We grew E. coli in the mother machine and collected single cell cycle duration data. We 

grew cells in five different types of media, performed step changes in the growth medium, 

and measured how cells responded to these sudden environmental changes (see Section III, 

ESI†). Fig. 3 shows how the CCDDs changed over time. For each experiment, the 

distribution is initially constant and stable before the sudden environmental change. After 

the change, the distribution shifted over time, and eventually reached the new stable 

distribution for the new environment. We find that the cell cycle duration trajectories for 

individual cells follow a similar trend but include significant noise (Fig. 3 insets).

We observed the response of CCDDs ρ(τ,n) in a series of step change experiments where for 

time t < 0 cells were exposed to a constant environment, and at t = 0 the environment was 

altered in such a way that the new mean cell cycle duration was measurably different (see 

Section III, ESI†). The results are for E. coli in a mother machine, but we also conducted a 

series of bulk temperature shift experiments to compare with the micro-fluidic results (see 

Section V, ESI†). Fig. 3 shows the results of the eight environmental shift experiments 

conducted. The top row contains relaxation experiments where the cells were grown in 

suboptimal conditions including one nutrient limited and three hypertonic solutions (where 

the osmolarity was increased with the addition of Sorbitol) before shifting the media to the 

optimal environment (in diluted LB medium) for fast growth. The bottom row are the 

reverse, stress experiments.

To compare the efficiency of response across all experiments, we proposed to examine the 

quantity, Δ,

Δ = 1
λ∫0

λ
τ(t)dt − max (μi, μf) (2)

where the environment step change occurred at t = 0, λ = 500 min is the minimum period 

for all eight experiments to complete the response to their new environments, and the 

average 〈 〉 is taken over all cells. (Note that the trends observed are maintained over a wide 

range of λ see Section IV, ESI.†) μi,f is the steady state average cell cycle duration before 

and after the step change, respectively. When Δ is large and positive, the cells respond so 

inefficiently that during response they grow even slower than in the stressed condition. 

When Δ is large and negative, the cells are able to remain or enter in the fast growth state for 

the majority of the response period.

B. Model derivation

Here we present a short derivation of the generational transition probability, M, with 

minimal context. The biological assumptions used to motivate the form of M are contained 

†Electronic supplementary information (ESI) available. See DOI: 10.1039/c6ib00119j
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in Results. For an integrated treatment, please see Section II (ESI†). For a collection of 

mother cells, we consider a sequence of cell cycle times (τ1, τ2,…) and the corresponding 

cell cycle duration distributions indexed by generation, ρ(τ,n). In general, ρ(τ,n) can vary 

between generations, and the generational dynamics can be described by a Markovian 

stochastic model for ρ(τ,n), which describes the change of this distribution in terms of a 

transition probability, M,

ρ(τ′, n + 1) = ∫ dτM(τ τ′; ϕ)ρ(τ, n) (3)

where M depends on the current environment described by ϕ. M describes the probability of 

a daughter cell to divide after duration τ′ given that the mother cell divided after duration τ. 

Note for a constant environment, the Markovian dynamics at long times will arrive a steady 

distribution, which is what we have called P(τ) in the Introduction. Eqn (13) is simply a 

statement of probability conservation; and by developing a model for M, we can predict how 

cells can respond to environmental changes over time.

We take into account two sources of regulation for cell cycle duration – optimization of 

protein synthesis rates to the current environment (instantaneous information), and the 

maintenance of proteome similarity to the mother cell (inherited information). Our form of 

the transition probability consists of one gaussian term to handle inheritance and another to 

handle instantaneous optimization with respect to the current environment. This form was 

assumed to admit an analytic solution, and also is consistent with experimental 

measurements of this transition probability from our data. To include inheritance, we 

consider the cycle duration τ′ (of the daughter cell) to be normally distributed with mean τ 
(the cycle duration of the mother cell) and some unknown variance σ2

2:

M2(τ τ′) = A exp − 1
2σ2

2 (τ′ − τ)2 (4)

This term suggests that the daughter cell cycle remains close to that of the mother cell due to 

inheritance. To include the optimization of DNA/protein synthesis with respect to the current 

environment, the transition probability takes the form

M1(τ′) ≡ 1
2πσ1

exp − 1
2σ1

2 (τ′ − μ(ϕ))2 (5)

where μ(ϕ) is the average cell cycle duration of a cell in environment ϕ at steady state. The 

total transition probability from τ of the mother cell to τ′ of the daughter cell should 

balance the inherited information with the process of protein/DNA synthesis. Therefore we 

expect
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M(τ τ′) M1(τ′)M2(τ τ′) (6)

There is a problem with this construction, however, because taking a look at the product of 

our two transition probabilities (where the normalization is absorbed into the constant A):

M(τ τ′) = A exp − 1
2σ1

2 (τ − μ)2 exp − 1
2σ2

2 (τ′ − τ)2 (7)

we can see that the most probable state for τ′ is always between τ and μ regardless of the 

value of σ1 or σ2. In general, there may be a negative correlation between adjacent 

generations at steady state and in order to construct the most general form for the transition 

probability that can reproduce these dynamics, we will also include some current state (τ) 

dependence in the term representing instantaneous information:

M1(τ τ′) ≈ A exp 1
2σ1

2 (τ′ + ατ − (1 + α)μ)2 (8)

The biological motivations behind this is discussed further in the Results section and the 

ESI.† Putting together both terms (instantaneous and inherited information), we arrive at our 

desired transition probability:

M(τ τ′) ∝ exp − (τ′ + ατ − (1 + α)μ(ϕ))2

2σ1(ϕ)2 × exp − (τ′ − τ)2

2σ2(ϕ)2 (9)

where σ1, σ2 are positive constants describing the noise, and μ is the mean cell cycle 

duration for a given condition ϕ. σ1, σ2 and μ all depend on the current environmental 

variable ϕ. α is a constant between 0 and 1, representing the fraction of the cell cycle after 

DNA replication has terminated and before septum formation see Section II (ESI†) for more 

details. The first term represents adaptability – increasing its weight (decreasing σ1) is 

equivalent to boosting the amount of information a cell may obtain about its environment. 

Conversely, the second term represents stability and increasing its weight (decreasing σ2) is 

equivalent to increasing the similarity between mother and daughter cells. When the 

environment is constant, dynamics generated by M must produce the steady state CCDD, 

P(τ). Therefore, (σ1,σ2,μ) are determined by the environment and their corresponding steady 

state distributions. Indeed, for constant environmental conditions, the model predicts that the 

correlation of cell cycle duration is,
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C(n) = 〈δτ(0)δτ(n)〉/〈δτ2(0)〉 =
1 σ2

2 − α σ1
2

1 σ2
2 + 1 σ1

2

n

(10)

Since (σ1,σ2) depend on environmental conditions, this result is a way to use steady state 

cell cycle correlations to obtain M. In addition, it is possible to explicitly obtain transition 

probabilities from the experimental data. Fig. 4 shows an overlay of our model M and the 

data collected for the initial and final distributions of three representative experiments. For a 

more complete comparison see Fig. S1 (Section II B), and Fig. S6 and S7 (Section IV C) 

(ESI†).

III. Results

A. Growth rate is inversely correlated with CCDD variance

We first sought to determine how the variance of the cell cycle duration distribution (CCDD) 

correlates with the mean ensemble growth rate. The duration distribution is best described as 

a shifted gamma distribution: 1
Γ(K)θK (τ − τ∗)K − 1e

− τ
θ , where θ and K are parameters. The 

mean growth rate r of the population is obtained by solving7

τ ∗ r + K ln (1 + r /θ) = ln 2 (11)

P(τ) is bounded on the left due to the finite time required to construct a new cell as discussed 

above. Given this minimum time τ*, one may calculate the maximum growth rate for a given 

variance 〈δτ2〉 by changing parameters (K,θ). In Fig. 2, we set τ* to be length of the shortest 

observed cell cycle and numerically calculated the maximum growth rate for variances 

ranging over experimentally observed values. Over this range, the maximum growth rate 

diminished by a factor of three as we increased 〈δτ2〉. Clearly, for this case of fixed τ*, 

increased noise in the regulation of the cell cycle correlates with a lower growth rate. It is 

also important to note that cell division dynamics in E. coli appears to be ergodic: each 

individual mother cell explores the entire distribution and if data from a single cell is 

collected over a long period of time, the resultant distribution appears to match that of a 

collection of many cells at a single time, shown in Fig. 2. This suggests that there are no 

“persistor cells” that grow very slowly at all times to benefit the collective culture when 

subjected to harsh environments. More generally, it can be shown that given any CCDD with 

finite width, there exists a narrower one which attains the same growth-rate or greater 

(Section I, ESI†). We note that the existence of “persistor cells” has been confirmed15–18 in 

specialized cases and that these cells play an important role in culture survivability. From 

our analysis of division phenotypes in the mother machine, however, they do not contribute 

significantly to the measured CCDD.
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Thus, if an environmentally dependent τ* is assumed, the population growth-rate is not 

improved by increasing the noise in the cell cycle duration distribution and from the usual 

definition of fitness, this would suggest cells should narrow this distribution to maximize the 

mean growth rate. However, there is an alternative hypothesis recently presented.19,20 

Suppose that the minimum time for a single cell cycle is not governed by some lower bound 

τ*, but instead that the mean cell cycle time, 〈τ〉 is environmentally limited. In the case 

where the cell cycle distribution is not mean scaled, and the CV varies (it has been 

shown19,20 that in some environments the CV is more variable than in the conditions we 

tested); the growth rate is positively correlated with the CV. In fact one may explicitly 

express, using the von Foerster equation when ρ(τ) is gamma distributed and unbiased (i.e. 

M(τ → τ′) = ρ(τ′)), the growthrate as a function of the mean and CV:r = 1
〈τ〉CV2 2CV2

− 1 . 

It is clear from this formulation that the growthrate is positively correlated with the CV. This 

phenomenon has been investigated in both bacterial systems without the consideration of 

epigenetic inheritance19 and in yeast including epigenetic inheritance20 which seems to 

magnify the effect. We focus on the case where the CV is roughly constant and without the 

consideration of epigenetic inheritance; but for cases where the CCDD are poorly mean 

scaled, epigenetics make a big impact, or the mean cycle duration is limited while τ* is 

effectively zero, we want to make it clear to the reader that the results of this paper are 

incomplete and wish to direct them to the work referenced above.19,20

Alternatively this noise may be intrinsic to underlying molecular mechanisms; and 

stochasticity is prevalent in gene expression,21,22 polymerase activity,23 and chemotaxis.24,25 

Cells might require higher energy consumption (sacrificing energy efficiency which carries 

its own evolutionary importance26), or an increase of τ* (increasing minimum duration) to 

minimize noise. Here we probe the potential costs for the observed programmed non-genetic 

heterogeneity assuming an environmentally dependent τ*.

B. Cell response rate is inversely correlated to mean growth rate and positively correlated 
to noise

We observed the response of CCDDs ρ(τ,n) in a series of step change experiments where for 

time t < 0 cells were exposed to a constant environment, and at t = 0 the environment was 

altered in such a way that the new mean cell cycle duration was measurably different (see 

Section III, ESI†). The results are for E. coli in a mother machine, but we also conducted a 

series of bulk temperature shift experiments to compare with the micro-fluidic results (see 

Section V, ESI†). Fig. 3 shows the results of the eight environmental shift experiments 

conducted. The top row contains relaxation experiments where the cells were grown in 

suboptimal conditions including one nutrient limited and three hypertonic solutions (where 

the osmolarity was increased with the addition of Sorbitol) before shifting the media to the 

optimal environment (in diluted LB medium) for fast growth. The bottom row are the 

reverse, stress experiments. The model is able to predict the time course of cell response, 

including the overshoots observed in severe stress conditions (Fig. 3)

The trend across the top row in Fig. 3 is clear: as the magnitude of the shift increases (left to 

right), the response speed (change in the mean divided by the time over which the change 
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occurred) increases as well. A complementary trend may be observed on the bottom row: as 

the severity of the stress increases (left to right), the response speed also increases (see Fig. 

5A). However, while for the relaxation experiments (top row) response speed directly 

correlates with adaptability, for the stress experiments (bottom row) this is not the case. We 

consider an adaptable cell to be one which responds “efficiently” to environmental changes 

in terms of its growth rate alone. (Here we observe negligible filamentation rates and cellular 

aging is not an issue as cells were only followed for fewer than fifty generations.) Thus an 

efficient response is considered to be one where the growth rate is as high as possible for as 

long as possible. In the case of the relaxation experiments (top row), the faster the response 

speed, the greater the adaptability as a greater response speed allows the cell to spend more 

time in a fast growth state. For the stress experiments (bottom row) the reverse is true: the 

greater the response speed, the less time the cell is able to remain in the fast growing state. 

In fact, we have observed that for severe environmental stresses, cells respond so 

inefficiently that they attain a growth rate during the period of response which is even lower 

than that of the final stable growth rate (e.g. Fig. 3 last panel). Thus, to compare the 

efficiency of response across all experiments, we proposed to use a new quantity, Δ,

Δ = 1
λ∫0

λ
τ(t)dt − max (μi, μf) (12)

where the environment step change occurred at t = 0, λ = 500 min is the minimum period 

for all eight experiments to complete the response to their new environments, and the 

average 〈 〉 is taken over all cells. (Note that the trends observed are maintained over a wide 

range of λ. See Section IV, ESI.†) μi,f is the steady state average cell cycle duration before 

and after the step change, respectively. When Δ is large and positive, the cells respond so 

inefficiently that during response they grow even slower than in the stationary state 

corresponding to the stressed condition. When Δ is large and negative, the cells are able to 

remain or enter in the fast growth state for the majority of the response period. We analyze 

these results in the context of a phenomenological model introduced below.

C. Phenomenological cell cycle state model

As introduced in the Methods section, we consider a sequence of cell cycles (τ1, τ2,…) and 

the change of the cell cycle distribution over generations, ρ(τ,n) where n is the index of 

generation. For a constant environment at long times, cells are at steady state in the mother 

machine, and ρ(τ,n) ≡ P(τ) shown in Fig. 1. For a changing environment, we consider a 

Markovian stochastic model for ρ(τ,n), which describes the change of this distribution from 

one generation to the next as

ρ(τ′, n + 1) = ∫ dτM(τ τ′; ϕ)ρ(τ, n) (13)
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where M is the transition probability, which depends on the current environment described 

by ϕ.

In constructing M, we considered the following: organismal survival depends on two broad 

qualities – stability and adaptability. Stability is a measure of short-term fitness, how 

precisely a system can maintain conditions optimized for a constant environment. 

Adaptability is a measure of long-term fitness, how quickly a system is able to achieve 

optimized conditions when introduced to a new environment. For example, in the context of 

genetic evolution, a more mutable genome offers an organism less stability but improved 

adaptability over many generations both through simply allowing for greater genetic 

diversity at any given time27,28 and high mutation rates.29,30

Motivated by these ideas in conjunction with the “constant-adder model”12–14 and older 

foundational work,31 we propose the following approximate Gaussian model for the cell 

cycle dynamics.

We take into account two sources of regulation for cell cycle duration – optimization of 

protein synthesis rates to the current environment (instantaneous information), and the 

maintenance of proteome similarity to the mother cell (inherited information). Let us begin 

with the shorter argument – the comparison of proteome composition between mother and 

daughter cells. We assume that the greater number of proteins shared between the mother 

and daughter cell, the smaller the difference between their cycle durations. As proteome 

inheritance is roughly normally distributed, we approximate the cycle duration τ′ (of the 

daughter cell) to be normally distributed with mean τ (the cycle duration of the mother cell) 

and some unknown variance σ2
2. At the beginning of a cell cycle, a cell’s proteome is 

entirely inherited from proteins present in the mother cell. One source of noise inherited 

from the mother is due to protein partitioning. The probability of inheriting m proteins from 

a mother cell containing N proteins is given by the symmetric binomial distribution 

P(m) = N !
m!(N − m)!

1
2N . For N very large, this distribution is well approximated by a Gaussian 

distribution of mean N
2  and variance N

4 . These inherited proteins constitute roughly half of 

the cell’s final proteome (or the proteome of the cell at the time of its division) though this 

fraction differs based on the number of proteins inherited and degradation rates. Taking 

these considerations into account, we expect the term representing the regulation of 

proteome similarity between mother and daughter cells to take the form:

M2(τ τ′) = A exp − 1
2σ2

2 (τ′ − τ)2 (14)

It is unclear if this partition noise bears significant weight on the CCDD, but it may be noted 

that if it does, it is likely there will be an anticorrelation between sister cell cycle durations.

Now we will handle the optimization of protein synthesis. Let us begin by describing the 

simplest construction of the constant-adder model: let us define a mean protein/DNA 

synthesis rate of k proteins/DNA per minute, and say that the cell must synthesize additional 
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N proteins/DNA during its cell cycle. From a uni-directional stochastic mass accumulation 

model we get a gamma distribution for the probability of reaching size N at time t (for N ≥ 

1):

π(N, t) = kN + 1

Γ(N + 1) tNe−kt (15)

with a mean of μ = N + 1
k  and variance σ1

2 = N + 1
k2  (see Section II, ESI†). Since k depends on 

the environmental condition ϕ, both μ and σ1 depend on ϕ. As long as N ≫ 1, this 

distribution is suitably symmetric, and we may well approximate the transition probability 

with a Gaussian function (in terms of t ≡ τ′) with the given mean and variance:

π(N, t) ≈ M1(τ′) ≡ 1
2πσ1

exp − 1
2σ1

2 (τ′ − μ)2 (16)

As mentioned in the Methods section, we maintain some current state dependence in the 

adaptive term so that we may allow for a negative correlation between adjacent generations 

at steady state, as predicted by the constant adder model. Work has shown6,12 subsequent 

cell cycle durations to be anticorrelated (i.e. if τ is above the mean, the most probable state 

for τ′ is below the mean). The biological motivation for our implementation of the current 

state (τ) dependence is described below.

In what follows we will describe what may be the original “sizer”, or mass-accumulation, 

model described by Bremer and Chuang in 1981.31 We do not wish to imply that we believe 

the “sizer” model to be a good substitute for the “constant adder” that has proven so robust 

in recent studies,12,13 but merely that when interpreted as a product of two weighted 

regulatory tendencies (mass-accumulation and proteome maintenance), the “constant adder” 

can be even more widely applied to cell populations experiencing variable environmental 

conditions. We begin by breaking down the cell cycle into three smaller stages. Consider the 

cell cycle to be composed of three periods τA, before the initiation of DNA replication, τB, 

during replication, and τC after replication:

τ = τA + τB + τC (17)

Bremer and Chuang found that the time between associated points in replication from 

generation to generation (e.g. the time between the initiation of replication in the mother cell 

and daughter cell or termination of replication between cells) were highly conserved. (We 

would like to note that there were other studies conducted which focused on similar issues 

around the same time32 though, to our knowledge, recent interest in the topic has 

depreciated. Nonetheless, there has been more modern work33 focusing on the tight 

regulation of the DNA replication time in cyanobacteria partly aimed to probe where this 

regulation breaks down.) This implies (where generation n is denoted τn):

Rochman et al. Page 10

Integr Biol (Camb). Author manuscript; available in PMC 2018 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



τB = constant ≡ B (18)

and furthermore:

τn − 1
C + τn

A = constant ≡ D (19)

So we can write down an expression for the nth division time in terms of the preceding n −1 

division time:

τn = τn
A + τn

B + τn
C = (D − τn − 1

C ) + B + τn
C = (D + B) + τn

C − τn − 1
C (20)

Now, D + B is simply the mean the total cycle time (relabeling it μ). With this we have:

τn = μ + τn
C − τn − 1

C (21)

Continuing, we know τn
C is just some fraction α1 of the total mean and similarly τn − 1

C  is 

some fraction α2 of the total division time τn−1:

τn = μ + α1μ − α2τn − 1 (22)

Approximating the fraction of the cell cycle accounted for by region C as constant across 

each generation, i.e. α1 = α2 ≡ α yields:

τn = μ + αμ − ατn − 1 = μ + α(μ − τn − 1) (23)

We note that this may be a very poor approximation under certain conditions. We merely 

make this assumption to reduce the complexity of the model and provide an analytical 

solution. Therefore, on average, we have

〈τn〉 = 〈μ + αμ − ατn − 1〉 = μ + α(μ − 〈τn − 1〉) (24)

Similarly, we want an expression for the variance:

σ2(τn) = σ2(μ + τn
C − τn − 1

C ) = σ2(μ − τn − 1
C ) + σ2(τn

C) = σ2(τn
C) ≡ σ1

2 (25)
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Applying the stochastic protein synthesis argument above restricted to period C yields:

M1(τn − 1 τn) ≈ A exp 1
2σ1

2 (τn + ατn − 1 − (1 + α)μ)2 (26)

We have provided physiological motivation for a weighted averaging of the current state and 

the mean of the total distribution; however, as we are primarily interested in a generalizable 

phenomenological model and are unable to retrieve the value for α from experiment, we will 

use the symmetric average α = 1 during data fitting for simplicity. Though this parameter 

selection loses physiological significance, the trends observed do not meaningfully change 

when a smaller alpha value is used. The total transition probability from τ of the mother cell 

to τ′ of the daughter cell should balance the inherited information with the process of 

protein/DNA synthesis. Therefore we expect:

M(τ τ′) ∝ exp − (τ′ + ατ − (1 + α)μ(ϕ))2

2σ1(ϕ)2 × exp − (τ′ − τ)2

2σ2(ϕ)2 (27)

where σ1, σ2 are positive constants describing the noise, and μ is the mean cell cycle 

duration for a given condition ϕ. σ1, σ2 and μ all depend on the current environmental 

variable ϕ. α is a constant between 0 and 1, representing the fraction of the cell cycle after 

DNA replication has terminated and before septum formation see Section II (ESI†) for more 

details.

D. Model and experiment comparison

Our model has four parameters, α, μ, σ1, and σ2. As mentioned above, because we are 

unable to retrieve the value of α from experimental data, we assume α = 1 for all 

experiments. μ is always set to be the mean of the CCDD corresponding to the stationary 

distribution. The values selected for σ1 and σ2 are at the heart of our discussion since the 

adaptability of the culture depends on the relative weight of these terms. We may express σ1 

and σ2 given only μ for the stationary distribution, CV for stationary distribution, and a third 

quantity Π: σ1 = 2(1 + Π)CVμ, σ2 = 2(1 − Π)CVμ. Π is retrieved from the steady state 

autocorrelation function C(n) = Πn, or directly from the experimental response curve, 〈τn〉 = 

〈τn−1〉Π, where the index is taken to be over generations succeeding the switch i.e. n = 0 

corresponds to the generation over which the environmental switch occurs. Please see 

Section IV (ESI†) for more details regarding the fitting. We compare both fits in Section IV 

C Fig. S6 and S7 (ESI†).

When we fit directly to the experimental response curve, since the experiment is a step 

change, we use the mean and CV of the final stationary distribution. It may be noted that in 

Fig. 3 we show the result corresponding to the case where Π is fit directly to the 

experimental response curve. Fig. 4 shows an overlay of our model M and the data collected 

for the initial and final distributions of three representative experiments. For a more 

complete comparison see Fig. S1 (Section II B, ESI†). The model is able to well fit and 
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replicate, quantitatively, the response curve for both the mean and variance of the CCDD. It 

may be noted that while the model does recapture the nonmonotonic responses associated 

with strong osmotic shock from rich to stressed conditions (experiments 6 and 8), it does not 

lend itself to a clear interpretation regarding the mechanism behind this behavior. We 

interpret the overshoot of the final mean cycle duration to be attributable to the cell slowing 

division in order to restructure its proteome to fit the new condition (perhaps the synthesis of 

more active pumps to remove the osmolite); however, we cannot provide a more detailed 

explanation.

Our experiments show, the response speed increases with increasing environmental shock 

severity over all trials which implies two things: firstly, the stronger the osmotic shock, or 

nutrient depletion, the faster the culture leaves the fast-growth state (which may be 

unsurprising). Secondly, this means that when stressed cells are introduced to a rich 

environment, the slower they are growing before the environmental switch, the faster the rate 

of response. On the other hand, we find that Δ for the shock and relaxation experiments 

display two opposing trends: as the severity of the environmental change, measured as |μi − 

μf| increases, Δ decreases for the relaxation experiments and increases for the stress 

experiments (see Fig. 5B). Clearly the response efficiency cannot be predicted from the 

severity of the environmental change alone. If non-genetic heterogeneity plays a role in cell 

adaptation, there is a parameter that should be well correlated with response efficiency, σ2. 

As σ2 (calculated from the initial state) increases, the similarity between mother and 

daughter cells decreases –which should make the cell more adaptable. We find that this 

agrees with experiment: as σ2 increases, Δ decreases (Fig. 5C). σ2 is not the ideal parameter 

for comparison, however, since it cannot be directly measured experimentally. It would be 

better if the same trend could be observed for the total variance, 〈δτ2〉, of the cycle duration 

distribution. Here we may utilize a result from the constant-adder model, which predicts that 

the autocorrelation function is conserved across different environmental conditions.12 Given 

the autocorrelation function we can derive σ2 with the variance of the ensemble. As the 

variance increases, σ2 increases (Fig. 5D). Thus we know if σ2 must be large for an efficient 

response, the variance must also be large for an efficient response. We find that this well 

agrees with experiment: as the variance of the initial CCDD increases, Δ decreases (Fig. 5E).

IV. Discussion

We may now return to answer our original question, “does increasing the noise in the 

mechanisms regulating the cell cycle correlate with decreased cell fitness?” We have 

discussed how increased non-genetic heterogeneity does indeed decrease the mean ensemble 

growth rate, and thus correlates with decreased cell fitness in this way; however, this noise 

does not seem to impair cell adaptability. Perhaps most strikingly, we see that cell response 

rate from a stressed condition to rich media is inversely correlated to the mean ensemble 

growth rate before the switch and positively correlated to the noise before the switch. Thus 

increasing the variance of the CCDD, attributable to increasing non-genetic heterogeneity of 

the culture, actually correlates with improved adaptability of the cell to environmental 

changes. In this way increasing the noise may actually correlate with improved cell fitness. 

This may be because with increased noise, cells can explore a wider range of phenotypes 

and some are already well suited for a new environment before it is introduced.
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This idea falls into a rich discussion which seems to be gaining momentum: that even the 

simplest biological systems with minimal cooperativity exhibit mechanisms which limit 

growth for single cells at short times to boost long term growth. This is observed in budding 

yeast2 where cells which cluster due to gravity selection exhibit an increased death rate. 

Clearly increasing the death rate for an individual cell lineage is deleterious for the growth 

of that lineage; however, it turns out that this phenomenon leads to a higher overall cell 

density and longer term growth rate due to the intrinsic geometric confinement of the yeast 

budding pattern. Similar spatial patterning is observed in slime molds3 where cells will 

actually synchronize their cycles which does not confer any clear single-cellular benefit 

though it does contribute to pseudo-multicellular phenomena. These cooperative phenomena 

are observed in bacteria as well. Recent investigation has probed what situations give rise to 

the emergence of a decoupling between the fitness of a collective and its constituent 

individuals.4 In a similar vein, it has been shown that bacteria will sometimes select to signal 

for slow growth while still at low density so that metabolism homeostasis may preserved for 

a longer period of time entering stationary phase at high densities.5 We think the phenomena 

described in this work are interesting in part because they do not appear to rely on cell–cell 

communication (growth in the mother-machine has limited signalling due to the low 

occupation of each microchannel and the high flow rate through the main channel hindering 

signalling between channels); yet they still fall into this class of ideas: long term bulk growth 

rate is improved through mechanisms which hinder short term single cell growth (in our 

interpretation, due to noise).

In other stochastic systems, the fluctuation dissipation theorem (FDT) expresses a similar 

concept. However, we have not proved this connection conclusively, since in E. coli, 〈δτ2〉 is 

positively correlated with the mean division time and one could also argue that a slower 

dividing cell responds efficiently. Alternatively, it could be due to the difference in the 

magnitude of the shift: larger environmental shocks result in faster response due to improved 

sensing. Though we interpret this improvement to be due to the noise, even if this effect is a 

product of the mean cell cycle duration or the magnitude of the environmental shift, we hope 

our presentation of this phenomenon will motivate further investigation. The conclusive 

proof that this phenomenon is due to noise alone requires comparison between strains that 

divide with the same mean, but different 〈δτ2〉. Such a construct is currently not available to 

us.

On much shorter time scales, noise in protein expression34 has proven to be important for 

cellular robustness35 and displayed clinical relevance: increasing the stochasticity of protein 

expression can help combat dormant pathogens such as HIV.36 Here we showed that these 

short term fluctuations in the biochemical regulation of the cell cycle are correlated with the 

ability of a cell to adapt to a changing environment, analogous to the long term genetic 

adaptations37 and complementary to long term memory of a periodic, fluctuating 

environment.38,39 Our results here provide some motivation for the mean-scaling (or fixed 

CV) of CCDDs and their universal shape: when growing fast, cells may benefit most from 

stability where a greater gain may be achieved from optimizing growth for the current and 

immediate environment; however when growing slowly, cells might benefit more from 

improving their adaptability so that when superior growth conditions are presented they may 

respond efficiently to best utilize the new environmental conditions. When the mean cell 
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cycle duration is large, it most benefits the population to be heterogeneous. When the mean 

is small it is best for the population to be homogenous.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Insight, innovation, integration

Identifying mechanisms that govern cell cycle regulation is one of the fundamental 

questions in biology. In this paper, using a combination of modeling and microfluidic 

experiments in the test system of E. coli, we find that increased noise in the cell cycle 

time, while negatively impacting the overall cell growth rate, correlates to improved 

adaptability of the cell to changing environments. This suggests that stochastic noise in 

the cell cycle has an evolutionary role: a more variable cell cycle allows the cell to 

respond more efficiently to environmental changes.
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Fig. 1. 
(A) Cartoon of the mother machine. (B) An image displaying E. coli cells in the 

microchannels. The scale bar is 5 microns. (C) E. coli cell cycle duration distributions 

(CCDDs) measured at constant nutrient conditions. See the Section III (ESI†) for more 

details. (D) Measured variance of the cell cycle duration. (E) Coefficient of variation (CV) 

of the cell cycle duration: CV is roughly constant across all conditions. Please see Fig. S1 

(ESI†) panel B for a direct overlay of the distributions displayed in (C) and scaled by the 

respective mean values.
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Fig. 2. 
(A) The maximum ensemble growth rate, r, where r is solved according to τ*r + K ln(1 + r/
θ) = ln 2, when τ* = 12 min (the shortest division recorded) and K and θ are allowed to vary, 

as a function of variance (experimentally observed values are circles). (B) Single cell cycle 

duration trajectories (from 3 separate cells in the mother machine). The dotted line is the 

average duration. (C) The CCDD histogramed from single mother cells over different 

generation intervals (dotted line is the full distribution corresponding to the CCDD collected 

from the entire ensemble).
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Fig. 3. 
Eight step environmental change experiments. The experimental distributions (here fitted to 

Gamma distributions and smoothed; see Fig. S5 (ESI†) for a direct comparison with the raw 

data) are displayed using colors with highest probability in red and lowest probability in 

blue. The black lines are the model predictions for the average. The insets are representable 

single cell trajectories. The magnitude of the environmental shock increases from left to 

right across the figure in both rows. The difference in the mean stationary CCDD from the 

start of the experiment to the finish is approximately: for experiments 1 & 2 20 min, 3 & 4 

40 min, 5 & 6 80 min, and 7 & 8 150 min. Please see Section IV (ESI†) for more details.

Rochman et al. Page 20

Integr Biol (Camb). Author manuscript; available in PMC 2018 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 4. 
Comparisons between model and experiment of the initial (generation 0) and final 

distributions (first generation at which the population is equilibrated to the final state) from 

three representative experiments. The x-axis is τ (min): the cell cycle duration and the y axis 

is ρ (1/min): the probability density. The three experiments displayed are, from left to right: 

Experiment one, nutrient increase; Experiment two, nutrient decrease; and Experiment 

seven, the removal of the highest osmotic stress tested.

Rochman et al. Page 21

Integr Biol (Camb). Author manuscript; available in PMC 2018 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 5. 
(A) Average cell response speed vs. shock severity: |μf − μi|. (B) Δ vs. shock severity |μf − 

μi|. (C) Δ vs. σ2 for the initial ensemble before the step change. (D) σ2 vs. variance of the 

cell cycle duration 〈δτ2〉 derived from the autocorrelation function before the step change. 

(E) Δ vs. variance (bars denote standard deviation). As the variance of the initial CCDD 

before the environment change increases, Δ decreases, and thus the response efficiency 

improves. Theory results are displayed as red lines or stars.
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