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Abstract

Picture naming impairments are a typical feature of stroke-induced aphasia. Overall accuracy and 

rates of different error types are used to make inferences about the severity and nature of damage 

to the brain’s language network. Currently available assessment tools for picture naming accuracy 

treat it as a unidimensional measure, while assessment tools for error types treat items 

homogenously, contrary to findings from psycholinguistic investigations of word production. We 

created and tested a new cognitive psychometric model for assessment of picture naming 

responses, using cognitive theory to specify latent processing decisions during the production of a 

naming attempt, and using item response theory to separate the effects of item difficulty and 

participant ability on these internal processing decisions. The model enables multidimensional 

assessment of latent picture naming abilities on a common scale, with a relatively large cohort for 

normative reference. We present the results of four experiments testing our interpretation of the 

model’s parameters, as they apply to picture naming predictions, lexical properties of the items, 

statistical properties of the lexicon, and participants’ scores on other tests. We also created a 

website for researchers and clinicians to analyze item-level data using our model, providing 

estimates of latent abilities and percentile scores, as well as credible intervals to help gauge the 

reliability of the estimated model parameters and identify meaningful changes. To the extent that 

the model is successful, the estimated parameter values may aid in treatment decisions and 

progress monitoring, or they may help elucidate the functional properties of brain networks.
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Impaired picture naming (anomia) is common in most cases of aphasia and is assessed as 

part of most comprehensive aphasia test batteries. Picture naming has played an important 

role in aphasia assessment, due to its strong constraints of having well-defined targets and its 
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engagement of the full complement of systems required to transform intentional meaning 

into speech sounds. Although picture naming accuracy is a relatively easily obtained and 

reliable test score (Walker & Schwartz (2012) report test-retest reliability of r(24) = .99), it 

is generally recognized as being influenced by multiple dissociable component processes 

(e.g., vision, attention, grammar, semantics, lexical access, morphology, phonology, 

syllabification, articulation, etc.). The types of errors that are committed can provide useful 

information for diagnosis and specific targeting of these component processes in treatment. 

In the context of aphasia assessment, naming errors are typically categorized with respect to 

their lexical status, semantic relationship to the target, and/or phonological relationship to 

the target. The relative frequencies of different response types may be informative on their 

own; for example, a high proportion of semantic errors suggests a deficit at the conceptual 

level of processing (Schwartz et al., 2009; Walker et al., 2011). Additionally, complex 

cognitive models have been used to make inferences about the integrity of theoretical 

components of a speech production system, given a distribution of response types (Foygel & 

Dell, 2000; Walker & Hickok, 2016). While these approaches are able to address the 

multifaceted nature of the task, they tend to neglect the differences among test items, despite 

a rich literature on how psycholinguistic properties of targets influence error rates (Harley & 

MacAndrew, 2001; Martin, Weisberg, & Saffran, 1989; Nickels & Howard, 1995, 1999, 

2004; Swan & Goswami, 1997; Vitkovitch, Humphreys, & Lloyd-Jones, 1993). In the cases 

where item-level effects have been addressed (e.g., Gordon & Dell, 2001; Nozari, Kittredge, 

Dell, & Schwartz, 2010), a small number of parameter manipulations were implemented to 

demonstrate a plausible relationship between specific model components and item-level 

effects, rather than comprehensively incorporating item-level effects into the model on the 

basis of a full theory with the aim of assessment. On the other hand, the simple 

psychometric models that have been used to disentangle the effects of item difficulty and 

participant ability on picture naming responses usually treat accuracy as a unidimensional 

measure (Fergadiotis, Kellough, & Hula, 2015). We believe that if the picture naming task 

can be formalized at the proper level of description, the benefits of these approaches can be 

combined, providing an opportunity to improve the utility of picture naming performance 

for diagnostic and treatment outcome assessment as well as for informing mechanistic (i.e., 

neurocomputational) models of speech production.

Multinomial Processing Trees

A multinomial processing tree (MPT) model describes the information-processing steps that 

lead to responses in an experimental paradigm that has discrete categorical outcomes on 

each trial (Batchelder, 1998; Batchelder & Riefer, 1999). These internal processing steps can 

be formalized as a binary branching tree, where each bifurcation is associated with a 

parameter representing the probability of successful processing at that step, and each leaf 

node is associated with a response type. The probability of each response type is easily 

calculated as a product of the branches leading from the root node to the leaf node(s) of 

interest, and summing these products if there are multiple leaf nodes of the same type. MPT 

models have been constructed to explain performance on a wide variety of psychological 

tests (for a review, see Erdfelder, Auer, Hilbig, Aßfalg, Moshagen, & Nadarevic, 2009). The 

most similar MPT modeling work to that presented here is a study by Reiter (2000), which 
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analyzed picture naming responses on the Boston Naming Test (Kaplan, Goodglass, & 

Weintraub, 1983) from individuals with cerebrovascular or Alzheimer’s dementia. MPT 

models are designed for specific testing paradigms, however, so the use of different test 

items, scoring protocols, and populations of interest precludes a direct extension to our data. 

Furthermore, while Reiter (2000) had the explicit aim of categorizing individuals by 

diagnosis, our goal was to create an interpretable measurement scale for picture naming 

abilities in the context of aphasia, that is, providing quantitative assessments of the 

computational integrity of the various processing stages involved in picture naming. Ideally, 

these quantitative assessments will be useful for clinical treatment decisions and progress 

monitoring, as well as characterizing functional brain circuits using neuroimaging 

techniques.

Building a model with parameters that are probabilities of successful processing (as opposed 

to network connectivity matrices, neuronal firing rates, neuroimaging signals, vocal tract 

configurations, acoustic spectrograms, etc.) has advantages and disadvantages; while the 

mechanistic propositions are intentionally vague, the statistical applications are well-

understood. As Batchelder (1998, p. 332) proposes, “What is needed to transfer our 

knowledge of information processing into serviceable assessment tools is to develop simple, 

approximate models … Such models capture the fundamental information-processing events 

in a testing paradigm; however, they are pragmatic in the sense that they trade theoretical 

completeness for statistical serviceability.” While the serviceability of MPT models for 

assessment of individual participants has been demonstrated across many experimental 

paradigms, these models often assume homogeneity of test items. Because the MPT 

parameters can be conceptualized as probabilities of success, however, they are potentially 

compatible with formalizations from item response theory (see Supplementary Material for 

further discussion).

The picture naming task for aphasia assessment is a testing paradigm that can benefit from 

analysis with an MPT model that accounts for item and participant heterogeneity 

(Batchelder, 2010; Matzke, Dolam, Batchelder, & Wagenmakers, 2015). In the remaining 

sections, first we describe the participants and the picture naming data that were utilized for 

model development; next we turn to the details of the MPT model and the parameter 

estimation procedure; then we present the results of four experiments testing our 

interpretations of the model’s parameters. We conclude with a description of an online 

model fitting tool, along with a discussion of the model’s limitations and potential 

applications for research and clinical purposes. Our intended audience is both the clinician 

or researcher who may find immediate uses for this particular assessment tool, as well as the 

mathematical psychologist who may find opportunities to adapt or improve the framework 

presented here. To that end, we try to take a pragmatic approach by generally focusing on 

the utility of the model in the main text, and we provide model code and further rationale for 

our modeling decisions that we consider extraneous to the model’s essential use and 

interpretation in Supplementary Material.
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Evaluating Anomia in People with Aphasia

Participants

We analyzed archived behavioral data from 365 participants with a single-event, left-

hemisphere ischemic stroke and aphasia, from two different research institutions in different 

geographical regions of the United States. Two hundred seventy-five participants were 

examined at the Moss Rehabilitation Research Institute (MRRI) in Philadelphia, PA; their 

data were available from a public archive called the MAPPD database (Mirman et al., 2010; 

www.mappd.org). Ninety participants were examined at the University of South Carolina in 

Columbia, SC; they were recruited as part of a larger study of ischemic stroke, and represent 

a subsample of the 98 participants who were included in the examination of structural MRI 

and aphasia classification by Yourganov, Smith, Fridriksson, and Rorden (2015) and who 

also performed picture naming. Table 1 provides clinical and demographic characteristics for 

the two cohorts, separately and combined. The demographic data, clinical data, participant-

level picture naming data, and participant-level parameter estimates used in this paper are 

available from: http://www.cogsci.uci.edu/~alns/MPTfit.php.

The participant cohorts exhibited clear statistical differences with respect to clinical 

measures (indicated in Table 1), with the SC cohort tending to present with more severe 

aphasia. The target populations for recruitment were similar for both projects, however, with 

hospital in-patients being approached as well as members of local stroke survivor groups. 

The prevailing assumption is that the differences in the cohorts’ clinical characteristics were 

due to the offer of treatment during recruitment for SC studies along with a cautious 

optimism for improvement, while MRRI’s recruiters had to clearly communicate that 

participants were not expected to benefit from enrollment in their studies. Despite these 

differences in sampling methods, the underlying population of people with aphasia was 

theoretically the same, and we therefore combined the data to obtain broader coverage of the 

ability spectrum.

Picture Naming Data

Picture naming data were collected using the Philadelphia Naming Test (PNT; Roach, 

Schwartz, Martin, Grewal, & Brecher, 1996), a confrontation naming task consisting of 175 

drawings of common nouns with high familiarity and name agreement. All participants were 

presented with all test items, yielding a total of 63,875 total naming trials for analysis. Each 

response was classified into one of eight categories, based on lexical status, semantic 

relatedness, and phonological relatedness (see Table 2). Lenient scoring to correct for 

articulatory motor impairment was not applied, to be commensurate with other naming 

measures (e.g., Fergadiotis et al., 2015; Kaplan et al., 1983; Kertesz, 2007). The 

psycholinguistic properties of the PNT items (frequency, length, and phonological density) 

and item-level model parameter estimates used in this paper are also available from: http://

www.cogsci.uci.edu/~alns/MPTfit.php.

Preliminary analyses revealed significant variance in the response type rates across both 

participants and items. Under an assumption of homogeneity, responses should be 

interchangeable without disrupting the observed distributions and by randomly permuting 
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the responses across participants or items, we can observe whether this is truly the case. 

Monte Carlo statistical tests (Smith & Batchelder, 2008) detected both participant and item 

heterogeneity in response type distributions (n = 10,000; both p < .0001). Similarly, one-way 

ANOVAs examining each of the response type rates across participants and items were 

significant (all p < .05), except for abstruse neologism rates across items. These results mean 

that the sample includes participants who tend to produce different response types and the 

picture naming test includes items that tend to elicit different response types. There is 

enough variance in the data to warrant an account of the statistical effects of items on 

naming response types.

A Cognitive Psychometric Model for Picture Naming

Model Architecture

We created an MPT model that specifies a set of possible internal errors that lead to the 

various possible response types during a picture naming trial. The model’s architecture is 

informed by the interactive two-step theory of lexical access (Dell, Schwartz, Martin, 

Saffran, & Gagnon, 1997; Foygel & Dell, 2000), in particular, the two-step assumption; the 

MPT model remains agnostic with respect to interactivity among representations (see 

Supplementary Material for further discussion). The fundamental two-step assumption is 

that substitution errors during production can occur either at the whole word (lexical) level 

or the segment (phonological) level. We will use the terms word, lexeme, or lexical to refer 

to the former type of representations, and string, phonemes, or phonological to refer to the 

latter. Some error types are unambiguous with respect to their level of origin; semantic 

errors result from lexical substitutions and neologism errors result from phonological 

substitutions. Real word responses that are phonologically related to the target can arise 

from substitutions at either level, however, and a statistical model that considers the 

frequencies of different error types as well as test item properties can help identify the most 

likely origin. Figure 1 depicts the MPT model in a manner that emphasizes the two levels of 

linguistic representation which are assumed to be essential for word production: lexical and 

phonological representations. In order to name a picture, a participant must decide which 

word matches the picture, and which speech sounds express that word. The model has 5 

probabilities that govern lexical selection processes, illustrated along the horizontal top level 

of the tree diagram, and the model has 3 probabilities that govern phonological processing 

after lexical selection, illustrated as descending branches from the second level of the tree 

diagram. Descriptions of the probabilities are provided in Table 3. Beside the separation of 

lexical and phonological processing levels, the MPT model adopts several more processing 

assumptions from cognitive theory about picture naming.

1. Errors of omission and commission result from separable (i.e., conditionally 

independent) processes. Therefore, non-naming attempts are the only responses 

that depend on a single parameter. This is a simplifying assumption that sifts 

lexical access errors from failures that may have occurred in peripheral systems 

(Dell, Lawler, Harris, & Gordon, 2004; but see Bormann, Kulke, Wallesch, & 

Blanken, 2008).
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2. Some lexical errors require more correct processing than others (Schwartz, Dell, 

Martin, Gahl, & Sobel, 2006). A semantic error reveals at least partial retrieval of 

the pictured concept’s features. Additionally, a hallmark of the interactive theory 

of lexical retrieval (Dell et al., 1996) is that initial success during lexical 

selection may be undermined by feedback from concurrently activated 

phonological neighbors. Thus, a formal error at the lexical level reveals at least 

partial retrieval of the target word.1 In the final stage of lexical processing, strong 

competitors that are both semantically and phonologically related must be 

rejected; mixed errors reveal this close proximity to the target. The MPT model’s 

architecture thus establishes a conditional gradient of correct processing over the 

possible lexical errors, from non-naming attempts to correct responses. The 

effect of this conditional gradient is that when we evaluate a probability of a 

particular lexical selection error, we are only considering “downstream” lexical 

selections as possible alternatives; the probabilities of “upstream” selections are 

already accounted for by other parameters.

It is worth noting that this structure is one of many possible trees that can fit the 

data equally well with the same number of parameters. For example, lexical 

selection could be represented with 6 branches emerging from the root node, 1 

for No Attempt and 1 for each of the 5 lexical selection possibilities, or the nodes 

at the lexical level of our binary branching tree could be reordered. The statistical 

properties of these models in terms of fit would be nearly identical to our binary 

branching model, although the values and interpretations of the parameters 

would be different (Batchelder & Riefer, 1999). We therefore do not view the 

conditional gradient in our binary branching model as a strong theoretical claim 

about serial processing stages at the lexical level; rather, it is a mathematically 

convenient and theoretically motivated way to describe the possible outcomes of 

lexical selection. This formalism deviates from the typical parallel processing 

approach, which, for example, usually treats Semantic and Mixed errors as 

arising from similar mechanisms and, thus, similar parameters. It is important to 

remember that the parameters in an MPT model are probabilities of success, and 

therefore a similar mechanistic source may be reflected in similar probabilities of 

successfully avoiding those errors (see Supplementary Material for further 

discussion), which is indeed the case for the LexSem and LexSel abilities in our 

sample. Somewhat side-stepping the issue of finding the best-fitting tree 

structure, we believe that experiments validating our interpretation of the 

model’s parameters, using data external to the model fitting procedure, are a 

more convincing demonstration of the model’s utility than fit statistics alone.

3. The probability that a phonological error results in a real word depends on the 

statistical structure of the lexicon and the generative rules for production (Dell, 

1986). A phonological error is operationalized as a single phoneme addition, 

deletion, or substitution; the probability of a resulting real word depends on how 

1The model does not have a theoretical commitment to interactivity between representations, as the possibility of selecting a 
phonologically related lexeme can arise from other mechanisms besides interactive feedback; the tree structure is merely consistent 
with the existence of a feedback mechanism.

Walker et al. Page 6

Psychol Assess. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



many phonologically similar neighbors the original word has. This probability 

can be estimated for a specific lexeme or a random lexeme, depending on 

whether the phonological neighborhood of the selected lexeme can be assumed 

to be the same as the target, or is otherwise unknown. For example, if the target 

were cat, the probability of responses such as “rat” or “zat” is likely different 

than the probability of responses such as “umbrella” or “flurp”; in the former 

case, the probability of a real word is influenced by the target’s phonological 

neighborhood, while in the latter case, the probability of a real word depends on 

the lexicon as a whole. This difference becomes manifest in the MPT model 

through the use of the item-dependent Word-T parameter that describes the 

phonological density of the target lexeme, and the global Word-L parameter that 

describes the phonological density of the entire lexicon.

4. A probability on any given trial is determined by the participant only, the item 

only, the participant and the item, or a global constant that applies to all trials. 

The probability of identifying the correct semantic neighborhood of the picture 

(i.e., picture recognition) is assumed to depend on the participant only; the 

pictures themselves are assumed to be of approximately equal quality, with 

familiar targets. The probability of a phoneme change in the target word creating 

a real word is assumed to depend on the item only, while the probability of a 

phoneme change in a random word creating a real word is assumed to be the 

same on all trials. All other probabilities in the MPT model are assumed to 

depend on both the participant and the item, according to a Rasch model.

Bayesian Estimation of Model Parameters

All analyses in this article were performed using MATLAB functions or custom scripts. We 

used Gibbs sampling to construct posterior distributions of the model parameters given the 

data with the JAGS software package (Plummer, 2003) and the MATJAGS interface 

(available from http://psiexp.ss.uci.edu/research/programs_data/jags/). Essentially, we begin 

with assumptions about the possible values of each parameter (prior distributions), and then 

randomly sample these values, keeping or rejecting them based on the how likely the data 

are to occur under those specified values. The resulting chain of samples approximates the 

most likely distribution of parameter values that generated the data (posterior distributions).

Prior distributions for ability and difficulty parameters were standard normal distributions, 

while prior distributions for probability parameters were standard uniform distributions. The 

model had 2,190 participant parameters (365 participants × 6 parameters), 1,050 item 

parameters (175 items × 6 parameters), and 1 global parameter, for a total of 3,241 

parameters. The data were the 63,875 categorical naming response vectors, in the form of 

seven 0s and a 1 indicating the response category. Posterior predictive distributions were 

also generated; for each sample of parameter values, a prediction was made for the response 

type on each trial, and the most frequently predicted response type (the mode) was assumed 

to be the most likely response type.

Because the fitting procedure is stochastic, multiple sampling chains are randomly initialized 

and run in parallel to check for consistency in the resulting estimates. We ran 4 chains of 
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1,000 samples. Visual inspection of the chains showed rapid convergence and good mixing, 

indicating successful sampling of the posterior distribution (Lee & Wagenmakers, 2014). 

Agreement between the modes of the posterior predictive distributions and the observed data 

was 67.7%.

The means of the posterior distributions were taken as point estimates of the model’s 

parameters after observing the data. These represent our best guesses for the individual 

parameter values, which sit on a logit scale centered at 0 and range from approximately −6 

to 6. The frequency distributions of the ability and difficulty parameter point estimates are 

shown in Figure 2. (Estimates for the Word-T and Word-L parameters, relating to the 

statistical structure of the lexicon, are discussed further in Experiment 3.) Consistent with 

our preliminary analyses, there appears to be plenty of variance among the estimated 

participant abilities and item difficulties. Under our prior assumptions, there would only be a 

single bar stacked at 0 for each of the parameters. The means of the posterior distributions 

have clearly been influenced by the data.

The Bayesian estimation procedure also provides an interval estimate for the parameters, a 

range of credible values; the width of the interval indicates how confident we can be in our 

point estimates. The frequency distributions of 95% credible interval (CI) widths are shown 

in Figure 3. A 95% CI for a parameter on the logit scale would have a width of 

approximately 4 under our prior distribution (i.e., 0 plus or minus 2 standard deviations); 

after observing data, a CI width of 1 would mean that we have eliminated approximately 

75% of the prior credible parameter values. One notable result is that the LexPhon ability 

estimates carry the most uncertainty (largest CI widths), which is caused by the shared 

explanatory duty for Formal responses with the Phon parameter, combined with a higher 

position in the tree hierarchy. The takeaway point here is that the source of phonological 

errors is inherently more difficult to identify than other lexical errors by design of the model, 

and the Bayesian approach to parameter estimation captures this uncertainty. The most 

straightforward way to further reduce uncertainty in parameter estimates is to gather more 

data, perhaps by combining multiple baseline administrations of the PNT. Another notable 

result is that some participants have large CI widths due to many Non-Naming Attempts, 

which do not allow for further refinement of lexical access ability estimates. In these cases, 

the point estimates of ability are dominated by the means of the prior distributions, i.e., 0, 

which, given the task and multiplicative model structure, we view as an appropriately low 

estimate. We therefore include all ability estimates in further analyses; excluding 

participants based on CI widths does not substantially alter the results.

The distributions of the log likelihoods of the data under the fitted model for participants and 

items are shown in Figure S1. The log likelihood of the data is calculated using the log-

transformed proportion of the posterior predictive samples that were attributed to the 

observed category on each trial, summed over participants or items. Although the absolute 

magnitude of a log likelihood can be difficult to evaluate on its own, the approximately 

normal shape of the distributions and lack of outliers indicate that the model’s estimates are 

not obviously favoring or neglecting specific participants or items. We demonstrate in 

Experiment 1 that the model still extracts useful information even for the worst-fit 
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participant and item, those for which the model assigns the lowest probability to the 

observed data.

Validation of Parameter Interpretations

After estimating the parameter values that best fit the picture naming data, we examined two 

broad questions. (a) Does the model make reasonable predictions about picture naming data? 

A model of picture naming that makes wild, unfulfilled predictions is not a useful model; on 

the other hand, successful picture naming predictions provide evidence that the model’s 

parameters are working as intended (Experiment 1). Perhaps more importantly, (b) do the 

model’s parameters measure the intended constructs? Because the model is motivated by 

cognitive theory, the model’s components should apply to phenomena beyond the picture 

naming data used for model fitting. Item difficulties should relate to lexical properties of the 

items (Experiment 2), probabilities of phonological real word errors should relate to the 

statistical properties of the lexicon (Experiment 3), and participant abilities should relate to 

other behavioral tasks (Experiment 4).

Experiment 1

To evaluate the MPT model’s item-level picture naming predictions, we compared them with 

predictions from several other, purely statistical (i.e., data-driven), pattern recognition 

models. The goal was to determine whether the MPT model’s assumptions about the data-

generating processes improve predictions, beyond what is available in the data, prima facie.

Method—This study did not receive research ethics committee approval, because it did not 

qualify as human subjects research; all data were pre-existing and de-identified. We used the 

picture naming data to create a guessing game, and we evaluated the accuracy of guesses 

that were informed by different models. Parameters are just a set of variables that can each 

take a value, a list of numbers, and a model is a set of rules that maps a set of data values 

into a set of parameter values, and vice versa. We have already described how the MPT 

model maps between its parameters and picture naming data, using the modes of the 

posterior predictive distributions. Although we use the term “prediction” here, the method is 

more akin to lossy compression; rather than withholding a small set of testing data, all of the 

data are used to obtain parameter values, which are subsequently used to reconstruct the 

data. We use the term “prediction accuracy” to refer to the fidelity of this reconstruction, i.e., 

the percent of items where the response category can be accurately recovered from the 

parameters.

We also provide an intuitive measure of prediction quality that we call “net profit.” Imagine 

that we set fair payouts for our game using the relative frequencies of response types in the 

entire data set,

Pk =
∑k = 1

K Xk
Xk

,
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where Pk is the payout multiplier for a wager on response category k, Xk is the total number 

of responses in category k, and K is the number of response categories, so that recovering a 

less frequent response category is worth more. We bet 1 dollar per datum, wagering the 

entire dollar on a single response category. We can then calculate the expected net profit 

when using each model as our guessing strategy.

Alternatively, since the model generates probabilities, we could distribute 100 cents over the 

response categories in proportion to our expectations, but this would yield suboptimal gains. 

Consider a weighted coin that is known to result in Heads 60% of the time, so a fair payout 

multiplier is set, {H=1.667, T=2.5}. The payout multiplier is fair if the probabilities of the 

outcomes are common knowledge; whether we bet the entire dollar on Heads or Tails or split 

the wager 60/40, the expected net profit is 0. But if we learn that the person flipping the coin 

does it in such a way that results in Heads 70% of the time, making the original payout 

multiplier no longer fair, always betting on Heads gives better returns than splitting the bet 

70/30. For example, making 10 bets with each strategy would result in expected net profits:

NP1 = 7 × (1.00 × 1.667) + 3 × (0.00 × 2.5) − 10.00 = 1.669

NP2 = 7 × (0.70 × 1.667) + 3 × (0.30 × 2.5) − 10.00 = 0.418

Our models are like informants that review the data and gather as much information as 

possible, then give us their best estimate of how the “real” odds on a naming trial deviate 

from the “fair” odds. Better information leads to better bets and more profit. Whether the 

gathered information (the fitted model) is useful outside of this context is a matter that we 

set aside for further validation experiments. Other popular model selection criteria, 

sometimes known as goodness-of-fit statistics, such as the Akaike information criterion 

(AIC), Bayesian information criterion (BIC), or deviance information criterion (DIC), make 

strong assumptions about the inherent value (or cost) of additional parameters, in order to 

address a concern that a model’s predictive value is driven by additional complexity, per se, 

rather than the intended theoretical constructs and thus may not generalize (Pitt & Myung, 

2002). Here, we are explicitly interested in the raw predictive value of the MPT model, 

intentional or otherwise, and we compare it with other statistical models that have no 

theoretical constructs nor any expectations to generalize. The net profit metric allows us to 

directly evaluate the contribution of adding parameters or changing rules to the predictive 

value of a model in a pragmatic and familiar context, i.e., monetary value. We examined 

several comparison models along with a baseline and a ceiling model.

1. Uniform Random Model - Each prediction was randomly selected from the 8 

possible categories with equal probability. This model was presented as a 

baseline for comparison, and the values are assumed to follow directly from 

probability theory. We use the expected value of the hypergeometric distribution 

to determine the number of accurate predictions for each response type. This 

model had 0 parameters.
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2. Population Probability Matching Model - Each prediction was based on the 

relative frequencies of response types in the entire data set. For example, because 

55.8% of all responses were correct, there was a .558 probability of predicting a 

correct response on each trial. This model had 7 parameters, one for each 

response type rate except one, which is determined by the parameters summing 

to 1.

3. Individual Probability Matching Model – Each prediction was based on the 

relative frequencies of response types for each individual participant. For 

example, if a participant had 95.0% correct responses, there was a .950 

probability of predicting a correct response on each of the trials for that 

participant. Describing a participant’s naming profile in terms of the relative 

frequencies of responses is the same approach taken by models that assume 

homogeneity of items. This model had 2,555 parameters, which included 7 

response type rates (with 1 determined rate) for each of the 365 participants.

4. Modal Model - Each prediction was based on the most frequently observed 

response type (i.e., the mode) for each participant. For example, if a participant 

has a plurality of responses that are neologisms, then all responses are predicted 

to be neologisms. This is an optimal guessing strategy when item-level 

information is unavailable. This model had 365 parameters, one for each 

participant.

5. Modal+Correction(badfit) Model - Each prediction was based on the mode for 

each participant, and for a limited number of responses that deviate from the 

mode, a 2-tuple of parameters rectified the prediction error; 1 parameter indexed 

the divergent datum and 1 parameter indexed the response category that was 

actually observed. Because the MPT model had 3,241 parameters, and the modal 

model only had 365 parameters, this model used the remaining 2,876 parameters 

to rectify 1,438 prediction errors. The choice of which predictions to rectify does 

not influence the total prediction accuracy, but it does influence the net profit 

depending on the relative frequency of the errors which are rectified. For this 

model, errors are corrected in order of the participants who have the most 

prediction errors under the modal model. This model had 3,241 parameters, the 

same as the MPT model.

6. Modal+Correction(Mix) Model – This model is the same as above, but 

corrections are made in order of the relative frequency of the response types. 

Because Mixed errors are the least frequent responses, they have the greatest 

impact on net profit. This model corrects 1,438 of the 1,587 Mixed responses in 

the data, in order to maximize the net profit.

7. Feedforward Neural Network Model - Each prediction was based on the output 

layer of a feedforward neural network model. The model was constructed using 

the MATLAB neural network pattern recognition tool, and 10 randomly 

initialized versions of the model were trained on the full data set using the 

default backpropagation method. Because this is a stochastic gradient descent 

method, different instantiations of the model can identify different local minima 
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of prediction error. All units used the default sigmoid transfer function. The 

model architecture is illustrated in Figure S2. The model had 2 input layers, each 

a vector of 0s with a 1 indicating an item or a participant. Each input layer was 

connected to its own hidden layer, and these hidden layers were then connected 

to a common hidden layer leading to the output layer. The size of the hidden 

layers determined the number of connections in the model ((365 × N1) + (175 × 

N2) + ((N1 + N2) × N3) + (N3 × 8)), and thus the number of parameters. The 

model had 6 units in the hidden layer for participants, 5 units in the hidden layer 

for items, and 10 units in the common hidden layer. The model had 3,255 

parameters.

8. Full Model - Each prediction is based on the full data set; the model is simply a 

list of the response types that were observed on each trial, so the predictions are 

perfectly accurate. This model is presented as a ceiling2 for comparison. The 

model has 63,875 parameters.

Results & Discussion—The picture naming prediction results are presented in Table 4, 

and there are several noteworthy findings. As expected, randomly guessing is a poor 

strategy, even when the population frequencies are taken into account. When the participant-

level frequencies are accounted for, performance dramatically improves, but total accuracy 

still remains worse than strategies that use the frequency mode or consider the individual 

item when making predictions. Three of the neural networks solely predicted correct 

responses, the mode for the full data set, and none of them predicted any lexical errors 

(semantic, formal, mixed, or unrelated). Perhaps the most striking result is that the MPT 

model had the highest total accuracy and correctly predicted every type of response. The 

results indicate that the MPT model’s predictions are at least as good as several different 

classes of data-driven, pattern recognition models; its cognitive assumptions are useful for 

explaining this type of data.

It is worth considering the items and participants for which the MPT model made the worst 

predictions. The MPT model extracted profitable information even for the participant and 

item with the lowest posterior log likelihoods (and thus the lowest prediction accuracies): 

For the participant whose responses had the lowest predictability (24.6%) - a female 

participant with Wernicke’s aphasia who produced 3.4% Correct responses, 13.7% Non-

Naming Attempts, and 27.4% Unrelated responses - the model’s net profit over the 175 

items was $869.88. For the item that elicited responses with the lowest predictability 

(47.4%) - slippers, which prompted 33% Correct responses and 29% Semantic or Mixed 

errors - the model’s net profit over the 365 participants was $762.49. There was only a 

single participant for whom the MPT model’s predictions yielded a net cost ($-12.12) with 

45.1% accuracy over the 175 items: a female participant with Broca’s aphasia who produced 

45.1% Correct responses, 13.1% Non-naming Attempts, and 10.9% Neologism errors. 

Although the MPT model’s predictions yielded a slight loss of net profit for this participant, 

the prediction accuracy was no worse than guessing the mode (i.e., Correct) for each trial. 

2The full model represents a ceiling for the encoding paradigm. In a truly predictive paradigm, there may be an effective limit on the 
expected prediction accuracy, for instance, if responses are truly stochastic.
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The model’s predictions were profitable for each of the items over the 365 participants; the 

item with the minimum net profit, baby, prompted 78% Correct responses and yielded a net 

profit of $262.37. The MPT model offers predictive value for all participants and items in 

our sample, even in the worst cases.

If our objective were to maximize the efficiency of our model by balancing prediction 

accuracy with model complexity, then the modal model would be the winner. But identifying 

an individual participant as “mostly [response type]” reveals little else about their underlying 

pathology and their behavior in other contexts. Similarly, the modal models with correction 

maximize the net profit in a guessing game based on this specific dataset, but this is not our 

goal either. The main strength of the theory-driven MPT model is that its components are 

interpretable and should generalize to any data that rely on the same theoretical constructs. 

Future comparisons of the MPT model against other theoretically motivated models of 

picture naming should also benefit from investigations that go beyond goodness-of-fit 

statistics.

Experiment 2

A primary function of the extended MPT model is that it sorts test items by different types 

of difficulty. Some items are more prone to eliciting errors than other items, making them 

more difficult, but they may be difficult in different ways by challenging different naming 

abilities. Table 5 lists the top and bottom ranked items for each type of difficulty. Items like 

skull or plant are difficult because they have strong lexical competitors, like skeleton or 

flowers, respectively; items such as binoculars or stethoscope do not have strong lexical 

competitors, but they have strong phonemic sequencing and articulation demands. Easy 

items, on the other hand, are unlikely to elicit errors of a certain type. The Word-T parameter 

does not apply to a psychological ability, but rather describes each item’s phonological 

neighborhood, i.e., the probability that a phonological slip results in another real word. Items 

such as eye or pie have many similar sounding words that could result from slight 

aberrations, while items such as octopus or volcano do not.

Previous research has demonstrated that lexical properties of words influence the types of 

responses that participants make when they try to produce them. Properties such as 

frequency, familiarity, age of acquisition, length, phonological density, and phonotactic 

complexity have all been identified as potentially important contributors to error 

opportunities. We tested whether some of these known lexical influences were observable in 

the item difficulty parameter estimates. The goal was to test a small number of 

psycholinguistic measures that we believed would exhibit clear relationships with the two 

major processing levels in the MPT model, lexical and phonological, rather than an 

extensive investigation of psycholinguistic properties of the items.

Method—This study did not receive research ethics committee approval, because it did not 

qualify as human subjects research; all data were pre-existing and de-identified. We obtained 

3 psycholinguistic measures for each of the 175 target words on the PNT, from the Irvine 

Phonotactic Online Dictionary (www.iphod.com). We chose this database because it 

includes psycholinguistic measures for an ostensibly complete lexicon of American English, 
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including pronunciation variants. In the current study, for words with multiple 

pronunciations, the most common one for American English was selected. None of the 

measures disambiguate different word senses. The 3 measures we chose were:

1. Lexical frequency (LexFreq) - The log transformed number of times the target 

word appeared in American television and movie transcripts. These data 

originate from the SUBTLEXus database (www.subtlexus.lexique.org), but are 

available from the IPHOD database as well.

2. Phonological length (PhonLeng) - The number of phonemes in the target word.

3. Phonological density (PhonDens) - The log transformed number of phonological 

neighbors, i.e., the number of words that are related to the target by adding, 

changing, or deleting a single phoneme.

We used ascending stepwise multiple linear regression to identify the significant unique 

contributions of these psycholinguistic measures to each of the item difficulty parameters 

and the Word-T probability parameter. (Word-L applies to the entire lexicon and does not 

vary across trials by item; we investigate this parameter further in Experiment 3.) We began 

with no predictors in the model, and then used a criterion (p < .05) for inclusion or exclusion 

of predictors. We expected lexical frequency would be associated with lexical selection 

difficulties, and we expected phonological length and density would be associated with 

phonological processing difficulty.

Results & Discussion—The results are presented in Table 6, with each row 

corresponding to a regression model, and the psycholinguistic measure with the strongest 

simple linear correlation is shaded. The sign of the coefficient is easier to interpret than the 

magnitude; positive coefficients mean that items become more difficult as the lexical 

measure increases, while negative coefficients mean that items become easier as the lexical 

measure increases. All of the item difficulties had at least one lexical property as a 

significant linear predictor. Higher lexical frequency reduced difficulty at all processing 

steps, including LexSem, consistent with previous studies (Kittredge, Dell, Verkuilen, & 

Schwartz, 2008). Word length influenced naming during later processing stages, with longer 

targets increasing difficulty during selection of the correct lexeme and corresponding 

phonemes. Phonological density had a facilitative effect on speech production, indicated by 

the negative coefficients in Table 6, again, consistent with previous studies (Gordon, 2002). 

We observed a general trend of more psycholinguistic variables predicting processing 

difficulty at progressively later stages, conforming with the notion of a cascading 

hierarchical processing system. Finally, phonological density was also the best predictor of 

the Word-T probability, in accordance with our expectations. The MPT model’s estimates of 

item difficulty have clear and sensible relationships with the lexical properties of the items 

and provide additional converging evidence for a multistep model of naming. The item 

difficulty parameters provide a new way to quantify the psycholinguistic processing 

demands of words in the English lexicon directly from aphasic picture naming responses.
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Experiment 3

The probability of a phonological error producing a real word should depend on the 

distribution of phonological neighborhood densities in the lexicon, and this was confirmed in 

the previous section. Words with many phonological neighbors, such as cat, are more likely 

to create other real words through random phonological perturbations than words, such as 

helicopter, which have very few similar sounding words. These probabilities can be 

estimated directly through simulation methods by randomly replacing phonemes in a word 

to create a legal string and observing the frequency of real word outcomes. Because classical 

test theory assumes item homogeneity, previous investigations only addressed the average 

probability of a phonological real word error over the entire lexicon, corresponding to the 

MPT model’s Word-L parameter. Using sets of items from speech error corpora and picture 

naming studies, Dell and Reich (1981) and Best (1996) estimated that this probability 

ranged from .20 to .45 for the English lexicon. Dell et al. (1997) estimated that the average 

probability of a phonological real word error, for the PNT items specifically, was .26. Here, 

we use updated simulation methods to generate similar probability estimates, and then 

compare them to the MPT model estimates we obtained using actual picture naming 

responses.

Method—This study did not receive research ethics committee approval, because it did not 

qualify as human subjects research; all data were pre-existing and de-identified. We 

estimated the probability of a phonological error creating a real word by sampling from a 

model lexicon. Simulations and analyses were performed using custom MATLAB scripts. 

The lexicon included the 39,698 common entries from 3 different collections of American 

English words: the SIL word list collected from a university message board, the CMU 

pronunciation dictionary collected from several machine-readable dictionaries and open 

source submissions, and the SUBTLEXus database collected from television and movie 

transcripts. A phonological error was simulated by first selecting a word from the lexicon 

based on its relative frequency in the SUBTLEXus database, then selecting one of the 

phoneme positions randomly, and replacing vowels or consonants with phonemes of the 

same type based on the relative frequency of phonemes in the lexicon. If the replacement led 

to two of the same consecutive phonemes, one of them was deleted. If the resulting string 

existed in the lexicon, it was considered to be a real word. We calculated the rate of real 

word outcomes for 1,000 sets of 175 phonological errors. We found an average real word 

outcome rate of .21, with rates ranging from .15 to .27. This represents our prediction 

interval for the Word-L parameter and the average of the Word-T parameters. While this 

probability of real word outcomes may seem high to experts familiar with phonological 

errors in aphasia, it is important to remember that this is the probability of a single phonemic 

error resulting in a real word; in practice, multiple phonemic errors may occur during 

production, further reducing the chance of observing a real word outcome.

Results & Discussion—The mean of the posterior distribution for the Word-L parameter 

was .15, with a 95% credible interval ranging from .12 to .18. The estimate for the Word-L 

parameter is on the low end of our prediction range, and this may be due to the simulation 

procedure biasing estimates toward real word outcomes by starting with real words, or it 

may be due to human scorers biasing the data toward nonword outcomes by failing to 
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recognize real words during a lexical decision task, or a combination of these. In any case, 

the results are still quite consistent with our simulation estimates. The average of the 

posterior means for the Word-T parameter, that is, the average expected phonological word 

error rate for the PNT items specifically, was .23. Again, these results are in good agreement 

with our simulation estimates. In striking contrast to the assumption of item homogeneity 

held by many previous models, however, the Word-T posterior means had a positively 

skewed distribution (Figure S3), ranging from .01 to .80. The MPT model is sensitive to 

these item-level statistics, using them to sort out potential sources of phonological 

relationships between targets and responses.

Experiment 4

Picture naming accuracy has been shown to correlate strongly with other measures of 

aphasia severity, and a data-driven analysis of a large test battery suggested that these 

relationships can be deconstructed further. Mirman, Zhang, Wang, Coslett, & Schwartz 

(2015) used principal components analysis to investigate the covariance between 17 

behavioral measures, including PNT accuracy, from 99 participants with aphasia. PNT 

accuracy mostly loaded onto the first two principal components. The first principal 

component explained approximately 36% of the variance in PNT accuracy along with 

approximately 50% to 90% of the variance in tasks that required decisions about the 

meanings of pictures and words (Camel and Cactus Test, Pyramid and Palm Trees Test, 

Synonymy Triplets, Semantic Category Probe Test, Peabody Picture Vocabulary Test, and 

Semantic Category Discrimination). The second principal component explained 

approximately 38% of the variance in PNT accuracy along with approximately 42% to 72% 

of variance in tasks that required speech production (Philadelphia Repetition Test, Nonword 

Repetition Test, and Immediate Serial Recall Span). The Mirman et al. (2015) principal 

components analysis used data from all of the tasks to identify the orthogonal dimensions 

which account for the most variance in the full data set. Here, we adopted a theory-driven 

approach and used the MPT model parameters, estimated from the picture naming task 

alone, to predict performance on the same tasks that shared principal components with 

picture naming accuracy. The goal was to investigate whether the shared variance across 

behavioral measures can be explained in terms of our model’s assumptions about the 

processing abilities required for picture naming.

Method—This study did not receive research ethics committee approval, because it did not 

qualify as human subjects research; all data were pre-existing and de-identified. We 

examined scores on additional behavioral tests from all participants in the MAPPD database 

who had them available (n = 127), including the 99 participants from the Mirman et al. 

(2015) study. Synonymy triplets (SYN; word-word matching), Peabody Picture Vocabulary 

Test (PPVT; word-picture matching), and Camel and Cactus Test (CCT; picture-picture 

matching) represented measures requiring semantic decisions, while the Philadelphia 

Repetition Test (PRT), Nonword Repetition Test (NWR), and Immediate Serial Recall Span 

(ISR) represented measures requiring overt speech production. The same measures that we 

obtained for the MR cohort were not available for the SC cohort. Instead, for this group, the 

Pyramids and Palm Trees Test (PPT) represented a task requiring semantic decisions, and 

the repetition section from the Western Aphasia Battery (WAB-rep) represented a task 
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requiring speech production. 76 participants were administered the Pyramids and Palm Trees 

Test. This test is a picture-picture matching test based on thematic co-occurrence, just like 

the Camel and Cactus Test, but it only has two alternatives per trial instead of four. The PPT 

measure therefore leads to a higher chance of success by guessing, pushing scores toward 

ceiling and reducing the overall variance. While this makes it a less ideal measure than the 

CCT, it should still depend on similar processes. One participant in the SC cohort was 

missing WAB data, leaving 89 for analysis. It is worth noting that the repetition section of 

the WAB involves repetition of words, phrases, and sentences of varying length, making it 

more like the multi-word ISR task than the single-word PRT task. We used ascending 

stepwise multiple linear regression to identify the significant unique contributions of the 

participant abilities to each of the behavioral measures. We began with no predictors in the 

model, and then used a criterion (p < .05) for inclusion or exclusion of predictors.

Results & Discussion—The results are presented in Table 7, with each row 

corresponding to a regression model, and the participant ability with the strongest simple 

linear correlation is shaded. All coefficients are positive, meaning that test scores increase as 

abilities increase. All behavioral measures had at least one naming ability as a significant 

linear predictor. Tasks requiring semantic decisions about words were best predicted by the 

LexSel ability, while the Phon ability explained tasks requiring speech production. The PPT 

measure is predicted by the Attempt ability, consistent with this parameter’s role in general 

processing external to the lexical system. The ISR and WAB repetition tasks require multiple 

words to be remembered and produced; the LexPhon ability governs interference and 

substitutions of whole words rather than segments, and is therefore a logical predictor for 

these tasks. While these tasks engaged the abilities required for production of multiple 

words, they still did not depend on the LexSem or LexSel abilities.

Because we are attempting to measure latent psychological traits that cannot be observed 

directly, we do not believe that there are single, perfect test scores that will measure them 

definitively. Instead, theoretical constructs are abstractly defined in statistical terms by all 

possible measurements that depend upon them. The labels that we attach to these constructs 

are somewhat arbitrary. For example, Mirman et al. (2015) refer to their first principal 

component as a “semantic recognition” factor, while we prefer to identify the tasks that 

primarily load onto this component as measuring a “semantic decision” trait (or even a 

“symbolic association” ability); the point is that we are talking about a set of measurements 

that we believe depend upon the same latent psychological construct to a first 

approximation. We expect some discrepancies among these measurements due to inherent 

noise, data collection errors, broadly-defined constructs, or complex test score dependencies, 

and we therefore evaluate and discuss correlations among the measurements. The simple 

linear correlations between naming abilities and other test scores were stronger than those 

between any of the individual naming response types, except ISR and correct responses, and 

they were of the same approximate magnitude as the correlations between test scores of the 

same type. Correlations among semantic decision test scores (SYN, PPVT, CCT) ranged 

from .69 to .76, while correlations between the LexSel ability and these test scores ranged .

69 to .71. Correlations among speech production test scores (PRT, NWR, ISR) ranged from .

63 to .73, while correlations between the Phon or LexPhon ability and these test scores 
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ranged from .64 to .69. If there is enough shared variance between the test scores to claim 

that they measure the same latent trait, as suggested by Mirman et al. (2015), then the MPT 

ability estimates seem to provide an equally good measure. While approximately 36% to 

62% of the variance in other test scores can be explained by picture naming abilities, the 

point is not to replace these tests, but rather to supplement them with an independent 

measure of the same theoretical constructs. The sensible relationships that exist between 

picture naming abilities and other behavioral measures suggest that the MPT model’s 

parameters are indeed measuring useful theoretical constructs.

General Discussion

Naming impairments following stroke vary with respect to the frequency and types of errors 

that are committed. Responses might bear semantic and/or phonological relations to the 

target, and these response patterns can indicate damage at different levels of the mental 

processing hierarchy. During word production, it is assumed that substitution errors can 

occur either at the whole word or the segment level (Dell, 1986). A statistical model of the 

picture naming process can help to interpret picture naming responses in terms of latent 

selection probabilities and identify the most likely source of the errors. Furthermore, the 

picture naming targets vary with respect to the lexical properties that challenge these 

different processing levels, and modeling these effects can improve estimates of participant 

abilities, while also providing information about the specific difficulties associated with the 

items.

We created an MPT model that formalized the latent selection probabilities involved during 

word production, separating the effects of participants and items, and we used a Bayesian 

approach to estimate the model parameters that best fit a sample of 63,875 picture naming 

trials collected from 365 participants with stroke-induced aphasia. In Experiment 1, we 

compared the MPT model’s picture naming predictions with those from other pattern-

recognition models that did not have any psychologically motivated components. We found 

that the MPT model’s predictions were more accurate and better distributed over the 

possible response types than the purely data-driven models. The MPT model extracted 

useful information for predicting picture naming responses from all participants, and to all 

items, in the sample. In Experiment 2, we investigated the relationship between lexical 

properties of the targets and the targets’ estimated difficulties. We found significant linear 

relationships between lexical properties and all item difficulties. Lexical frequency made a 

unique contribution to all of the latent processing decisions, while phonological length and 

density made unique contributions to the final selection and production of the phonological 

string. In Experiment 3, we investigated the relationship between the statistical structure of 

the lexicon and the estimated probability of a phoneme change resulting in a real word. 

Estimated probabilities were consistent with simulations of phonological substitution errors 

using a model English lexicon, and their distribution highlights a contrast with models that 

assume this probability is the same for all items. Factoring these item differences into model 

estimates can help to refine the localization of errors within the processing hierarchy. In 

Experiment 4, we investigated the relationship between estimated participant abilities and 

other test scores that depend on the same psychological constructs. Test scores that required 

semantic decisions (word-to-word, word-to-picture, and picture-to-picture matching) had a 
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significant, unique contribution from the LexSel ability, but not the Phon or LexPhon 

abilities. Test scores that required spoken production of single words (word and pseudoword 

repetition) were best predicted by the Phon ability, which governs substitutions at the 

segment level, while test scores that required spoken production of multiple words (list, 

phrase, and sentence repetition) were best predicted by the LexPhon ability, which governs 

substitutions of similar sounding lexemes at the whole word level, though these test scores 

also had a significant, unique contribution from the Phon ability; none of the repetition test 

scores had significant, unique contributions from the LexSem or LexSel abilities. Taken 

together, our experiments provide substantial support for our interpretations of the model’s 

parameter values.

Potential Applications

The PNT and our accompanying MPT model were designed particularly with research 

purposes in mind, but we hope that clinicians may also find it to be a useful tool. We have 

shown that the ability estimates provided by the model relate to psychological constructs of 

interest better than the individual response type frequencies, opening the possibility for 

novel investigations into behavioral and anatomical relationships. Lesion-symptom mapping 

studies may benefit from improved quantitative assessments of the symptoms, and functional 

neuroimaging studies may find uses for item difficulty estimates in experiments designed to 

manipulate brain activity. The localization of error sources within different levels of a mental 

processing hierarchy may aid clinicians in making therapy decisions, by choosing to focus 

on the identified problem areas during treatment, and could provide useful metrics for 

evaluating recovery progress.

The credible intervals for parameter estimates have a natural application to longitudinal 

studies of treatment effects, by providing a way to approximate the likelihood of an observed 

change in ability. The less that the posterior distributions from independent test 

administrations overlap, the more likely it is that a change occurred in the latent ability. By 

considering the distribution of response types and different kinds of naming abilities, 

treatment effects may be observable that would not otherwise be detectable in the overall 

accuracy score. Future work may seek to incorporate items from other popular naming tests 

by placing them on the same difficulty scales as the PNT, which could enable comparison 

across a much wider range of measures.

Model Fitting Online

We created a website, available at http://www.cogsci.uci.edu/~alns/MPTfit.php, that 

provides picture naming ability estimates for a given set of item-level PNT data. We have 

provided examples of formatted data on the website to help users familiarize themselves 

with the model’s inputs and outputs. After scoring a PNT, item-level data are often entered 

into a spreadsheet; if the rows are sorted alphabetically by target, then a column of data 

representing an individual participant’s responses can be copied and pasted into the form on 

the website.

The online fitting procedure assumes fixed item difficulties for computational simplicity, 

meaning that it uses a point estimate for each item’s difficulty instead of considering a 
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distribution of possible difficulty values, adopting the posterior means that were obtained 

from fitting the model to the large data set presented in this article. The website employs a 

simple Metropolis-Hastings sampling algorithm programmed in PHP, rather than installing 

JAGS on the server to implement Gibbs sampling. The sampler runs 2 chains with 5,000 

samples using a normal jump distribution with a standard deviation of 0.1, and discards the 

first 2,500 samples as burn-in. The sample average (i.e., the posterior mean) is used as a 

point estimate of ability. Correlations between the ability point estimates obtained with the 

different sampling methods, Gibbs and Metropolis-Hastings, ranged from .94 to .98. 

Percentile scores for abilities are calculated relative to the posterior means of the full cohort 

of 365 participants. The 95% credible intervals for ability estimates are constructed using the 

posterior means plus or minus two posterior standard deviations. Although the sampling 

algorithm uses the logit scale for parameter estimation, results are converted to a probability 

scale centered at the mean of the difficulty estimates for the PNT items and displayed as a 

percentage, which may have a more natural interpretation. These ability estimates can be 

interpreted as the probability of successful processing on a PNT item of average difficulty. 

Conveniently, the expected percentage of correct naming attempts on the PNT can be 

roughly approximated by multiplying these 6 abilities. Percentile scores can be interpreted 

as the percentage of our participant sample who had a lower ability.

Limitations

The limitations of the model fall into two broad categories relating either to the model’s 

assumptions or to the data and procedures used for model fitting. With respect to the 

model’s assumptions, we take the position of statistician George Box (1979, p. 202), who 

claimed, “All models are wrong but some are useful.” Insofar as we have demonstrated the 

MPT model’s usefulness, we view its “wrong” assumptions as opportunities for 

improvement. One inherent limitation is that the use of probabilities does not shed much 

light on the mechanistic implementation of the underlying processing system. Instead, they 

provide constraints on the quality or efficiency of these mechanisms, and can aid in deciding 

between possible mechanistic descriptions. In this way, models aimed at different levels of 

Marr’s computational hierarchy can inform one another. Other simplifying assumptions are 

ripe for elaboration however, such as the treatment of non-naming responses. Previous 

research suggests that, in some cases, there are clear relationships between lexical 

processing and non-naming responses, via internal error detection and suppression. This 

generic response category also could be subdivided into further informative response types, 

like descriptions or grammatical category errors. Other response type definitions might be 

reconsidered as well, phonological errors, in particular. Post-lexical processing and 

articulation errors could be identified and incorporated into an MPT framework. More 

complex models of phonological production could extend the model to new types of data, 

for instance, governing a sequence of phonological outputs instead of a dichotomous score. 

Additionally, the choice of item response functions could be more nuanced; the simple 

Rasch model makes some strong assumptions, such as all items having the same 

discriminability with respect to a latent trait. Despite these limitations, or perhaps because of 

them, the MPT model presented here can hopefully serve as a baseline model for continued 

development and improvement.
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With respect to the data collection and fitting procedures, we are constrained by the same 

burdens that encumber aphasia research and computational modeling generally. Recruitment 

of participants typically results in a sample of convenience, rather than a true random sample 

of the population. This is an important point for interpreting the percentile scores provided 

by the model fitting website. The value of a normative comparison between an individual 

and a group depends critically on their similarity along relevant characteristics. Future 

versions of the website may include functionality for stratifying normative cohorts by 

clinical or demographic characteristics; all clinical and demographic data used in this paper 

are available on the website, enabling manual construction of comparison groups. While the 

analysis presented here includes one of the largest PNT data sets ever collected, the cohort 

size pales in comparison to normative samples for widely-adopted assessment tools 

collected by organizations like the Educational Testing Service or Mayo Clinic that number 

in the thousands. Administering the PNT, transcribing and scoring responses, and entering 

scores into a database requires a significant investment of time by trained professionals, at 

present. With the advent of adequately automated procedures, the statistical framework 

presented here may aid in the development of shorter, computer adaptive tests, similar to 

ones that have already been developed for assessing PNT accuracy (Hula, Kellough, & 

Fergadiotis, 2015).

The expansion of our databases and models also presents as a double-edged sword, because 

the sampling procedures for fitting the full model demand considerable computational 

resources that increase rapidly as models and datasets grow in size and complexity. 

Although the simplified model and sampler used by the website improve fitting times, it still 

requires approximately 6 seconds per individual. To fit the full model with JAGS, running 

chains in parallel on a Marquis C734-GSR workstation with a 2.6 GHz Intel Xeon E5-2650 

v2 8-core processor required approximately 60 GB of RAM and 5.4 hours to generate a 508 

MB matrix file containing the posterior samples. Customizing parameter estimation 

procedures may increase efficiency, and there are demonstrated opportunities for GPU 

acceleration of Gibbs sampling for IRT models with large data sets (Sheng, Welling, & Zhu, 

2014). The MPT model in its current form can therefore continue to benefit from large scale 

research projects that collect PNT data.

Finally, validation is an ongoing process, and although we have presented evidence that the 

MPT parameter values can be meaningfully interpreted, we have not yet investigated any 

clinical applications of the model or website. The interval estimates of abilities provide a 

sense of the reliability of point estimates; however, a more complete investigation of test-

retest reliability will require multiple administrations of the PNT. This information will be 

important for interpreting any observed changes between test administrations. Further work 

will be needed to establish cutoff scores to identify impairments and to assess whether the 

model’s parameters are useful for making therapy decisions and monitoring recovery 

progress in comparison with available standards. The mathematical framework and tools 

presented here will hopefully aid in these future developments.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Public Significance

Successful picture naming requires multiple cognitive abilities. Assessment of picture 

naming abilities in stroke patients can be improved by considering the target items’ 

influences on rates of different error types.
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Figure 1. 
The MPT model architecture. Nodes with rounded corners represent latent processing 

decisions, and leaf nodes with square corners represent response types. C = Correct, S = 

Semantic, F = Formal, M = Mixed, U = Unrelated, N = Neologism, AN = Abstruse 

Neologism, NA = Non-naming Attempt. Each branch is associated with a probability 

indicated by the letters a–h.
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Figure 2. 
Frequency distributions of posterior means for the MPT model’s ability and difficulty 

parameters. Although Sem is a probability, it was converted to a logit scale for consistency 

with the other parameters.
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Figure 3. 
Frequency distributions of posterior 95% credible interval (CI) widths for the MPT model’s 

ability and difficulty parameters. Although Sem is a probability, it was converted to a logit 

scale for consistency with the other parameters.
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Table 2

Picture naming response categories. A more complete description of the scoring rationale is provided by 

Roach et al. (1996).

Response
Category

Code Description Example
Target: cat

Correct C The response matches the target. cat

Semantic S The response is a word with only a semantic relation to the target. Semantically related 
responses are judged by the scorer as having a taxonomic or associative relation to the target.

dog

Formal F The response is a word with only a phonological relation to the target. Phonologically related 
responses share the initial or final phoneme with the target, or a single phoneme in the same 
word position aligned from center to center, or two phonemes in any word position.

hat

Mixed M The response is a word with both a semantic and phonological relation the target. rat

Unrelated U The response is a word with neither a semantic nor a phonological relation to the target. fog

Neologism N The response is not a word, but it has a phonological relation to the target. cag

Abstruse Neologism AN The response is not a word, nor does it have a phonological relation to the target. rog

Non-naming Attempt NA All other responses, including omissions, descriptions, non-nouns, picture parts, and fragments 
are considered non-naming attempts.

I don't know
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Table 3

The MPT model parameters.

Parameter Symbol Description Scope

Attempt a Probability of initiating an attempt P&I

Sem b Probability of identifying the correct semantic neighborhood of the picture P

LexSem c Probability of retrieving correct lexical-semantic information P&I

LexPhon d Probability of retrieving correct lexical-phonological information P&I

LexSel e Probability of selecting a target lexeme over competitors P&I

Phon f Probability of retrieving correct phonemes P&I

Word-T g Probability of a phoneme change in the target word creating a real word I

Word-L h Probability of a phoneme change in a random word creating a real word G

Scope abbreviations: G = globally independent of trial; P = participant dependent; I = item dependent; P&I = participant and item dependent.
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