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Abstract

Background—The ability of radiation to enhance anti-tumor immunity under specific
experimental conditions is well established. Here, we explore pre-clinical data and the rationale for
combining different radiation doses and fractions with immune checkpoint blockade
immunotherapy.

Methods—L.terature review

Results—The ability of high-dose or hypofractionated radiation to enhance anti-tumor immunity
resulting in additive or synergistic tumor control when combined with checkpoint blockade is well
studied. Whether low-dose, daily fractionated radiation does the same is less well studied and
available data suggests it may be immunosuppressive.

Conclusions—While daily fractionated radiation is well established as the standard of care for
the treatment of patients with head and neck cancer, how this radiation schema alters anti-tumor
immunity needs further study. That radiation doses and fractions alter anti-tumor immunity
differently has profound implications in the rational design of clinical trials investigating whether
radiation can enhance response rates to immune checkpoint blockade.
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Introduction

Immunotherapy for head and neck squamous cell carcinoma (HNSCC) has emerged as a
feasible treatment option for many patients with Food and Drug Administration approval of
programmed death (PD) pathway immune checkpoint blockade (ICB) (' ), Yet, only a small
subset of patients with recurrent/metastatic HNSCC demonstrate durable responses. Higher
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response rates are achieved in other cancer types with combinations of checkpoint inhibitors,
but with significant immune-related toxicity(®. Given evidence that PD-based ICB primarily
relies upon reversal of adaptive immune resistance to exert a therapeutic effect®, much
interest has been placed on finding other treatment modalities that enhance anti-tumor
immunity to use in combination with PD-1-based ICB.

Fractionated, low-dose external beam ionizing radiation is a mainstay of treatment for both
early and advanced HNSCC®). Greater than two-thirds of all patients with HNSCC will
receive IR at some point during their treatment(®). Significant pre-clinical data suggests that
IR is additive or synergistic with different forms of immunotherapy, including checkpoint
inhibition. However, close inspection reveals that most combinations demonstrating a
significant combinatorial effect utilize high-dose single or hypo-fractionated IR regimens,
with mixed results observed with combinations utilizing low-dose fractionated regimens,
potentially due to immune suppression following many fractions of daily IR(-11). Here, we
review the historical contexts for the use of daily fractionated IR in HNSCC, how an anti-
tumor immune response develops, how IR alters the function of individual components of
this response, and the preclinical and clinical data supporting the combination of IR and
ICB.

Why do we use fractionated IR for head and neck cancer?

Historically the anti-tumor effects of IR have been attributed to its direct tumor cell
cytotoxic effects. Many well performed, prospective clinical trials have established improved
survival and treatment tolerability in patents with locoregionally advanced HNSCC
following fractionated IR — with the most common treatment schema being 2Gy/day
fractions, 5 days/week for 35 total days (70Gy total), though various accelerated and
hyperfractionation schedules have been studied® 12). In this context of upfront treatment of
advanced HNSCC, several principles have emerged to potentially explain why fractionated
IR controls tumor growth. Commonly referred to as the “4R’s of fractionated radiotherapy,”
(13) these include repair (fractionated IR gives normal tissues, which repair faster than tumor
tissues, time to repair between doses), repopulation (based on hypothesis that damaged
tumor cells will be replaced by non-damaged tumor cells between fractions), reoxygenation
(IR requires oxygen for production of free radicals and fractionation allows for variation of
hypoxic regions within tumors over time) and redistribution (fractionation allows more
tumor cells to cycle into G2/M of the cell cycle where they are the most sensitive to OR).

In our new era of using immunotherapy to reverse adaptive immune resistance in HNSCC,
how different dose and fractionation IR schemas alter anti-tumor immunity must be
considered. Daily, low dose, fractionated IR for HNSCC results in peripheral lymphopenia
and the degree of drop in peripheral lymphocyte levels correlates to disease-free survival
after treatment with either IR alone or IR plus chemotherapy(14-16). Does this mean that how
we give IR to patients with advanced HNSCC is immunosuppressive? How IR alters anti-
tumor immunity at the level of the tumor microenvironment (TME) can be very complex and
peripheral lymphopenia may not be a good surrogate measure of local anti-tumor immunity.
To begin to understand these complex differences, we must understand how an effective
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anti-tumor immune response develops and how IR alters the function of these critical cell
types within the TME.

What effect does ionizing radiation have on the tumor microenvironment?

DCs

While hematopoietic cells are exquisitely sensitive to low doses of IR, the cumulative effects
of different IR doses and fractionation schemas on these cells as they circulate through the
TME are less well understood. Immune modulation within the TME in response to IR is
complex due to circulation and tumor re-population of immune cells, changes in tumor
oxygenation, and numerous direct effects that IR may have on tumor and stromal cells. Here,
we review known alterations induced by IR on cellular subsets present within the tumor
microenvironment. Critical known alterations in the function of these cellular subsets
following IR are summarized in Figure 1.

Dendritic cells are effective antigen-capturing cells in their immature form. Upon
encountering maturation signals, they differentiate into effective antigen-presenting dendritic
cells and become specialized in stimulating T cells through expression of appropriate
costimulatory molecules. DC maturation van be triggered by a variety of “danger” signals
(damage associated molecular patterns, or DAMP) released by pathogens as well as
damaged or stressed host cells(7: 18). IR may induce immunogenic cell death leading to
increased tumor cell surface calreticulin and release of DAMP such as high-mobility group
box 1 (HMGB1) and ATP(9. 20)_ Calreticulin on the surface of tumor cells or cellular debris
increases phagocytosis by dendritic cells while HGMBL1 acts as a chemoattractant and
activator of immature dendritic cells. These alterations appear to activate DCs, though
effects appear to be both IR dose, fractionation and model dependent. /n vitro, immature
dendritic cells co-incubated with supernatant from SC480 colorectal tumor cells irradiated
with 2Gyx5 or 5Gyx3 increased expression of DC maturation markers CD80 and CD83 and
expression of pro-inflammatory cytokines I1L-12p70, IL-8, IL-6, TNFa.(?1). However, direct
exposure of DCs isolated from PBMC to 30Gyx1 reduced expression of CD86, CD80, and
HLA-DR with resulting decreased capacity for stimulating T-cell proliferation(2. /n vivo
results more consistently demonstrate enhanced DC function following IR. Lugade et al.
demonstrated an increased accumulation and activation of DC within the tumor draining
lymph node (TDLN) when B16-OVA tumor cells were exposed to either 15Gyx1 or 3Gyx5
with greater effects observed with 15Gyx1(9). Similar results were observed by Lee et al.
after B16-SIY tumors were exposed to 20Gyx1().

Strong evidence for the importance of functional DCs within the TME following IR comes
from studies in genetically altered mice with dysfunctional DCs or type | IFN responses.
Cytosolic sensing of DNA within DCs and subsequent STING-dependent production of type
I IFN appears to be critical for cross-priming of antigen-specific T-cell responses, and any
alteration of this DNA sensing pathway or type | IFN response within host cells abrogates
tumor control after IR(23-25), Cumulatively, pre-clinical evidence suggests that while direct
IR exposure may be detrimental to DCs, IR may enhance immunogenic tumor cell death and
indirectly activate DCs within the tumor microenvironment through enhanced antigen
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release, availability of DAMP and ultimately STING-dependent type | IFN signaling
resulting in enhanced antigen cross-presentation.

T-lymphocytes

While NK cells and even innate immune cells can exert anti-tumor effects(26. 27), T-
lymphocytes are largely credited with having the ability to detect and eradicate malignant
cells. Lymphocytes are highly sensitive to IR-induced death and lymphopenia is a side effect
of fractionated radiotherapy, and this effect appears to be fractionation dependent(6. 28), Yet,
cumulative effects of therapeutic IR on lymphocyte activation within the TME are diverse.
Summarized in Table I, most studies evaluating the effects of IR on T-lymphocyte function
within the TME describe some degree of anti-tumor activation, though similar to the effects
of IR on DC function, these effects seem to be dose/fractionation and model dependent. For
example, Lee et al. demonstrated primary tumor growth control or rejection of established
B16-SIY melanomas with 20Gyx1 but not 5Gyx4(9); whereas results from Dewan et al.
revealed that both 20Gyx1, 8Gyx3 and 6Gyx5 all control the primary growth of TSA
mammary carcinomas and MC38 colon carcinomas(”). Increased recruitment of CD8 T-cells
after 12Gyx2 IR treatment of breast carcinomas was dependent on induced release of
CXCL16 from tumor cells9). Some consistent trends do emerge from the existing pre-
clinical studies on the effects of IR of T-lymphocytes. Tumor growth control after IR in
immunocompetent mouse models appears to be partially or totally dependent on the
presence and function of CD8+ cells(® 11.23) suggesting that CD8 T-lymphocytes play a
critical role in the cumulative effect of IR on tumors. Clearly dose and fractionation
schedules of IR have an impact on primary and abscopal tumor control as several studies
have demonstrated control of tumor growth or rejection of established tumors after single
high dose IR but not after fractionated IR(9-11). Overall, fewer studies have evaluated the
impact of low-dose, daily fractionated IR on anti-tumor immunity. This has obvious
implications for the study of HNSCC, as these patients are treated with 35 daily fractions of
1.8-2.0Gy. Pre-clinical studies evaluating T-lymphocyte tumor repopulation after different
doses and fractionation schemes of IR are lacking and may provide information critical to
the design of therapeutic regimens utilizing IR to activate or enhance anti-tumor immunity.

Mediators of immunosuppression within the tumor microenvironment

While T-lymphocyte responses rely upon the presence and recognition of tumor-associated
or -specific antigen, most tumors likely harbor many genetic alterations that result in a
number of neoantigens with a high degree of clonality®%). Taking this and antigen-
independent NK cytotoxicity into account®D), it is likely that the ability of solid tumors to
develop a directly immunosuppressive microenvironment plays a critical role in the
outgrowth of clinically relevant malignancies(32 33). This immunosuppressive tumor
microenvironment can be mediated by tumor, stromal and infiltrating immune cells. Tumor
cell-intrinsic mechanisms include downregulation of MHC class | and antigen-processing
machinery, genetic alterations leading to insensitivity to granzyme B and TNFR
superfamily-induced apoptosis, and increased expression of cell surface molecules that
inhibit CTLs (programmed death-ligand 1; PD-L1). Tumor cells secrete immunosuppressive
cytokines such as TGF and IL-10 that inhibit DC activation and T-lymphocyte function.
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Tumor cells also express chemokines that drive the recruitment of hematopoietic cells into
the tumor that are immunosuppressive. These include myeloid derived suppressor cells
(MDSCs), M2-polarized tumor-associated macrophages (Mo TAMs), and regulatory CD4+
T-lymphocytes (Tregs). Via mechanisms such as local nutrient depletion, cytokine and
immune checkpoint expression and generation of reactive oxygen species, these cell types
potently suppress effector CTL and NK function.

Deng et al. demonstrated that 12Gyx1 IR can significantly reduce the accumulation of Gr1+
MDSC within TUBO tumors(34). Mechanistically, this appeared to be due to loss of MDSC
viability following exposure to TNFa released from IR-activated CD8 TIL within the TME.
Alternatively, Filatenkov et al demonstrated that IFN-y released from CD8+ TIL was critical
for significant reduction in MDSC after 30Gyx1 IR treatment(1). Clearly, alterations in the
tumor cytokine milieu appear to influence the presence and activity of MDSC. Crittenden et
al. reported that 20Gyx3 treatment of Panc02 tumors transiently reduced peripheral
accumulation of CD11b+ myeloid cells, though tumor infiltration was not assessed in these
experiments(3%), Studies evaluating the effects of low dose, daily fractionated IR on
peripheral or tumor accumulation of MDSCs are lacking.

Irradiation of TUBO tumors with 12Gyx1 did not significantly alter tumor infiltration of
Tregs(34). Conversely, in an intracranial glioma model, 10Gyx1 did reduce infiltration of
Tregs into the brain microenvironment(38). Interestingly, 8Gyx3 IR treatment of MC38 colon
carcinomas did not significantly reduce Treg accumulation of primary treated tumors but did
decrease Treg accumulation in contralateral untreated tumors”). A commonly cited
manuscript details IR dose-dependent increased percentages of CD25+FoxP3+ cells within
the CD4+ splenocyte compartment with single doses ranging from 5-15Gy, but this study
did not evaluate tumor accumulation of Tregs(®). Again, studies evaluating the effects of low
dose, daily fractionated IR on peripheral or tumor accumulation of Tregs are lacking.

Treatment of Panc02 tumors with 20Gyx3 IR resulted in increased accumulation of CD11b+
cells that express immunosuppressive markers of M2-polarization such as arginase and
IL-10(38). Similarly, exposure of TRAMP-C1 tumors to 25Gyx1 or 4Gyx15 results in
selective accumulation of arginase, iINOS and COX2 expressing macrophages in areas of
tumor hypoxia(3%: 49), Conversely, vascular normalization and accumulation of antigen-
specific CD8 TIL was enhanced in insulinomas following a single dose of 2Gy. This
recruitment was dependent upon the presence of radiation-induced mature macrophages
within the TME®*D). Understanding how different IR doses and schemas alter macrophage
function challenging given their high plasticity and multiple functions.
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Tumor vasculature

At baseline, most solid tumors display disorganized and highly leaky tumor vasculature that
ultimately contributes to tumor hypoxia and increased interstitial pressure — both of which
are highly detrimental to the function of effector immune cells®2 43). Multiple groups have
demonstrated that single low dose (2 Gy) or high dose (15 Gy) IR can normalize/stabilize
tumor vasculature and increase expression of VCAM on endothelial cells required for
leukocyte adhesion, likely in a type II IFN-dependent fashion(: 44). Intermediate doses of
IR (5-10Gy) appear to similarly normalize tumor vasculature resulting in decreased vessel
leakiness and better tumor oxygenation(®®: 46). However, higher individual doses of IR
(>10Gy) appear to lead to vessel instability and eventual collapse, promoting tumor
hypoxia(4”: 48). Enhanced understanding of how different doses and fraction of IR ultimately
alter the ability of effector immune cells to penetrate into tumor parenchyma through
normalized vasculature is critical given the exquisite sensitivity of these cell types to
hypoxia(42),

Tumor stroma

Mounting evidence suggests that cancer associated fibroblasts (CAFs) influence the
behavior of malignancies both through both providing mitogenic signals to tumor cells and
through local immunosuppression(® 59). Some groups have demonstrated that CAFs appear
to be highly resistant to the cytotoxic effects of IR, even at high doses®1 2). However,
Grinde et al. demonstrated that greater engraftment kinetics when CAFs were mixed with
tumor cells before transplantation were abrogated when the CAFs were irradiated prior to
the mixture(33). This effect was the same between 18Gyx1 and 6Gyx3 schemas. These data
suggest that IR potentially alters CAF viability and function, but more direct studies on how
IR alters the immunosuppressive function of CAFs are needed. Of great interest are a series
of projects in the Schreiber group that have elegantly detailed the necessity of eliminating
CAFs to achieve complete tumor rejection(4: 59). In the model system used by this group,
10Gyx1 induced enough antigen release from tumor cells that CAFs cross presenting
released tumor antigen were eliminated by adoptively transferred CTLs and this irradiation
was required for sensitization of the CAFs to immune killing(®®). Clearly immune
elimination of both tumor and stromal cells is critical for tumor rejection.

Direct effects on tumor cells

IR causes DNA damage, and could induce the formation of new mutations that could lead to
the expression of neoantigens in irradiated cells. Riets et al. demonstrated that not only does
IR induce expression of MHC class | on the surface of tumor cells, it increases the
intracellular pool of peptides available for loading onto MHC class | in an mTOR-dependent
fashion(®”). Some of these differentially presented peptides appeared to be derived from
proteins selectively upregulated by irradiation. This suggests that if irradiation led to the
formation of neoepitopes unique to irradiated cells, the MHC presentation pathways
required for CTL recognition may also be upregulated by IR. Others have demonstrated
upregulation of MHC class | on the surface of tumor cells both in vitro and in vivo in
mechanisms often dependent on increased levels of type 11 IFN(44.58),
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Immunogenic cell death (ICD), as defined by Zitvogel and Kroemer et a/., includes the cell
surface expression or release of molecules known to stimulate innate immune receptors to
activate the innate arm of the immune system after a cytotoxic insult% 59). This includes
increased expression of cell surface calreticulin (binds CD91) and release of HMGB1 (binds
TLR4) and ATP (binds P2RX7). Whether IR induces pure ICD is unclear, but more
substantial evidence exists that IR can induce tumor cells death associated with one or more
ICD components or release of other innate immunity activating molecules(7: 60.61) |n
addition to IR inducing innate immune activation through induction of different components
of ICD, more recent work has highlighted the importance of cytosolic sensing of DNA
(released from dying tumor cells) in DCs through the STING receptor. Type | IFN
production serves as the critical link between activation of innate and adaptive immunity
through activation of antigen cross-presentation by CD8+ DCs. Induction of type | IFN
responses and subsequent T-cell mediated tumor control following 20Gyx1 IR was
completely abrogated in mice with STING deficient immune cells(23-25). Recent work by
Vanpuille-Box et al. has demonstrated that higher single doses of irradiation (>12-18Gy in
different cell lines) induces expression of an exonuclease (trex1) that degrades DNA
accumulation in the cytosol after IR and prevents cGAS and STING-dependent type | IFN
responses(®2). In addition to emphasizing importance of STING-dependent type I IFN
responses following IR, such work demonstrates how a better understanding of how tumor
cells respond to IR in the context of immune activation can critically inform the way we
combine IR with immune activating treatments.

When damage following IR is not sufficient to directly induce cell death, irradiated tumor
cells appear to be more sensitive to CTL mediated lysis. Garnett et al. demonstrated in a
panel of CEA+ colon carcinoma lines that sublethal IR doses of 10 or 20Gy enhanced tumor
cell susceptibility to CTL lysis(®®. Such “immunogenic modulation” to enhance CTL lysis
after sublethal IR /n vitro has been demonstrated in many cancer cell types(®3. 64 and
appears to mechanistically be due to enhanced antigen presentation on MHC class I,
enhanced ICAM-mediated tumor:T-cell interaction and enhanced cell surface calreticulin
exposure.

Some of the most powerful data demonstrating enhanced antigen-specific immune responses
after IR comes from studies on antigen-spread following peptide vaccination. Following
single-peptide vaccination of tumors expressing multiple MHC class I-restricted antigens,
8Gyx1 IR treatment induces the formation of T-cell responses against multiple antigens
resulting in rejection or control of both locally treated and distant untreated tumors(6>: 66),
This data suggests that IR enhances the presentation of multiple antigens, leading to the
development of a polyclonal T-cell response against antigens not attributable to the peptide
vaccine directly. This concept was reinforced by a recent study in B16-F10 melanoma
tumors demonstrating increased diversity of TCR clones in CD8+ TIL from irradiated
compared to non-irradiated tumors(®7).

What is the preclinical evidence for radiation + checkpoint inhibition?

The rational combination of IR and PD-based immunotherapy stems from a fundamental
understanding of the mechanism of PD-based checkpoint inhibition and evidence that IR
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may actually induce an innate and adaptive anti-tumor immune response, as described
above. PD-based ICB reverses adaptive immune resistance(®®). To our knowledge, there is no
data to suggest that PD-1 or PD-L1 mAb treatment can induce a de novo immune
response(®9). If baseline or treatment-induced anti-tumor immunity is present within an
organism and being held back by PD-1/PD-L1 signaling, then PD-blockade can potentially
block this signaling and unleash this existing immune response. If another therapy, such as
IR, can actually induce an immune response and there is evidence that this induced immune
response is being blocked by the induced expression of PD-pathway components, then the
combination of this therapy and PD-based ICB is rational. Evidence that IR can induce
expression of PD pathway components is substantial. Deng et al. demonstrated that 20Gyx1
IR treatment of TUBO tumors increased PD-L1 expression on tumor cells and tumor-
infiltrating immune cells(34). Dovedi et al. found similar increases of PD-L1 expression on
CT26 tumors cells following 2Gyx5(79. This increased PD-L1 expression is very likely to
be linked to overall increases in local IFN®4) that then drives PD-L1 expression, consistent
with adaptive immune resistance.

The principles underlying enhanced anti-tumor immunity following CTLA-4-based
checkpoint inhibition are different. As opposed to PD-1/PD-L1 expression in response to
IFN and immune activation as a mechanism of adaptive immune resistance, CTLA-4
appears to be constitutively expressed at varying levels on both effector CD8 TIL and tumor
infiltrating Tregs. Blockade of CTLA4 signaling with CTLA-4 mAb both blocks the
negative signal mediated by CTLA-4 on effector CD8 TIL but also results in macrophage-
dependent ADCC elimination of CTLA-4+ Tregs("1-73), Both mechanisms are required to
enhance anti-tumor immunity(73). Subsequently, evidence suggests that CTLA-4 ICB can
actually activate an immune response, as opposed to just unblocking a pre-existing
response(’2: 73), While CTLA-4 ICB is still simply a tool to enhance anti-tumor immunity,
the mechanism of how it may be additive or synergistic with IR is likely different than when
IR is combined with PD-based ICB.

Table Il details studies that have combined IR with either PD or CTLA-4 ICB in syngeneic
pre-clinical models. General trends from these reports include additive or synergistic effects
between IR and ICB that is CD8+ cell dependent, often with immune-mediated rejection of
tumors that results in immunologic memory. Some studies demonstrate an abscopal effect —
or control of a distant untreated tumor. While rarely occurring with IR or ICB alone,
abscopal control of distant tumors following combination therapy provides strong evidence
for the development of systemic anti-tumor immunity. One significant study elegantly
demonstrated that combination 20Gyx1 IR plus CTLA-4 ICB leads to increased PD-L1
expression on tumor cells(®7). Tumor rejection rates could be significantly enhanced by
reversing adaptive immune resistance with the addition of PD-based ICB to IR plus CTLA-4
mAD, reinforcing many of the principles discussed above.

What is the clinical evidence for radiation + checkpoint inhibition?

Several case reports have demonstrated control of non-irradiated tumors following
irradiation of target lesions with hypofractionated IR in the presence of systemic CTLA-4
mAb (Table I11). While abscopal tumor control cannot be completely attributed to radiation
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given that patients are receiving systemic CTLA-4 mAb, many of these reports demonstrate
some degree of abscopal control of non-irradiated tumors in the setting of progression while
receiving CTLA-4 mAb, suggesting a critical role for irradiation in the induction of systemic
immunity. To date, no clinical data describing results following combination IR and ICB in
head and neck cancer has been published. However, many clinical trials specific for HNSCC
or in solid tumors that include HNSCC are underway (Table 1V).

How different IR dose and fractionation schemas alter local anti-tumor immunity to be
additive or synergistic with ICB is a critical question. While the majority of pre-clinical data
suggests that individual large or hypofractionated IR doses appear to enhance local anti-
tumor immunity to a greater degree than daily fractionated IR, we must remember that our
preclinical models simply serve as models for what may happen in patients with HNSCC.
Despite this pre-clinical data, several institutions are moving forward with HNSCC trials
investigating ICB combined with both standard, low-dose, daily fractionated (Table IV trials
1-7) and higher-dose hypofractionated IR (Table 1V trials 9-11). Clinical and immune
correlative data emerging form these trials in the coming years as they mature will be very
informative and should help guide the design of large phase trials designed to more clearly
define the role of combination IR and ICB in both recurrent/metastatic and previously
untreated, locally advanced HNSCC.

Conclusions

The emergence of checkpoint inhibitors as an FDA-approved, off-the-shelf immunotherapy
with reasonable safety profiles has helped usher in the current age of immunotherapy for
cancer. With our enhanced mechanistic understanding of how these drugs work has come the
realization that combination with other anti-cancer therapies that have the capacity to induce
immune responses is likely needed to meaningfully enhance response rates. Based upon
extensive pre-clinical data, IR fills this role well. There is a tendency however to combine
new therapies (checkpoint inhibitors) with current standard-of-care therapies (low-dose daily
fractionated IR, in the case of HNSCC) without supporting pre-clinical data. Indeed, the
majority of published pre-clinical data supports that single high dose or hypofractionated IR
enhances local anti-tumor immunity and is either additive or synergistic with either PD-
based or CTLA-4-based ICB. However, pre-clinical data supporting the combination of low
dose, daily fractionated IR with ICB is at best lacking and at worst negative. Clearly,
mechanistic pre-clinical studies investigating how different radiation schemas perform head-
to-head when combined with ICB are needed to inform the data-driven design of clinical
trials. While many current clinical trials combining IR and ICB are designed to assess safety
as a primary endpoint, secondary immune correlative and clinical response outcomes will
certainly assist in the design of future trials aimed at enhancing response rates for patients
with HNSCC.
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Figure 1. Summary of known innate immune signaling alterations following IR within the tumor
microenvironment

IR induces the release or surface translocation of several innate immune receptor ligands
(HMGBL1, ATP, CRT) in a process known as immunogenic cell death, that result in type |
IFN production from antigen presenting cells (dendritic cells). Recent evidence also has
demonstrated the importance of DNA sensing through cGAS, also resulting in STING-
dependent type | IFN production. Type | IFN is critical for the maturation of dendritic cells,
allowing cross-presentation of antigen and initiation of adaptive immunity. Activated T-cells
in turn eliminate antigen positive target cells, but also help to reduce local
immunosuppression through effector cytokine (IFNy, TNFa)-dependent reduction in
MDSCs. Whether IR can directly reduce the viability or function of immunosuppressive
cells such as MDSCs, or whether this effect is secondary through T-cell effector cytokines,
remains unclear.
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