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Abstract

Microglia as immune cells of the central nervous system (CNS) play significant roles not only in 

pathology but also in physiology, such as shaping of the CNS during development and its proper 

maintenance in maturity. Emerging research is showing a close association between microglia and 

neurovasculature that is critical for brain energy supply. In this review, we summarize the current 

literature on microglial interaction with the vascular system in the normal and diseased brain. 

First, we highlight data that indicate interesting potential involvement of microglia in 

developmental angiogenesis. Then we discuss the evidence for microglial participation with the 

vasculature in neuropathologies from brain tumors to acute injuries such as ischemic stroke to 

chronic neurodegenerative conditions. We conclude by suggesting future areas of research to 

advance the field in light of current technical progress and outstanding questions.
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[1] Introduction

Microglia are innate immune cells of the brain that are fully engaged in central nervous 

system (CNS) functions in normal and pathological conditions (Hanisch and Kettenmann, 

2007; Casano and Peri, 2015). Depending on various methods used and regions examined, 

microglia make up 5–15% of brain cells (Pelvig et al., 2008; Lyck et al., 2009) and many of 

their properties distinguish them as a unique cell type from other brain cells as confirmed by 

recent transcriptome studies (Hickman et al., 2013; Zhang et al., 2014; Bennett et al., 2016). 

Neurons and macroglia like astrocyte and oligodendrocytes are derived from the 

neuroectoderm, while microglia originate from the embryonic yolk sac, then migrate and 

colonize the neuroepithelium (Prinz and Priller, 2014; Reemst et al., 2016). In the mature 

brain, microglia are exquisitely tiled and share non-overlapping territories with a small 

central soma and multiple elaborate processes (Davalos et al., 2005; Nimmerjahn et al., 

2005; Wu et al., 2007). Unlike peripheral macrophages and circulating monocytes, microglia 

*Correspondence: Dr. Long-Jun Wu, Department of Neurology, Mayo Clinic, 200 First Street SW, Rochester, MN 55905, TEL: (507) 
422-5135, wu.longjun@mayo.edu. 

Conflict of Interest: The authors declare no competing financial interests.

HHS Public Access
Author manuscript
Dev Neurobiol. Author manuscript; available in PMC 2019 June 01.

Published in final edited form as:
Dev Neurobiol. 2018 June ; 78(6): 604–617. doi:10.1002/dneu.22576.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



keep a fairly low turnover rate (Lawson et al., 1992; Askew et al., 2017; Tay et al., 2017) 

without contributions from peripheral sources such as circulating monocytes or blood-

derived macrophages in the healthy condition (Ajami et al., 2007; Ajami et al., 2011; Gu et 

al., 2016).

One of the most notable features of microglia is their robust morphological plasticity by 

which they perform CNS surveillance (Davalos et al., 2005; Nimmerjahn et al., 2005). With 

remarkably dynamic processes, they frequently interact with neuronal elements including 

somata (Li et al., 2012; Eyo et al., 2014), axons (Baalman et al., 2015), dendrites and 

synapses (Wake et al., 2009; Tremblay et al., 2010; Eyo et al., 2015; Eyo et al., 2017) by 

which they sense and monitor neural activity and thus modulate neural circuit processing 

(Chen et al., 2010; Paolicelli and Gross, 2011; Parkhurst et al., 2013; Schafer et al., 2013; 

Squarzoni et al., 2014). Microglia are also the primary phagocytes of the brain and therefore 

engage and engulf excess neural material during early development (Marin-Teva et al., 2004; 

Petersen and Dailey, 2004; Wakselman et al., 2008; Svahn et al., 2013; Eyo et al., 2016) and 

in select neurogenic niches in the mature brain (Sierra et al., 2010; Sierra et al., 2014; 

Abiega et al., 2016; Fourgeaud et al., 2016). Thus, microglial roles in shaping brain 

development and function by regulating neuronal activity and phagocytic clearance have 

been well established and continue to be explored.

In addition to functioning in the healthy brain, microglia participate in aberrant neurological 

conditions from acute injury to neurodegenerative diseases (Ransohoff and Perry, 2009; 

Nayak et al., 2014; Peng et al., 2016; Eyo et al., 2017). Here, they are hotly debated to 

promote either neuroprotective or neurotoxic functions. They can ameliorate pathology as is 

the case with acute experimental seizures where seizure behaviors are worsened with 

microglial elimination or microglial P2Y12 receptor depletion (Mirrione et al., 2010; Eyo et 

al., 2014) and ischemic stroke where they are presumed to reduce infarct size and promote 

functional recovery (Lalancette-Hebert et al., 2007; Narantuya et al., 2010; Faustino et al., 

2011). Conversely, they can also promote disease progression as in the case of neuropathic 

pain (Peng et al., 2016). It is noteworthy to point out that microglial functions are not always 

straight-forward in diseases. For example, while studies may suggest neuroprotective 

microglial functions in ischemia there is also evidence for neurotoxic activity in the disease 

(Wu et al., 2012; Tian et al., 2016). Interestingly, microglia have also been implicated in the 

pathogenesis of psychiatric disorders such as pathological grooming in mice which is 

suggested to mimic obsessive compulsive disorder (OCD) in humans (Chen et al., 2010). 

Together, these studies and many others indicate that microglia are significant cellular 

components in the brain orchestrating critical events during normal development, the 

maintenance of the mature CNS and during pathology.

It has been long recognized that microglia physically interact with the neurovasculature and 

interest in the physiological significance of these interactions are increasing (Arnold and 

Betsholtz, 2013; Dudvarski Stankovic et al., 2016). The brain vasculature, which includes a 

complex arrangement of arteries, veins and capillaries, distributes essential substances like 

oxygen and glucose to the brain while eliminating waste products like CO2 (Daneman and 

Prat, 2015). The brain, though constituting only about 2% of the body’s weight, demands 

about 20% of the body’s energy (Magistretti and Allaman, 2015). This fact implies a need 
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for efficient and controlled delivery of blood to the brain, which is especially critical for 

optimal synaptic and thus cognitive function. While astrocytes are now established as critical 

regulators of the neurovasculature (MacVicar and Newman, 2015), microglia have 

increasingly been implicated in neurovascular development and complexity and thus 

indirectly regulate brain function. This review will summarize the current literature on the 

role for microglia in neurovascular function. Our assessment will begin with the relevant 

literature on the current conclusions regarding microglial roles in developmental 

angiogenesis and conclude with the insights provided by studies investigating microglial 

function in pathological conditions including cerebral tumors and neurodegenerative 

diseases.

While the focus of this review is not on microglial-astrocyte or microglial-pericyte 

interactions, it should be noted that there is growing evidence for interactions between 

microglia and these cells as components of the neurovascular unit. For example, microglia 

promote astrocyte differentiation (Nakanishi et al., 2007). However, astrocytes also regulate 

microglial phenotypes by paracrine signaling of released molecules (Rezaie et al., 2002; 

Bohlen et al., 2017) indicating that bidirectional regulation between microglia and astrocytes 

could have consequences on vascular development and integrity. Pericytes also serve as 

cytokine responsive cells and amplify microglia activation (Matsumoto et al., 2014) and are 

suggested to function as immune suppressors (Hurtado-Alvarado et al., 2014). This might 

imply a regulation by pericytes of the microglial phenotype on the uninjured brain. They 

have been recently reported to be a source of microglia especially following ischemia (Ozen 

et al., 2014; Sakuma et al., 2016). Moreover, activated microglia promote pericytes cell 

death via ROS production (Ding et al., 2017) and may thus compromise blood vessel 

integrity since pericytes make up the basement membranes of the vasculature. Therefore, 

although we don’t highlight the various interactions between these cellular components of 

the neurovascular unit and microglia in the following pages, these interactions cannot be 

ignored.

[2] Microglia and Blood Vessels in Normal Physiology

[2.1] Microglial Colonization of the CNS Precedes the Development of, but then Closely 
Associates with Blood Vessels

Several studies have documented that microglial emergence precedes the carefully 

orchestrated formation of the cerebral blood vessel network in the developing brain. This is 

the case in the mouse retina (Rymo et al., 2011) as well as hindbrain (Fantin et al., 2010). 

Consistent with these results from mice, avian data using chick-quail chimeras also revealed 

that yolk sac derived macrophages that give rise to microglia invade the CNS prior to and 

independent of neurovascular development (Cuadros et al., 1993; Kurz and Christ, 1998).

Although microglia and the neurovasculature do not appear in the developing CNS at the 

same time, when they do appear, they often display physical interactions. Early studies 

documented the localization of microglial cells with the vasculature in the developing rodent 

brain (Ashwell et al., 1989) and were sometimes referred to as “pericytic macrophages” 

(Thomas, 1999). This has been repeatedly confirmed in subsequent studies in the brain 

proper (Arnoux et al., 2013) and suggests relevant (perhaps bi-directional) communication 
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between microglia and the vasculature. Moreover, these observations provided support for 

an early hypothesis that microglia migrate into the brain via blood vessels (Perry et al., 

1985). Subsequent results, however, suggest that circulating cells do not infiltrate the brain 

parenchyma in the healthy CNS (Ajami et al., 2007) dampening enthusiasm for this early 

hypothesis. The observation of microglial proximity to blood vessels is especially noticeable 

during development. For example, in both the developing human and mouse retina, 

microglia are closely opposed to blood vessels (Checchin et al., 2006; Rymo et al., 2011). 

Furthermore, “juxtavascular” microglia were observed by real time confocal imaging to 

migrate along the walls of cerebral blood vessels in brain slices (Grossmann et al., 2002). 

These microglia exhibited a greater likelihood of migration than non-juxtavascular 

microglia. Although such observations were determined in an excised tissue context, 

whether the observations are an artifact of tissue excision or representative of the native 

developmental brain environment will have to be elucidated using more robust in vivo 
imaging approaches. Moreover, the precise function of this migration along blood vessels is 

not clear.

Less work has been done to provide details on microglial-vascular interactions in the mature 

brain. Nevertheless, interest in functional interactions between microglia and the 

neurovasculature continues to mount. Our initial studies using in vivo two photon imaging in 

adult mice has revealed that microglia maintain robust physical contact with elements of the 

neurovasculature (Fig. 1). Work is underway to adequately characterize these interesting 

microglial interactions with the neurovascular system and determine their functional 

significance in physiology and pathology.

[2.2] Microglia Promote Angiogenesis

One of the increasingly recognized functions of microglia is that they participate in the 

formation of new blood vessels or angiogenesis. This has especially been documented in 

pathological contexts (see next section) and presumes prior mechanistic similarities in 

earlier development. We will now consider some of the evidence that have been provided for 

this from both genetic and pharmacological approaches.

Support for the involvement of microglia in developmental angiogenesis from genetic 

approaches was first provided by the genetic depletion of macrophage colony stimulating 

factor, otherwise known as mCSF. This gene controls the development and survival of cells 

of the monocytic lineage including brain microglia (Cecchini et al., 1994). In mice 

genetically deficient of mCSF, the development of microglia and other monocyte-derived 

cells are lacking. Interestingly, the complexity of the developing retinal vasculature in mCSF 

knockout mice was also reduced suggesting roles for microglial mCSF signaling in 

angiogenesis in the retina. The deficiency in vasculature complexity was transient as 

differences were only observed in development but not in adulthood. Therefore, there might 

be complementary non-mCSF or microglia-independent mechanisms for retinal 

angiogenesis (Kubota et al., 2009).

Similar to mCSF, the PU.1 gene controls hematopoietic cell differentiation and genetic 

interruption of its function prevents microglial development (Scott et al., 1994; McKercher 

et al., 1996). Interestingly, PU.1 mutant mice also exhibit less elaborate blood vessel 
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complexity (Fantin et al., 2010). Of course, given the limitation that these genetic 

approaches target non-microglial cells, the deficiency in vascular complexity could result 

from contributions from non-microglial population. Therefore, more selective microglial 

elimination techniques will have to be employed in future studies to adequately determine 

microglia-specific roles in developmental angiogenesis. However, it is worth noting that the 

challenge of ablating microglia in early development is not trivial and has yet to be 

accomplished at the time of this writing.

Pharmacological evidence suggesting microglial contributions to developmental 

angiogenesis has been multiply documented. First, consistent with a role for mCSF, its 

pharmacological inhibition using neutralizing antibodies to mCSF also reduced blood vessel 

complexity (Kubota et al., 2009). This pharmacological approach also suffers from the 

limitation that mCSF could target non-microglial cells that express mCSF receptors. Second, 

selective depletion of microglia using clodronate liposomes by which microglia die upon 

their uptake liposomes, resulted in reduced vascularization in the developing mouse retina 

(Checchin et al., 2006). Yet, as with the genetic approach, future studies will have to 

specifically target microglia selectively and do so especially in an in vivo context. Together, 

these results consistently suggest that microglia promote developmental angiogenesis.

[3] Microglia and Blood Vessels in Pathology

Although microglial roles in blood vessel development and maintenance have not received 

intense research attention as discussed above, more research has been directed to its function 

in various pathologies from brain tumors to acute brain injuries like ischemia to chronic 

neurodegenerative diseases. Current data on these findings will be discussed in this section. 

The relevance of findings from such studies is that understanding microglial roles in these 

pathological contexts could (i) inform future therapies that can be developed in the treatment 

directed towards ameliorating the progression of these pathologies and (ii) inform 

researchers on candidate mechanisms to identify factors by which microglia may regulate 

developmental angiogenesis and neurovascular physiology.

[3.1] Microglia and Blood Vessels in Brain Tumors

In the last two decades of angiogenesis research, it has become clear that vascular 

endothelial growth factor (VEGF) is a predominant regulator in the development and 

patterning of blood vessels (Thomas, 1996). This has been confirmed in multiple systems 

including the mouse brain (Ruhrberg et al., 2002; Haigh et al., 2003; Raab et al., 2004), the 

mouse retina (Stalmans et al., 2002; Haigh et al., 2003) and the quail neural tube (James et 

al., 2009). As with developmental angiogenesis, the tumor environment is pro-angiogenic 

and thus seems to promote the development of new blood vessels (otherwise termed 

“neovascularization”), which is important for (i) the delivery of blood and its accompanying 

nutrients to the tumor and (ii) the metastasis of tumor cells from the original tumor site to 

novel sites (Lorger, 2012). On this account, brain tumors possess a characteristically 

increased density of blood vessels (Lopes, 2003) some of which could be malformed and 

potentially leaky. Factors that promote the neovascularization of tumors are therefore 
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generally considered detrimental to the outcome for the patient while those that conversely 

limit tumorigenic neovascularization are considered beneficial.

While astrocytes are considered to be a predominant cell type that secrete VEGF for 

angiogenesis (Pierce et al., 1995), selectively abrogating astrocyte-derived VEGF did not 

significantly alter the developmental angiogenesis (Scott et al., 2010; Weidemann et al., 

2010) suggesting that either compensatory mechanisms are in play or astrocyte-derived 

VEGF is not critical for blood vessel development. Although microglial VEGF roles in 

developmental angiogenesis are not clear, microglia are now known to express some VEGF 

isoforms (Zhang et al., 2014) suggesting the capacity for regulating vascularization.

In human tumors, microglial/macrophage density was increased with a corresponding 

increase in tumorigenic neovascularization (Nishie et al., 1999; Brandenburg et al., 2016) 

and macrophages were increasingly associated with blood vessels (Leek et al., 1996; 

Brandenburg et al., 2016). Since microglia are the macrophages of the CNS, the implication 

that macrophages induce angiogenesis in tumor environments (Kobayashi et al., 1994; 

Sunderkotter et al., 1994; Polverini, 1997; Wang et al., 2013; Qin et al., 2015) could also 

apply to microglia (Wyckoff et al., 2004). Interestingly, despite the fact that it is difficult to 

distinguish brain resident microglia from infiltrated macrophages molecularly, recent 

evidence suggest that the pro-angiogenic function is predominantly carried out by microglia 

rather than macrophages in brain tumors (Brandenburg et al., 2016). Furthermore, factors 

derived from microglia are known to facilitate tumor progression (Sliwa et al., 2007). 

Specifically, microglia release tumor necrosis factor-alpha (TNFα) in the tumorigenic 

environment (Hattermann et al., 2014; Hwang et al., 2016), which in turn regulates the 

release of VEGF from glioma cell lines (Ryuto et al., 1996) that is critical for 

neovascularization. Thus either by the direct release of VEGF or the indirect release of other 

factors that increase its expression, microglia participate in the promotion of tumor 

angiogenesis. Finally, since VEGF serves as a chemoattractant to microglia (Forstreuter et 

al., 2002), its release in tumors could serve as an attractive signal to microglia towards blood 

vessels in an autocrine (if microglia are the source) or paracrine (if other cells are the source) 

manner.

In addition to microglial VEGF signaling, microglia release matrix metalloproteinases 

(MMPs) in vascularizing the tumor environment. Since MMPs function to degrade and 

remodel the extracellular matrix, their function is pro-angiogenic and thought to be recruited 

by the tumor for the promotion of tumor expansion (Egeblad and Werb, 2002; Rao, 2003). 

Microglia express several MMPs along with other cells of the brain (Hickman et al., 2013; 

Zhang et al., 2014; Holtman et al., 2015). MMP expression such as MT1-MMP (or 

MMP14), has been detected on human and murine microglia while tumor cells fail to 

express the protein (Markovic et al., 2009). Moreover, microglial depletion using either 

clodronate liposomes which eliminated MMP expression or genetic ablation both resulted in 

a reduction in tumor invasion (Markovic et al., 2009) confirming a pro-tumorigenic role for 

the microglial-derived MMP. Consistent with a role for microglial release of MT1-MMP in 

promoting tumor-induced angiogenesis, upregulation of the gene during tumor progression 

was correlated with increased neovascularization (Gabrusiewicz et al., 2011). These results 
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indicate that microglial MMP activity promotes tumor progression by facilitating 

vascularization in the tumor environment.

Other microglial factors have been identified that promote tumor growth. For example, the 

microglial Na(+)/H(+) exchanger isoform 1 (NHE1) was recently identified as a respectable 

target to ameliorate tumor progression (Zhu et al., 2016). The mechanisms investigated 

suggested a regulation of tumor cell migration and proliferation. However, it would be 

interesting to determine whether the exchanger promotes tumor invasiveness by angiogenic 

mechanisms as well. Recently, CXCL2, a cytokine which is predominantly expressed by 

microglia in the brain parenchyma (Hickman et al., 2013; Zhang et al., 2014; Holtman et al., 

2015), was shown to promote tumor-induced angiogenesis (Brandenburg et al., 2016). These 

results indicate that microglia facilitate blood vessel formation in a tumorigenic environment 

and some of the regulatory factors include growth factors, proteases, transporters and 

cytokines.

[3.2] Microglia and Blood Vessels in Ischemic Stroke

Stroke is the fifth leading cause of mortality in United States and a leading cause of 

disability (Talwalkar and Uddin, 2015). Many aspects of the role of microglia in ischemic 

contexts have been extensively reviewed (Ma et al., 2016). Microglia respond earliest 

following an ischemic insult and serve as the first line of defense to the injury (Morioka et 

al., 1991; Weinstein et al., 2010). Microglial accumulation is also one of the earliest cellular 

signatures in cerebral ischemia (Gelderblom et al., 2009). Ischemia induced by 

photothrombosis revealed that microglial dynamic activity is closely associated with 

capillary blood flow around its cell body (Masuda et al., 2011). The dynamics of microglial 

processes is suppressed around the capillary with decreased blood flow, suggesting 

microglial surveillance is inhibited during ischemia, which is consistent with evidence from 

the developing brain (Eyo and Dailey, 2012).

Microglia become closely associated with blood vessel after ischemia by forming 

perivascular clusters and phagocytic structures (Jolivel et al., 2015). The accumulation of 

microglia around the vasculature subsequently led to the disintegration of the vessels which 

included their upregulation of phagocytic CD68 expression in the penumbra area. 

Accumulation of microglia with blood vessels also correlated with the invasion of blood-

borne molecules during reperfusion (Jolivel et al., 2015). Interestingly, a selective 

inactivation of microglial CX3CR1 that has been reported to regulate microglial migration 

(Cardona et al., 2006; Liang et al., 2009) and significantly reduce blood extravasation 

(Jolivel et al., 2015). This may be a mechanism for neuroprotection in stroke since several 

studies have indicated reduced stroke pathology in CX3CR1-deficient mice (Denes et al., 

2008; Jolivel et al., 2015).

Furthermore, perivascular microglia might also contribute to cerebral ischemia by releasing 

microglia-specific cytokines that are known to compromise vascular integrity in ischemia 

(Sprague and Khalil, 2009). For example, IL-1β and TNFα, both known to increase the 

permeability of the blood brain barrier (BBB) (Tsao et al., 2001; Mayhan, 2002; Sibson et 

al., 2002; Wang et al., 2014; Richter et al., 2017) are released by microglia early during 

ischemia (Lambertsen et al., 2012) to promote the compromise of the BBB. Later in the 
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progression of ischemia, microglia also release VEGF (Xie et al., 2013) known to promote 

angiogenesis in stroke (Zhang et al., 2000) suggesting that they could play some reparative 

functions by inducing neovascularization in later stages of stroke that contrasts with their 

earlier function. Of note, even IL-1β has been reported to have pro-angiogenic functions as 

well (Giulian et al., 1988) which may also be recruited in the latter repair following ischemic 

injury. Together, these results suggest that in the stroke context, microglia breakdown extant 

blood vessels, partially through cytokine insults and partially through phagocytic engulfment 

early on following the insult, and then contribute to building new vasculature later on. Future 

work will have to more precisely and adequately test this hypothesis.

[3.3] Microglia and Blood Vessels in Neurodegeneration

[3.3.1] Alzheimer’s disease—Alzheimer’s disease (AD) represents the most common 

neurodegenerative disease and is especially fatal in the aging population (Ballard et al., 

2011). Characterized by amyloid beta (Aβ) deposits in the brain as a histopathological 

hallmark, microglial reactivity in the AD brain is also well known (Heneka et al., 2015; Yeh 

et al., 2017) but the specific contribution of microglia remain hotly debated (Gold and El 

Khoury, 2015; Malm et al., 2015). Here, we focus on some of the evidence that among other 

things, microglia in the AD context participates in vascular abnormalities that occur in the 

disease.

As with previous discussions, VEGF expression is increased in AD in response to Aβ 
deposition (Kalaria et al., 1998; Tarkowski et al., 2002). Since Aβ is deposited in and/or 

around blood vessels in addition to the parenchyma (Okamoto et al., 2009; Hickman and El 

Khoury, 2010), VEGF, among other chemoattractant, may mobilize microglia to surround 

blood vessels. This is consistent with a robust perivascular accumulation of microglia in AD 

(Ryu and McLarnon, 2009; Giannoni et al., 2016). In the 5xFAD model of AD, a 

longitudinal assessment of AD pathology using intravital two-photon microscopy revealed 

overlapping regions of neurovascular defects and Aβ plaques, which correlated with 

increased microglial activation (Giannoni et al., 2016). Whether the microglial reactivity in 

perivascular regions was a cause, consequence or an independent correlating factor with the 

histopathological vascular defects was not determined.

However, in an experimental model of AD where Aβ is injected into the hippocampus, there 

is a corresponding increase in neovascularization and microglial activation (Zand et al., 

2005). Furthermore, in this condition, the BBB becomes leaky and this has been correlated 

with BBB-associated astrocytes and microglia (Ryu and McLarnon, 2006). Indeed, 

application of minocycline to inhibit microglial activation in this context significantly 

reduced the Aβ-induced defect in BBB integrity (Ryu and McLarnon, 2006). This result was 

further supported by an alternative approach using CD11b antibodies to block microglial 

function, which resulted in reduced neurovascular deficits from Aβ injection (Ryu and 

McLarnon, 2009). Although the precise mechanisms for microglial action remain to be 

elucidated, one of the mechanisms that may be proposed to be employed by microglia in 

promoting vascular pathology in Aβ pathology is through the purinergic P2X7 receptor 

(P2X7R) signaling (Ryu and McLarnon, 2008). Microglia are recognized as a predominant 

cell that expresses the P2X7R in the brain (Hickman et al., 2013; Zhang et al., 2014; 
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Holtman et al., 2015) despite the lingering controversy of neuronal P2X7R expression (Illes 

et al., 2017; Miras-Portugal et al., 2017). In this light, since pharmacological inhibition of 

P2X7Rs improved defects induced by Aβ treatment such as aberrant vascular function (Ryu 

and McLarnon, 2008), it is tempting to speculate that a primary cellular component of action 

occurred through microglia.

MMPs expressed by microglia and released in AD pathology have also been documented to 

contribute to the progression of AD (Kim and Joh, 2012). However, whether MMP action is 

specifically through microglia or has any specific effect on AD-induced vascular aberrations 

remains to be determined. Finally, microglia also release several cytokines including TNFα 
and IL-1β during AD pathology (Cameron and Landreth, 2010; Mandrekar-Colucci and 

Landreth, 2010; Wang et al., 2015) that can also compromise the vasculature as discussed 

above (see section 3.2 above). On the basis of the above, microglia are thus thought to 

promote vascular pathology including a breakdown of the BBB in Aβ pathology like AD.

[3.3.2] Multiple Sclerosis and Parkinson’s disease—Multiple sclerosis (MS) is a 

progressive neurodegenerative autoimmune disease characterized by demyelination, brain 

atrophy and chronic inflammation (Lassmann et al., 2001; Vos et al., 2005). As with other 

conditions discussed above, angiogenesis has been reported in animal models of MS 

(Seabrook et al., 2010; Girolamo et al., 2014). In addition, BBB integrity is compromised in 

early stages of the disease leading to increased leukocyte infiltration and accumulation of 

blood products such as fibrinogen into the brain (Vos et al., 2005; van Horssen et al., 2007). 

Real time in vivo imaging revealed that leaked fibrinogen serves to attract microglia towards 

blood vessels in the early stages of animal models of MS. This attraction continues into 

more severe stages of the disease (Davalos et al., 2012). However, although microglia in 

general are thought to promote MS pathology (Heppner et al., 2005), it’s precise role in 

vascular abnormalities of the disease such as BBB compromise and angiogenesis have not 

been clarified and should be a focus of future studies.

Parkinson’s disease (PD) is a progressive neurodegenerative motor disease and is 

characterized by the loss of dopaminergic neurons in the substantia nigra (Kalia and Lang, 

2015). Activation of the immune system and especially microglia is well known for disease 

progression (Whitton, 2007; Luo et al., 2017). As with the AD and MS, neovascularization 

(Barcia et al., 2005; Desai Bradaric et al., 2012) and a compromised BBB (Brochard et al., 

2009; Gray and Woulfe, 2015) have been reported in PD/animal models of PD. However, 

whether and how microglia may be involved in regulating neurovascular changes that occur 

during PD has not been adequately explored.

[4] Outstanding Questions and Future Direction

The previous sections have documented the progress in understanding microglial 

engagement with the neurovascular system in health and disease (Fig. 2). However, at least 

three avenues of research should be employed to address outstanding questions. First is the 

question of molecular and mechanistic details of microglial regulation of vascular function 

in the developing and mature brain. While compelling evidence support an important role 

for microglia in maintaining vasculature function in the brain, the basis of communication 
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between microglia and the neurovasculature is still elusive at this moment. More basic 

research would lead to a better understanding of microglia-vascular interaction that can be 

harnessed to treat vascular pathologies of the brain. Precise roles of cytokines, free radicals, 

purines and proteases should be investigated in these various contexts. Relevant intracellular 

signaling pathways by which microglia receive signals from and send signals to the 

vasculature remain to be identified. Furthermore, future research should be directed to reveal 

the extent and details of microglial physical and dynamic interactions with elements of the 

neurovasculature and how they may differ between for example, capillaries, arteries and/or 

veins. The advent of real time two photon imaging can be used to accomplish this.

A second aspect that should guide future research is the question of specific microglial 

populations that may orchestrate neurovascular development and maintenance (or 

disintegration) in health and disease. RNA sequencing and transcriptional profiling data 

suggests a rich heterogeneity of microglia with distinctive molecular profiles (Zhang et al., 

2014; Grabert et al., 2016; Keren-Shaul et al., 2017). In light of these results, it would be 

interesting to determine whether there is a microglial subtype specifically responsible for the 

maintenance/modulation of the neurovascular system in various brain regions. 

Morphological and molecular characterizations of such region specific microglia-vascular 

interaction would have to be determined. In addition, perivascular microglia have been 

identified in the literature but whether they are molecularly distinct from other resident 

microglia will need to be clarified to better understand their function.

Finally, while evidence is mounting for promising roles of microglia in angiogenesis and the 

maintenance of the BBB integrity, a lot of work remains to be done to determine precise 

microglial involvement in these processes especially in pathology. Prior work did not 

adequately ascertain microglial involvement because of the lack of specificity in the 

approaches. Approaches that potentially targeted microglia and peripheral monocytes/

macrophages indiscriminately may have led to faulty conclusions in microglia-neurovascular 

interactions. Minocycline was mostly used to inhibit microglial activation in studying 

microglia-vascular interaction, however, it also has other non-microglial and perhaps direct 

neuromodulatory effects (Huang et al., 2010). Moreover, future studies are needed to 

differentiate the direct microglial interaction with neurovascular system from the indirect 

effect of microglia-neuron or microglia-astrocyte communication. Continual advancements 

in microglial-specific genetic and pharmacological tools in general cell ablation and specific 

protein deletion has now set the stage for better studies to adequately address these concerns.
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Figure 1. Microglia and blood vessels exist in close proximity in the adult brain
Z-stack images from the somatosensory cortex of a transgenic CX3CR1-GFP+/− mouse 

injected with SR101 (red) to label the neurovasculature. a–b, Low magnification images of 

ramified microglia and blood vessels in 50 μm z-stack images. Scale bar: 50 μm. c–d, High 

magnification images of ramified microglia and blood vessels in 10 μm z-stack images of 

the corresponding boxed regions in (a) and (b). Physical contact between microglia somata 

and capillaries are indicated with arrows. Scale bar: 20 μm.
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Figure 2. Schematic diagram of microglial interaction with the neurovascular system in 
physiology and pathology
Resting microglia, as depicted in normal condition, are characterized with ramified cellular 

processes and close proximity of blood vessel. Activated microglia under diseased 

conditions are featured with larger somata and enriched in the dysfunctional core of 

associated diseases. Molecules, like chemokines, cytokines & growth factors, included in 

interaction of microglia and neurovascular system are indicated in each panel as normal 

condition, brain tumor, ischemic stroke, Alzheimer’s disease and multiple sclerosis.
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