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Abstract

Computationally modeling changes in binding free energies upon mutation (interface ΔΔG) allows 

large-scale prediction and perturbation of protein-protein interactions. Additionally, methods that 

consider and sample relevant conformational plasticity should be able to achieve higher prediction 

accuracy over methods that do not. To test this hypothesis, we developed a method within the 

Rosetta macromolecular modeling suite (flex ddG) that samples conformational diversity using 

“backrub” to generate an ensemble of models, then applying torsion minimization, side chain 

repacking and averaging across this ensemble to estimate interface ΔΔG values. We tested our 

method on a curated benchmark set of 1240 mutants, and found the method out-performed 

existing methods that sampled conformational space to a lesser degree. We observed considerable 

improvements with flex ddG over existing methods on the subset of small side chain to large side 

chain mutations, as well as for multiple simultaneous non-alanine mutations, stabilizing mutations, 

and mutations in antibody-antigen interfaces. Finally, we applied a generalized additive model 

(GAM) approach to the Rosetta energy function; the resulting non-linear reweighting model 

improved agreement with experimentally determined interface ΔΔG values, but also highlights the 

necessity of future energy function improvements.
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Introduction

Protein-protein interactions underlie essentially all biological processes, including signal 

transduction and antibody-antigen recognition. Many protein-protein interfaces are sensitive 

to mutations that can alter interaction affinity and specificity. In fact, mutations at protein-

protein interfaces have been reported to be overrepresented within disease-causing 

mutations,1 highlighting the central importance of these interactions to biology and human 

health. A sufficiently accurate computational method capable of predicting mutations that 

strengthen or weaken known protein-protein interactions would hence serve as a useful tool 

to dissect the role of specific protein-protein interactions in important biological processes. 

Coupled with state-of-the-art methods for protein engineering and design, such a method 

would also enhance our ability to create new and selective interactions, enabling the 

development of improved protein therapeutics, protein-based sensors, and protein materials.

Several prior methods have been developed to predict changes in protein-protein binding 

affinity upon mutation using different approaches to estimating energetic effects (scoring) 

and modeling structural changes (sampling). Common approaches include weighted energy 

functions that seek to describe physical interactions underlying protein-protein interactions, 
2,3 statistical and contact potentials, 4–7 a combination of these approaches, 8,9 graph-based 

representations, 10 methods that sample backbone structure space locally around mutations, 
11 and machine learning approaches. 12

We set out to develop and assess methods for estimating experimentally determined changes 

in binding free energy after mutation (interface ΔΔG) within the Rosetta macromolecular 

modeling suite. Rosetta is freely available for academic use, and allows combination of 

interface ΔΔG predictions with Rosetta’s powerful protein design capabilities, which have 

proven successful in a variety of applications. 13,14 Prior projects have applied Rosetta 

predictions to dissect determinants of binding specificity and promiscuity, 15,16 enhance 

protein-protein binding affinities, 17,18 and to design modified 19 and new interactions, 20–22 

but no prior benchmarking effort has quantitatively assessed the performance of predicting 

changes in binding free energy in Rosetta on a large, diverse benchmark dataset, in part 

because such datasets have only become available more recently. The current state-of-the-art 

Rosetta ΔΔG method, ddg_monomer,23 has proven effective at predicting changes in 

stability of monomeric proteins after mutation, but had not yet been tested at predicting 

change of binding free energies in protein-protein complexes. Prior “computational alanine 

scanning” ΔΔG methods were benchmarked on mutations in protein-protein interfaces, 

focusing on mutations to alanine. 24–26 The original Rosetta alanine scanning method 24 did 
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not sample backbone degrees of freedom, which is a first-order approximation for mutations 

to alanine (that are not expected to cause large backbone perturbations 27), but less likely to 

be predictive for mutations to larger side chains which might require some degree of 

backbone rearrangement to accommodate the change. Inclusion of recent Rosetta energy 

function and sampling method developments, including methods that attempt to more 

aggressively sample conformational space, has not resulted in significant improvement to the 

alanine scanning method.26

We sought to create a method that would take into account aspects of the conformational 

plasticity of proteins by representing structures as an ensemble of individual full-atom 

models to explore biologically relevant and accessible portions of conformational space near 

the crystallographically determined input structures. Ensemble representations have 

previously been shown to be effective at predicting changes in protein stabilities after 

mutation 28 and at predicting the effects of mutation on protein-protein binding affinities, 29 

as well as at improving ΔGbinding calculations between kinases and their inhibitors. 30

We chose to sample conformational plasticity using the “backrub” protocol implemented in 

Rosetta.31 The backrub method samples local side chain and backbone conformational 

changes, similar to those suggested to underlie observed conformational heterogeneity in 

high-resolution crystal structures, 32 and to accommodate evolved and designed mutations. 
33 Backrub ensembles have been demonstrated to recapitulate properties of proteins that 

have been experimentally determined, such as side chain NMR order parameters, 34 

tolerated sequence profiles at protein-protein 35 and protein-peptide interfaces, 36,37 and 

conformational variability between protein homologs. 38 Backrub has also proved effective 

in design applications, such as the redesign of protein-protein interfaces 19 and recapitulation 

of mutations that alter ligand-binding specificity. 39 When compared to ensembles generated 

via molecular dynamics simulations or the “PertMin” method, 40 backrub ensembles were 

shown to be the only ensembles capable of generating higher diversity (as measured by 

RMSD) between output models than from output models to the original input crystal 

structure. This observation suggests that backrub could be uniquely suited to produce diverse 

ensembles that effectively explore the local conformational space around an input structure. 
40 Taken together, we hypothesized that these previously demonstrated properties of backrub 

ensembles would also make them an effective representation of near-native conformational 

states for use in predicting interface ΔΔG values.

Methods

Benchmark datasets

Developing and assessing the accuracy of a new method to predict changes in binding free 

energy after mutation requires a large and diverse benchmark set covering single mutations 

to all amino acid types, multiple mutations, and mutations across a variety of protein-protein 

interfaces. To facilitate comparisons to other methods and to avoid biases specific to our 

approach, we chose to use an existing benchmark dataset created by Dourado and Flores 11 

during the development of their ZEMu (Zone Equilibration of Mutants) method. The ZEMu 

dataset was curated from the larger SKEMPI database 41 by avoiding a bias towards 

complexes in which a single position is repeatedly mutated, experimental data that are not 
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peer-reviewed, redundancy (duplicate experimental values), mutations outside of interfaces, 

mutations involved in crystal contacts, and experimental ΔΔG values for which wild-type 

and mutant conditions (such as pH) varied. Confidence in the “known” experimental ΔΔG 
values is important, as it has been pointed out that the experimental methodology used can 

have a strong effect on the performance of predictors of changes in binding free energy. 42 

The ZEMu dataset was also curated to include a range of both stabilizing and destabilizing 

mutants, small side chain to large side chain mutations, single and multiple mutations, and a 

diversity of complexes. Small-to-large mutations are defined as those dataset cases where all 

mutation(s) are at positions where the residue side chain increases in van der Waals volume 

post-mutation. 43

After a review of the literature from which the known experimental ΔΔG values originated, 

we removed one data point from the 1254 point ZEMu set that we could not match to the 

originally reported affinity value. We also removed 5 mutations we determined to be 

duplicates, along with 8 mutations that were reverse mutations of other data points, leaving 

us with a test set of 1240 mutations (Table 1). We used SAbDab 44 to define complexes that 

contained at least one antibody binding partner. Our version of the ZEMu dataset is available 

in the Supporting Information as Dataset S1. All ΔΔG predictions described in the paper are 

available in the Supporting Information.

Rosetta implementation and prediction protocol

Our protocol, called “flex ddG”, is implemented within the RosettaScripts interface to the 

Rosetta macro-molecular modeling software suite, 45 which makes the protocol easily 

adaptable to future improvements and energy function development. The method can be run 

using a Rosetta Scripts XML that is available in the Supporting Information as Listing 1. 

Version numbers of tested software are available in Table S1.

Flex ddG method steps are outlined in Fig. 1. Step 1: The protocol begins with an initial 

minimization (on backbone ϕ/ψ and side chain χ torsional degrees of freedom, using the 

limited-memory Broyden-Fletcher-Goldfarb-Shanno minimizer implementation within 

Rosetta, with Armijo inexact line search conditions (option “lbfgs_armijo_nonmonotone”) 

of the input crystal structure of the wild-type protein complex. This (and later) 

minimizations are performed with harmonic restraints on pairwise atom distances to their 

values in the input crystal structure. Restraints were added for all pairs for C-α atoms within 

9 Å of each other using a harmonic score potential defined to have the width (standard 

deviation) parameter set to 0.5 Å, and added to the Rosetta score function with a term weight 

of 1.0. Minimization is run until convergence (absolute score change upon minimization of 

less than one REU (Rosetta Energy Unit)). Step 2: Starting from the minimized input 

structure including both binding partners in the protein-protein complex, the backrub 

method in Rosetta31 is used to create an ensemble of models. In brief, each backrub move is 

undertaken on a randomly chosen protein segment consisting of three to twelve adjacent 

residues in the neighborhood of any mutated position. The mutation neighborhood is defined 

by finding all residues in the protein-protein complex with a C-β atom (C-α for glycines) 

within 8 Å of any mutant position, then adding this residue and its adjacent N and C-

terminal residues to the list of neighborhood residues. All atoms in the backrub segment are 
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rotated locally about an axis defined as the vector between the endpoint C-α atoms. The 

allowed rotation angles for the backrub steps use Rosetta default values as described in 

Smith & Kortemme, 2008.31 Backrub is run at a temperature of 1.2 kT, for up to 50,000 

backrub Monte Carlo trials/steps (Table S2 shows that using a kT of 1.6 gives similar results 

to a kT of 1.2). Up to 50 output models are generated. Step 3A: For each of the 50 models in 

the ensemble output by backrub, the Rosetta “packer” is used to optimize side chain 

conformations for the wild-type sequence using discrete rotameric conformations 46 and 

simulated annealing. The packer is run with the multi-cool annealer option, 47 which is set to 

keep a history of the 6 best rotameric states visited during annealing. Step 3B: 
Independently and in parallel to step 3A, side chain conformations for the mutant sequence 

are optimized on all 50 models, introducing the mutation(s). Step 4A: Each of the 50 wild-

type models is minimized, again adding pairwise interatomic distance restraints to the input 

structure. Minimization is run with the same parameters as in step 1; the coordinate 

restraints used in this step are taken from the coordinates of the Step 3A model. Step 4B: As 

Step 4A, but for each of the 50 mutant models. Step 5A: Each of the 50 minimized wild-

type models are scored in complex, and the complex partners are scored individually. The 

scores of the split, unbound complex partners are obtained simply by moving the complex 

halves away from each other. No further minimization or side chain optimization is 

performed on the unbound partners before scoring. Step 5B: In the same fashion as Step 5A, 

each of the 50 minimized mutant models are scored in complex, and the complex partners 

are scored individually. Step 6: The interface ΔΔG score is calculated via Eq. 1 as the 

arithmetic mean over the different models produced:

ΔΔGbind = ΔGbind
MUT − ΔGbind

WT

= (ΔGcomplex
MUT − ΔGpartnerA

MUT − ΔGpartnerB
MUT ) − (ΔGcomplex

WT − ΔGpartnerA
WT − ΔGpartnerB

WT )
(1)

We evaluate performance of the protocol by comparing predicted ΔΔG scores to known 

experimental values, using Pearson’s correlation (R), Fraction Correct (FC), and Mean 

Absolute Error (MAE). Fraction Correct is defined as the number of cases in the dataset 

categorized correctly as stabilizing, neutral, or destabilizing, divided by the total number of 

cases in the dataset. Stabilizing mutations are defined as those with a ΔΔG <= −1.0 kcal/mol, 

neutral as those with −1.0 kcal/mol < ΔΔG < 1.0 kcal/mol, and destabilizing as those with 

ΔΔG >= 1.0 kcal/mol.

MAE (Mean Absolute Error) is defined in Eq. 2 as:

MAE = 1
n ∑

i = 1

n
∣ yi − xi ∣ = 1

n ∑
i = 1

n
∣ ei ∣ (2)

where yi are the predicted ΔΔG values, xi are the known, experimentally determined values, 

and ei is the prediction error.
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As a control, we ran the flex ddG protocol omitting the backrub ensemble generation step. 

This control protocol can in principle generate multiple models because of the minimization 

and packing steps, but in practice these models are structurally highly similar or identical.

Rosetta energy function

We utilized Rosetta’s Talaris 46,48,49 all-atom energy function for the modeling steps. As we 

do not modify our models of the unbound state, several terms of the Rosetta energy function 

will cancel out in the final ΔΔG scoring because the ΔG of folding score of the unbound 

partners is subtracted from the total score of the complex (Eq. (1)). After subtraction, seven 

score terms remain, and combined, become the final interface ΔΔG score, dominated by 

solvation (fa_sol using an implicit solvation model 50), hydrogen bonding and electrostatics 
48,49,51 (hbond_sc: side chain-side chain hydrogen bonds; hbond_bb_sc: hydrogen bonds 

between backbone atoms and side chain atoms; hbond_lr_bb: long-range hydrogen bond 

interactions between backbone atoms; fa_elec: Coulomb electrostatics), and Lennard-Jones 

atomic packing interactions (fa_rep and fa_atr: repulsive and attractive components of the 

Lennard-Jones potential).

Score analysis

To investigate potential sources of prediction error on an individual score term basis, we 

used a generalized additive model 52 approach to fit Rosetta’s predicted ΔΔG values to 

experimentally known values. First, we apply an unbiased logistic scaling to individual score 

terms,

ha, b(x) = 2ea

1 + e−xeb − ea,

where a is the scaling range of the score, and b is the steepness of the sigmoid scaling. Both 

parameters are transformed through an exponential to ensure non-negativity. The scaling 

function h does not introduce bias, that is, hθ(0) = 0 for any θ. The scoring model results in a 

generalized additive model (GAM) over the M score terms,

f (x) = ∑
j = 1

M
hai, bi

(x) .

The parameters θ = (a j, b j) j = 1
M  for the score terms were simultaneously sampled using a 

random walk Metropolis-Hastings MCMC algorithm (the mhsample function in Matlab) 

assuming a Gaussian likelihood as the target distribution

p(θ; y) = N(f(xi) ∣ yi, σn
2)
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with a noise variance set to σn
2 = 1.0, and where (xi, yi)i = 1

N  are the empirical observations yi 

that correspond to the protein score terms xi, respectively. We sample for 1000 samples with 

a burn-in set to 1000 samples and a thinning parameter of 20. The proposal distribution was 

selected to be a symmetric uniform distribution such that [a(s+1), b(s+1)] ~ U(a(s) ± 2, b(s) 

± 2). The resulting MCMC sample represents all logistics score scalings that reproduce the 

empirical measurements assuming an error model with noise variance σn
2.

Results and discussion

The overall performance of the protocol is summarized in Table 2. We compare 4 prediction 

methods: (a) our flex ddG backrub ensemble method, (b) the prior state-of-the-art Rosetta 

methodology, ddg_monomer,23 (c) a control version of our flex ddG protocol which omits 

the backrub ensemble generation step, leaving only the minimization and packing steps, and 

(d) published data from the ZEMu (zone equilibration of mutants) method. 11 Data split by 

input protein-protein complex are shown in Table S3.

The new flex ddG method outperforms the comparison methods on the complete dataset in 

each of the correlation, MAE, and fraction correct metrics (Table 2). In particular, we see a 

large increase in performance relative to the other methods on the small-to-large subset of 

mutations. This is in accordance with our expectations that backrub ensembles should be 

able to sample small backbone conformational adjustments required to accommodate 

changes in amino acid residue size. Notably, application of backrub ensembles performs 

better than other methods that include backbone minimization steps only, including the 

current state-of-the-art Rosetta ddg_monomer method. On the small-to-large mutations 

subset, the ddg_monomer method achieves a Pearson correlation of only 0.31 compared to 

0.65 with flex ddG.

Performance of the flex ddG method on the subset of single mutations to alanine is also 

competitive or outperforms the alternative methods. As we do not expect single mutations to 

alanine to require intensive backbone sampling, our method’s effectiveness on this subset 

shows that the method is fairly robust to the mutation type. As we chose to perform backrub 

sampling prior to introducing mutations, these results could suggest that flex ddG is effective 

by sampling underlying, relevant plasticity of the input crystal structure instead of distorting 

the local structure around a mutation to resolve a clash or poor interaction with a mutant side 

chain.

While the flex ddG method shows improved performance on the subset of multiple 

mutations as compared to the control and ddg_monomer methods, flex ddG did not match 

the performance of the ZEMu method on this subset. This result could indicate that further 

refinement of the backrub parameters is required when simultaneously sampling 

conformational space around the sites of multiple mutations. For example, while we 

modeled all mutations simultaneously, it is possible that a protocol that considers mutations 

sequentially could improve predictions. However, and remarkably, flex ddG outperforms 

ZEMu on the subset of cases with multiple mutations where none of the mutations are to 

alanine (Table 2). While any comments on the origins of this difference will be speculative 
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especially with only limited structural information on the mutated proteins (as well as 

information on possible changed dynamics), we note that flex ddG predictions are more 

accurate for several cases in this dataset with experimental ΔΔG values around zero that 

ZEMu over-or underpredicts Finally, the flex ddG method also shows considerable 

improvements over other methods on the subset of antibody-antigen complexes (Table 2).

Fig. 2 illustrates the performance for the flex ddG and control methods on the complete 

dataset and small-to-large subsets using scatterplots comparing experimentally determined 

and computationally estimated changes in binding free energies for each of the cases in the 

datasets. In particular, a notable improvement with flex ddG over the control can be seen for 

the 13 small-to-large mutations that were experimentally determined to stabilize the protein-

protein interface significantly (ΔΔG <= −1.0 kcal/mol). For this set, the control method 

misclassifies most stabilizing mutations to have minimal effect or to be destabilizing (9 

mutations with predicted Rosetta ΔΔG scores > 0) (Fig. 2d), whereas flex ddG identifies a 

sizable number (12 of 13 mutations) to have predicted Rosetta ΔΔG < 0 (Fig. 2c), even 

though only one of these mutations is predicted to be strongly stabilizing (predicted ΔΔG 
score < −1). The capability to predict stabilizing mutations is especially important for 

challenging design applications to modulate binding affinity and selectivity, as well as 

creating entirely new high-affinity protein-protein interactions.

It has been previously observed that increasing the number of stabilizing mutations that are 

correctly identified (decreasing “false negatives”) might be accompanied by an increase in 

“false positives”, i.e. predictions that a mutation is stabilizing when it is not. However, using 

backbone ensembles was found to mitigate this effect by decreasing the number of false 

negatives more than it increases the number of false positives. 40 We therefore also evaluated 

the number of false positive predictions. For the complete dataset, there are 12 cases where 

the no backrub control method predicts a mutation incorrectly as stabilizing (Rosetta ΔΔG 
score <= −1) that were experimentally determined to destabilize the interface significantly 

(ΔΔG > 1 kcal/mol). In contrast, flex ddG misclassified only 1 destabilizing mutation as 

stabilizing. We conclude that flex ddG makes both fewer false negative and fewer false 

positive predictions

In the following sections, we assess how different flex ddG implementations would affect 

prediction performance, focusing separately on sampling and scoring.

Effect of ensemble size

While the results presented above used an ensemble size of 50 members, we next 

investigated what the ideal ensemble size would be to maximize the predictive ability of our 

method. For example, prior methods used ensemble sizes ranging from ten 3 to thousands.29 

As the computational time required to run flex ddG increases linearly with ensemble size, 

determining an optimal size is practically relevant. We therefore evaluated the performance 

of flex ddG as we average across an increasing number of models (from 1 to 50, Fig. 3). The 

models are first sorted by the score of the corresponding repacked and minimized wild type 

model, such that producing a ΔΔG with 1 model will only use the lowest (best) scoring 

model, 2 models will use the 2 lowest scoring models, and so forth. Fig. 3(a) shows the 

performance on the complete dataset. As more models with increasing wild type complex 
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score are averaged, correlation with known experimental values increases. Conversely, 

performance for the no backrub control method stays approximately constant as more 

models are averaged. This result indicates that sampling with backrub adds information that 

improves ΔΔG calculation even though the additional averaged models have higher scores 

(average ensemble total score is shown in Fig. S1). These higher scoring models would be 

excluded in methods such as the Rosetta ddg_monomer protocol, which typically use only 

the lowest scoring wild-type and mutant models. Similar observations on the utility of higher 

scoring models for stability prediction have been made previously. 53,54 Increasing the 

ensemble size may hence be useful to increase the odds of finding alternative conformations 

that are informative for estimating the effects of mutations, rather than simple minimization 

of structural models.

Instead of using just the three lowest energy models, 23 we find that the performance of the 

ddg_monomer method also improves as more output models are averaged (Fig. S2, Table 

S5). This was somewhat unexpected, as the no-backrub control method, which did not show 

an improvement with increasing ensemble size, is conceptually similar to the ddg_monomer 

method. However, the difference may arise from the fact that the ddg_monomer method 

ramps the weight of the repulsive Lennard-Jones term in the energy function during 

minimization. This strategy explores conformational space more broadly in different 

backbone ensemble members than minimization with a fully weighted repulsive term in the 

no-backrub control method. In this fashion, including more ensemble members generated by 

the ddg_monomer method increases the conformational plasticity sampled which in turn 

increases performance, as seen for the flex ddG method.

Using flex ddG, the subset of small-to-large mutations shows the largest increase in 

correlation with experimental ΔΔG values as more models are averaged (Fig. 3(b)). This 

result is consistent with our reasoning above that improved modeling of conformational 

plasticity is important for prediction performance, and that this effect is most important for 

significant changes in amino acid residue size. For the subset of multiple mutations where 

none are mutations to alanine (Fig. 3(c)), performance overall increases substantially 

initially when more models are added.

Averaging across increased numbers of models also improves correlation for the subset of 

single mutations to alanine (Fig. 3(d)). Here, improvements are seen up to averaging about 

10 models, after which performance stays approximately constant. This observation 

indicates that increased sampling, in the very least, is not harmful for cases where one would 

expect structural changes to be relatively small on average.

To test whether the optimal number of models depends on the structural context of the 

mutation, we binned the complete dataset by secondary structure class (alpha-helix, strand, 

loop, turn) at the site of the mutation using DSSP. 55,56 For all secondary structure classes, 

we observed a performance increase when averaging over increasing number of models, 

reaching a plateau at around 20 to 30 models (Fig. S3). We observed a similar behavior 

when binning the dataset by residue burial at the site of mutation using solvent accessible 

surface area computed using DSSP55,56 (Fig. S4). In all cases, we observed an increase in 

performance when averaging across a larger number of models.
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In summary, from a practical standpoint, generating 20–30 models should constitute 

sufficient sampling for most cases. Sorting the generated models by score and selecting the 

best scoring 20–30 out of 50 models does not appear to be necessary, as not sorting the 

models by score (Fig. S5, Table S6) gives similar results to sorting the models (Fig. 3).

Effect of extent of backrub sampling in each trajectory

The extent of sampling can also be controlled by changing the number of Monte Carlo steps 

in the backrub simulations. Fig. 4 shows the effect of increasing the number of backrub 

Monte Carlo steps (while averaging all 50 models at each output step) on flex ddG 

performance, compared to a control method with zero backrub steps that uses only 

minimization and side chain packing. ΔΔG scores are calculated every 2,500 backrub steps.

After an initial increase for the first set of 2500 backrub steps, performance stays relatively 

constant for the complete dataset (Figure 4a) and for single mutations to alanine (Fig. 4d). 

However, for the subsets of small-to-large mutations (Figure 4b) and multiple mutations, 

none to alanine (Fig. 4c), performance increases considerably with increasing numbers of 

Monte Carlo steps. This increase in performance is similar to what was observed with 

averaging over more models for these subsets (Fig. 3b,c). Performance levels off at around 

30,000 backrub Monte Carlo steps.

The increased performance does not appear to be simply a result of decreasing scores as the 

simulation progresses, as the average score of the minimized wild type complexes does not 

decrease uniformly across the sampled ensemble as the simulation progresses (Fig. S1). The 

pairwise backrub ensemble RMSDs continue to increase throughout the backrub simulation 

for all subsets (Fig. S6), indicating that diminishing returns at > 30,000 Monte Carlo steps is 

not a result of failure to sample new conformations, but rather might indicate that continued 

sampling does not capture additional relevant local changes in structure in this benchmark 

set.

Score analysis

As the sampling and scoring problems of protein modeling are generally linked, it is often 

the case that improving one enables further improvements in the other.

First, we compared the performance of our flex ddG method, which was run using Rosetta’s 

Talaris 46,48,49 energy function, to an identical protocol run with the more recently 

developed Rosetta Energy Function (REF). 57 The REF energy function differs from the 

Talaris energy function by utilizing a new anisotropic implicit solvation model, and an 

improved electrostatics and Lennard-Jones model. REF was optimized simultaneously 

against small-molecule thermodynamic data and high-resolution macromolecular structural 

data. Using the REF energy function, we did not observe an increase in performance on the 

complete ZEMu dataset, and performance decreases were seen for the subsets of small-to-

large mutations and multiple mutations (Table S8). Interestingly, flex ddG performance with 

the REF energy function increased over using the Talaris energy function if the resolution of 

the input crystal structure was <= 1:5 Å, but this subset of the data was rather small with 

only 52 mutations.
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Next, we sought to analyze underlying errors of the Rosetta energy function (when applied 

to interface ΔΔG) by assessing the individual terms of the energy function. To do so, we 

chose to reweight the terms of the energy function using a non-linear reweighting scheme 

similar to Generalized Additive Models (GAMs). 52 In this reweighting method, we used 

Monte Carlo sampling to fit a sigmoid function to the individual distributions of energy 

function terms, with the objective function of reducing the absolute error between our 

predictions and known experimental values over the entire dataset.

The effect on the predictions is shown in Fig. 5, Fig. S7, and Table S9. In general, the GAM-

adjusted predictions contain fewer outliers. In particular, experimental ΔΔG values that are 

relatively neutral (near zero) can sometimes be predicted by flex ddG to be highly 

destabilizing; the GAM model reduces the magnitude of error of many of these outliers, 

improving overall performance (Fig. 5). The overall correlation increases from 0.64 to 0.68 

(Table 2 and Table S9) when refitting the values from the Rosetta Talaris energy function;
46,48,49 refitting values from the Rosetta REF energy function 57 leads to a similar increase 

from 0.63 to 0.68 (Fig. S7, Table S8, Table S9). The correlation coefficient also increases 

when refitting the values obtained for the no backrub control, but only to 0.62 (Fig. 5a, Table 

S9).

The fit functions (fit for Talaris-derived ΔΔG predictions) are shown in Fig. S8. Extreme 

values for most score terms are downweighted, especially for the fa_sol and fa_atr terms, 

which make the largest contributions to predicted ΔΔG (Fig. S9).

Conclusions

We have shown on a large, curated benchmark dataset that the “flex ddG” method presented 

here is more accurate than previous methods for estimating changes in binding affinity after 

mutation in protein-protein interfaces. Particular improvement in performance is seen on the 

subset of small-to-large mutations, indicating that representing backbone flexibility using 

backrub motions is effective in cases where backbone rearrangements are expected to be 

more common. Other notable improvements over previous methods are seen for stabilizing 

mutations, mutations in antibody-antigen interfaces, and for cases with multiple changes 

where none of the mutations is to an alanine residue.

We have also shown that more accurate predictions can be obtained by averaging the 

predictions across a generated structural ensemble of backrub models, and that the number 

of required models is relatively low (20–30). Prior methods that produced ΔΔG predictions 

by averaging an ensemble of models required on the order of thousands of models, 29 

indicating that backrub sampling can efficiently sample the local conformational space 

around an input wild-type structure that is relevant for interface ΔΔG prediction.

By creating a method that uses backrub to sample conformational space more broadly than 

minimization alone, while still staying close to the known wild-type input structure, we have 

also generated data that should prove useful for future energy function improvements. In 

particular, using Rosetta’s newest REF energy function 57 does not improve performance of 

our method when compared to use of the prior Talaris 46,48,58 energy function (Table S8), 
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indicating that the backrub sampling parameters might require further benchmarking and 

adaption to the REF energy function. Our error analysis via GAM-like reweighting also 

indicates potential avenues for energy function improvement by identifying imbalances in 

predicted energetic contributions leading to overestimation of stabilizing and destabilizing 

effects. Further improvements might also be obtained by more explicitly including the 

effects of altering water-mediated interactions 59 and of conformational entropy, 2,60 as well 

as by considering the commonly observed shortcomings of energy functions balancing the 

magnitudes of electrostatic interactions and desolvation costs. We expect energy function 

improvements to require more accurate representation of subtle conformational changes, as 

these changes can have a considerable impact on design predictions. 61

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

The authors acknowledge the following sources of funding: T.K. was supported by grants from the National 
Institute of Health (R01 GM110089 and R01 GM117189). M.H. was supported by Academy of Finland grant 
299915. S.T. and J.E.L. were supported by National Science Foundation Graduate Research Fellowships. T.K. is a 
Chan Zuckerberg Biohub investigator.

References

1. Jubb HC, Pandurangan AP, Turner MA, Ochoa-Montaño B, Blundell TL, Ascher DB. Mutations at 
Protein-Protein Interfaces: Small Changes Over Big Surfaces Have Large Impacts on Human 
Health. Progress in Biophysics and Molecular Biology. 2017; 128:3–13. DOI: 10.1016/
j.pbiomolbio.2016.10.002 [PubMed: 27913149] 

2. Guerois R, Nielsen JE, Serrano L. Predicting Changes in the Stability of Proteins and Protein 
Complexes: A Study of More Than 1000 Mutations. Journal of Molecular Biology. 2002; 320:369–
387. DOI: 10.1016/S0022-2836(02)00442-4 [PubMed: 12079393] 

3. Kamisetty H, Ramanathan A, Bailey-Kellogg C, Langmead CJ. Accounting for Conformational 
Entropy in Predicting Binding Free Energies of Protein-Protein Interactions. Proteins: Structure, 
Function, and Bioinformatics. 2011; 79:444–462. DOI: 10.1002/prot.22894

4. Dehouck Y, Kwasigroch JM, Rooman M, Gilis D. BeAtMuSiC: Prediction of Changes in Protein-
Protein Binding Affinity on Mutations. Nucleic Acids Research. 2013; 41:W333–W339. DOI: 
10.1093/nar/gkt450 [PubMed: 23723246] 

5. Moal IH, Fernandez-Recio J. Intermolecular Contact Potentials for Protein-Protein Interactions 
Extracted From Binding Free Energy Changes Upon Mutation. Journal of Chemical Theory and 
Computation. 2013; 9:3715–3727. DOI: 10.1021/ct400295z [PubMed: 26584123] 

6. Vangone A, Bonvin AM. Contacts-Based Prediction of Binding Affinity in Protein-Protein 
Complexes. eLife. 2015; 4:e07454.doi: 10.7554/eLife.07454 [PubMed: 26193119] 

7. Brender JR, Zhang Y. Predicting the Effect of Mutations on Protein-Protein Binding Interactions 
Through Structure-Based Interface Profiles. PLOS Computational Biology. 2015; 11:e1004494.doi: 
10.1371/journal.pcbi.1004494 [PubMed: 26506533] 

8. Li M, Petukh M, Alexov E, Panchenko AR. Predicting the Impact of Missense Mutations on 
Protein-Protein Binding Affinity. Journal of Chemical Theory and Computation. 2014; 10:1770–
1780. DOI: 10.1021/ct401022c [PubMed: 24803870] 

9. Tuncbag N, Gursoy A, Keskin O. Identification of Computational Hot Spots in Protein Interfaces: 
Combining Solvent Accessibility and Inter-Residue Potentials Improves the Accuracy. 
Bioinformatics. 2009; 25:1513–1520. DOI: 10.1093/bioinformatics/btp240 [PubMed: 19357097] 

Barlow et al. Page 12

J Phys Chem B. Author manuscript; available in PMC 2019 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



10. Pires DEV, Ascher DB, Blundell TL. mCSM: Predicting the Effects of Mutations in Proteins Using 
Graph-Based Signatures. Bioinformatics. 2014; 30:335–342. DOI: 10.1093/bioinformatics/btt691 
[PubMed: 24281696] 

11. Dourado DFAR, Flores SC. A Multiscale Approach to Predicting Affinity Changes in Protein-
Protein Interfaces. Proteins: Structure, Function, and Bioinformatics. 2014; 82:2681–2690. DOI: 
10.1002/prot.24634

12. Zhu X, Mitchell JC. KFC2: A Knowledge-Based Hot Spot Prediction Method Based on Interface 
Solvation, Atomic Density, and Plasticity Features. Proteins: Structure, Function, and 
Bioinformatics. 2011; 79:2671–2683. DOI: 10.1002/prot.23094

13. Mandell DJ, Kortemme T. Computer-Aided Design of Functional Protein Interactions. Nature 
Chemical Biology. 2009; 5:797–807. DOI: 10.1038/nchembio.251 [PubMed: 19841629] 

14. Kaufmann KW, Lemmon GH, DeLuca SL, Sheehan JH, Meiler J. Practically Useful: What the 
Rosetta Protein Modeling Suite Can Do for You. Biochemistry. 2010; 49:2987–2998. DOI: 
10.1021/bi902153g [PubMed: 20235548] 

15. Boulanger MJ, Bankovich AJ, Kortemme T, Baker D, Garcia KC. Convergent Mechanisms for 
Recognition of Divergent Cytokines by the Shared Signaling Receptor Gp130. Molecular Cell. 
2003; 12:577–589. DOI: 10.1016/S1097-2765(03)00365-4 [PubMed: 14527405] 

16. McFarland BJ, Kortemme T, Yu SF, Baker D, Strong RK. Symmetry Recognizing Asymmetry: 
Analysis of the Interactions Between the C-Type Lectin-like Immunoreceptor NKG2D and MHC 
Class I-like Ligands. Structure. 2003; 11:411–422. DOI: 10.1016/S0969-2126(03)00047-9 
[PubMed: 12679019] 

17. Sammond DW, Eletr ZM, Purbeck C, Kimple RJ, Siderovski DP, Kuhlman B. Structure-Based 
Protocol for Identifying Mutations That Enhance Protein-Protein Binding Affinities. Journal of 
Molecular Biology. 2007; 371:1392–1404. DOI: 10.1016/j.jmb.2007.05.096 [PubMed: 17603074] 

18. Song G, Lazar GA, Kortemme T, Shimaoka M, Desjarlais JR, Baker D, Springer TA. Rational 
Design of Intercellular Adhesion Molecule-1 (ICAM-1) Variants for Antagonizing Integrin 
Lymphocyte Function-Associated Antigen-1-Dependent Adhesion. Journal of Biological 
Chemistry. 2006; 281:5042–5049. DOI: 10.1074/jbc.M510454200 [PubMed: 16354667] 

19. Kapp GT, Liu S, Stein A, Wong DT, Reményi A, Yeh BJ, Fraser JS, Taunton J, Lim WA, 
Kortemme T. Control of Protein Signaling Using a Computationally Designed GTPase/GEF 
Orthogonal Pair. Proceedings of the National Academy of Sciences. 2012; 109:5277–5282. DOI: 
10.1073/pnas.1114487109

20. Chevalier BS, Kortemme T, Chadsey MS, Baker D, Monnat RJ, Stoddard BL. Design, Activity, 
and Structure of a Highly Specific Artificial Endonuclease. Molecular Cell. 2002; 10:895–905. 
DOI: 10.1016/S1097-2765(02)00690-1 [PubMed: 12419232] 

21. Fleishman SJ, Whitehead TA, Ekiert DC, Dreyfus C, Corn JE, Strauch EM, Wilson IA, Baker D. 
Computational Design of Proteins Targeting the Conserved Stem Region of Influenza 
Hemagglutinin. Science. 2011; 332:816–821. DOI: 10.1126/science.1202617 [PubMed: 
21566186] 

22. Chevalier A, Silva DA, Rocklin GJ, Hicks DR, Vergara R, Murapa P, Bernard SM, Zhang L, Lam 
KH, Yao G, et al. Massively Parallel De Novo Protein Design for Targeted Therapeutics. Nature. 
2017; 550:74–79. DOI: 10.1038/nature23912 [PubMed: 28953867] 

23. Kellogg EH, Leaver-Fay A, Baker D. Role of Conformational Sampling in Computing Mutation-
Induced Changes in Protein Structure and Stability. Proteins: Structure, Function, and 
Bioinformatics. 2011; 79:830–838. DOI: 10.1002/prot.22921

24. Kortemme T, Baker D. A Simple Physical Model for Binding Energy Hot Spots in Protein-Protein 
Complexes. Proceedings of the National Academy of Sciences. 2002; 99:14116–14121. DOI: 
10.1073/pnas.202485799

25. Kortemme T, Kim DE, Baker D. Computational Alanine Scanning of Protein-Protein Interfaces. 
Science Signaling. 2004; 2004:pl2–pl2. DOI: 10.1126/stke.2192004pl2

26. Conchúir SÓ, Barlow KA, Pache RA, Ollikainen N, Kundert K, O’Meara MJ, Smith CA, 
Kortemme T. A Web Resource for Standardized Benchmark Datasets, Metrics, and Rosetta 
Protocols for Macromolecular Modeling and Design. PLOS ONE. 2015; 10:e0130433.doi: 
10.1371/journal.pone.0130433 [PubMed: 26335248] 

Barlow et al. Page 13

J Phys Chem B. Author manuscript; available in PMC 2019 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



27. Cunningham BC, Wells JA. High-Resolution Epitope Mapping of hGH-receptor Interactions by 
Alanine-Scanning Mutagenesis. Science. 1989; 244:1081–1085. DOI: 10.1126/science.2471267 
[PubMed: 2471267] 

28. Davey JA, Damry AM, Euler CK, Goto NK, Chica RA. Prediction of Stable Globular Proteins 
Using Negative Design with Non-native Backbone Ensembles. Structure. 2015; 23:2011–2021. 
DOI: 10.1016/j.str.2015.07.021 [PubMed: 26412333] 

29. Benedix A, Becker CM, de Groot BL, Caflisch A, Böckmann RA. Predicting Free Energy Changes 
Using Structural Ensembles. Nature Methods. 2009; 6:3–4. DOI: 10.1038/nmeth0109-3 [PubMed: 
19116609] 

30. Araki M, Kamiya N, Sato M, Nakatsui M, Hirokawa T, Okuno Y. The Effect of Conformational 
Flexibility on Binding Free Energy Estimation Between Kinases and Their Inhibitors. Journal of 
Chemical Information and Modeling. 2016; 56:2445–2456. DOI: 10.1021/acs.jcim.6b00398 
[PubMed: 28024406] 

31. Smith CA, Kortemme T. Backrub-Like Backbone Simulation Recapitulates Natural Protein 
Conformational Variability and Improves Mutant Side-Chain Prediction. Journal of Molecular 
Biology. 2008; 380:742–756. DOI: 10.1016/j.jmb.2008.05.023 [PubMed: 18547585] 

32. Davis IW, Arendall WB, Richardson DC, Richardson JS. The Backrub Motion: How Protein 
Backbone Shrugs When a Sidechain Dances. Structure. 2006; 14:265–274. DOI: 10.1016/j.str.
2005.10.007 [PubMed: 16472746] 

33. Keedy DA, Georgiev I, Triplett EB, Donald BR, Richardson DC, Richardson JS. The Role of Local 
Backrub Motions in Evolved and Designed Mutations. PLOS Computational Biology. 2012; 
8:e1002629.doi: 10.1371/journal.pcbi.1002629 [PubMed: 22876172] 

34. Friedland GD, Linares AJ, Smith CA, Kortemme T. A Simple Model of Backbone Flexibility 
Improves Modeling of Side-Chain Conformational Variability. Journal of Molecular Biology. 
2008; 380:757–774. DOI: 10.1016/j.jmb.2008.05.006 [PubMed: 18547586] 

35. Humphris EL, Kortemme T. Prediction of Protein-Protein Interface Sequence Diversity Using 
Flexible Backbone Computational Protein Design. Structure. 2008; 16:1777–1788. DOI: 10.1016/
j.str.2008.09.012 [PubMed: 19081054] 

36. Smith CA, Kortemme T. Structure-Based Prediction of the Peptide Sequence Space Recognized by 
Natural and Synthetic PDZ Domains. Journal of Molecular Biology. 2010; 402:460–474. DOI: 
10.1016/j.jmb.2010.07.032 [PubMed: 20654621] 

37. Smith CA, Kortemme T. Predicting the Tolerated Sequences for Proteins and Protein Interfaces 
Using RosettaBackrub Flexible Backbone Design. PLOS ONE. 2011; 6:e20451.doi: 10.1371/
journal.pone.0020451 [PubMed: 21789164] 

38. Schenkelberg CD, Bystroff C. Protein Backbone Ensemble Generation Explores the Local 
Structural Space of Unseen Natural Homologs. Bioinformatics. 2016; 32:1454–1461. DOI: 
10.1093/bioinformatics/btw001 [PubMed: 26787668] 

39. Ollikainen N, Jong RMd, Kortemme T. Coupling Protein Side-Chain and Backbone Flexibility 
Improves the Re-Design of Protein-Ligand Specificity. PLOS Comput Biol. 2015; 
11:e1004335.doi: 10.1371/journal.pcbi.1004335 [PubMed: 26397464] 

40. Davey JA, Chica RA. Improving the Accuracy of Protein Stability Predictions With Multistate 
Design Using a Variety of Backbone Ensembles. Proteins: Structure, Function, and 
Bioinformatics. 2014; 82:771–784. DOI: 10.1002/prot.24457

41. Moal IH, Fernández-Recio J. SKEMPI: A Structural Kinetic and Energetic Database of Mutant 
Protein Interactions and Its Use in Empirical Models. Bioinformatics. 2012; 28:2600–2607. DOI: 
10.1093/bioinformatics/bts489 [PubMed: 22859501] 

42. Geng C, Vangone A, Bonvin AMJJ. Exploring the Interplay Between Experimental Methods and 
the Performance of Predictors of Binding Affinity Change Upon Mutations in Protein Complexes. 
Protein Engineering, Design and Selection. 2016; 29:291–299. DOI: 10.1093/protein/gzw020

43. Simpson, RJ. Proteins and Proteomics: A Laboratory Manual. Cold Spring Harbor Laboratory 
Press; Cold Spring Harbor, NY: 2002. lab manual edition

44. Dunbar J, Krawczyk K, Leem J, Baker T, Fuchs A, Georges G, Shi J, Deane CM. SAbDab: The 
Structural Antibody Database. Nucleic Acids Research. 2014; 42:D1140–D1146. DOI: 
10.1093/nar/gkt1043 [PubMed: 24214988] 

Barlow et al. Page 14

J Phys Chem B. Author manuscript; available in PMC 2019 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



45. Fleishman SJ, Leaver-Fay A, Corn JE, Strauch EM, Khare SD, Koga N, Ashworth J, Murphy P, 
Richter F, Lemmon G, et al. RosettaScripts: A Scripting Language Interface to the Rosetta 
Macromolecular Modeling Suite. PLOS ONE. 2011; 6:e20161.doi: 10.1371/journal.pone.0020161 
[PubMed: 21731610] 

46. Shapovalov MV, Dunbrack RL Jr. A Smoothed Backbone-Dependent Rotamer Library for Proteins 
Derived From Adaptive Kernel Density Estimates and Regressions. Structure. 2011; 19:844–858. 
DOI: 10.1016/j.str.2011.03.019 [PubMed: 21645855] 

47. Leaver-Fay A, Jacak R, Stranges PB, Kuhlman B. A Generic Program for Multi-state Protein 
Design. PLOS ONE. 2011; 6:e20937.doi: 10.1371/journal.pone.0020937 [PubMed: 21754981] 

48. Song Y, Tyka M, Leaver-Fay A, Thompson J, Baker D. Structure-Guided Force-field Optimization. 
Proteins: Structure, Function, and Bioinformatics. 2011; 79:1898–1909. DOI: 10.1002/prot.23013

49. O’Meara MJ, Leaver-Fay A, Tyka MD, Stein A, Houlihan K, DiMaio F, Bradley P, Kortemme T, 
Baker D, Snoeyink J, et al. Combined Covalent-Electrostatic Model of Hydrogen Bonding 
Improves Structure Prediction With Rosetta. Journal of Chemical Theory and Computation. 2015; 
11:609–622. DOI: 10.1021/ct500864r [PubMed: 25866491] 

50. Lazaridis T, Karplus M. Effective Energy Function for Proteins in Solution. Proteins: Structure, 
Function, and Bioinformatics. 1999; 35:133–152.

51. Kortemme T, Morozov AV, Baker D. An Orientation-Dependent Hydrogen Bonding Potential 
Improves Prediction of Specificity and Structure for Proteins and Protein-Protein Complexes. 
Journal of Molecular Biology. 2003; 326:1239–1259. DOI: 10.1016/S0022-2836(03)00021-4 
[PubMed: 12589766] 

52. Hastie, TJ., Tibshirani, RJ. Generalized Additive Models. 1. Chapman and Hall/CRC; Boca Raton, 
Fla: 1990. 

53. Howell SC, Inampudi KK, Bean DP, Wilson CJ. Understanding Thermal Adaptation of Enzymes 
through the Multistate Rational Design and Stability Prediction of 100 Adenylate Kinases. 
Structure. 2014; 22:218–229. DOI: 10.1016/j.str.2013.10.019 [PubMed: 24361272] 

54. Davey JA, Chica RA. Optimization of Rotamers Prior to Template Minimization Improves 
Stability Predictions Made by Computational Protein Design. Protein Science. 2015; 24:545–560. 
DOI: 10.1002/pro.2618 [PubMed: 25492709] 

55. Kabsch W, Sander C. Dictionary of Protein Secondary Structure: Pattern Recognition of Hydrogen-
Bonded and Geometrical Features. Biopolymers. 1983; 22:2577–2637. DOI: 10.1002/bip.
360221211 [PubMed: 6667333] 

56. Joosten RP, te Beek TA, Krieger E, Hekkelman ML, Hooft RW, Schneider R, Sander C, Vriend G. 
A Series of PDB Related Databases for Everyday Needs. Nucleic Acids Research. 2011; 
39:D411–D419. DOI: 10.1093/nar/gkq1105 [PubMed: 21071423] 

57. Alford RF, Leaver-Fay A, Jeliazkov JR, O’Meara MJ, DiMaio FP, Park H, Shapovalov MV, 
Renfrew PD, Mulligan VK, Kappel K, et al. The Rosetta All-Atom Energy Function for 
Macromolecular Modeling and Design. Journal of Chemical Theory and Computation. 2017; 
13:3031–3048. DOI: 10.1021/acs.jctc.7b00125 [PubMed: 28430426] 

58. Leaver-Fay A, O’Meara MJ, Tyka M, Jacak R, Song Y, Kellogg EH, Thompson J, Davis IW, Pache 
RA, Lyskov S, et al. Chapter Six - Scientific Benchmarks for Guiding Macromolecular Energy 
Function Improvement. Methods in Enzymology. 2013; 523:109–143. DOI: 10.1016/
B978-0-12-394292-0.00006-0 [PubMed: 23422428] 

59. Lai JK, Ambia J, Wang Y, Barth P. Enhancing Structure Prediction and Design of Soluble and 
Membrane Proteins With Explicit Solvent-Protein Interactions. Structure. 2017; 25:1758–1770e8. 
DOI: 10.1016/j.str.2017.09.002 [PubMed: 28966016] 

60. Hu X, Kuhlman B. Protein Design Simulations Suggest That Side-Chain Conformational Entropy 
Is Not a Strong Determinant of Amino Acid Environmental Preferences. Proteins: Structure, 
Function, and Bioinformatics. 2006; 62:739–748. DOI: 10.1002/prot.20786

61. Dou J, Doyle L Jr, Greisen P, Schena A, Park H, Johnsson K, Stoddard BL, Baker D. Sampling and 
Energy Evaluation Challenges in Ligand Binding Protein Design. Protein Science. 2017; 26:2426–
2437. DOI: 10.1002/pro.3317 [PubMed: 28980354] 

Barlow et al. Page 15

J Phys Chem B. Author manuscript; available in PMC 2019 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
Schematic of the flex ddG protocol method.
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Figure 2. 
Experimentally determined ΔΔG values (x-axis) versus Rosetta predictions. Rosetta scores 

are in Rosetta Energy Units (REU) using the Rosetta Talaris energy function. 46,48,49 (a) flex 

ddG method (35000 backrub steps); Complete dataset (n=1240). (b) no backrub control; 

Complete dataset (n=1240). (c) flex ddG method (35000 backrub steps); Small-to-large 

mutation(s) (n=130). (d) no backrub control; Small-to-large mutation(s) (n=130).
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Figure 3. 
Correlation (Pearson’s R, left y-axis) and MAE (Mean Absolute Error, right y-axis) vs. 

number of averaged models (x-axis), on the complete ZEMu set, and subsets. Pearson’s R is 

shown as circles, and MAE as faded plusses. Predictions generated with the Flex ddG 

protocol are shown in blue. Predictions generated with the no backrub control protocol are 

shown in green. A selection of key data underlying this figure can be found in Table S4. Flex 

ddG is run with 35000 backrub steps. Structures are sorted by their minimized wild-type 

complex energy. (a) Complete dataset (n = 1240) (b) Small-to-large mutation(s) (n = 130) (c) 

Multiple mutations, none to alanine (n = 45) (d) Single mutation to alanine (n = 748).
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Figure 4. 
Correlation (Pearson’s R) and MAE (Mean Absolute Error) vs. number of backrub steps, on 

the complete ZEMu set, and subsets. Pearson’s R is shown as circles, and MAE as faded 

plusses. Predictions generated with the Flex ddG protocol are shown in blue. Predictions 

generated with the no backrub control protocol are shown in green. A selection of key data 

underlying this figure can be found in Table S7. (a) Complete dataset (n=1240) (b) Small-to-

large mutation(s) (n=130) (c) Multiple mutations, none to alanine (n=45) (d) Single mutation 

to alanine (n=748)

Barlow et al. Page 19

J Phys Chem B. Author manuscript; available in PMC 2019 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 5. 
Experimentally determined ΔΔG values (x-axis) versus predictions using a Generalized 

additive model (GAM). The complete dataset is shown. GAM scores are refit from values in 

Rosetta Energy Units (REU) using the Rosetta Talaris 46,48,49 energy function. The error 

bars in gray represent the range from minimum to maximum fit predicted ΔΔG value for the 

1000 sampled GAM models. (a): Control (no backrub) Rosetta predictions. (b): Flex ddG 

Rosetta predictions using 35,000 backrub steps and 50 output models. A line of best fit is 

shown in each of the panels.
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Table 1

ZEMu dataset composition

n Name

1240 Complete dataset

748 Single mutation to alanine

273 Multiple mutations

130 Small-to-large mutation(s)

45 Multiple mutations, none to alanine
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