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Abstract

N-Methyl-D-Aspartate receptors (NMDARs) are ion channels comprising of tetrameric assemblies 

of GluN1 and GluN2 receptor subunits that mediate excitatory neurotransmission in the central 

nervous system. Of the four different GluN2 subunits, the GluN2D subunit-containing NMDARs 

have been suggested as a target for antiparkinsonian therapy due to their expression pattern in 
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some of the basal ganglia nuclei that show abnormal firing patterns in the parkinsonian state, 

specifically the subthalamic nucleus (STN). In this study, we describe that blockade of NMDARs 

alters spike firing in the STN in a male non-human primate which had been rendered parkinsonian 

by treatment with the neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP). In 

accompanying experiments in male rodents, we found that GluN2D-NMDAR expression in the 

STN is reduced in acutely or chronically dopamine-depleted animals. Taken together, our data 

suggests that blockade of NMDARs in the STN may be a viable antiparkinsonian strategy, but that 

the ultimate success of this approach may be complicated by parkinsonism-associated changes in 

NMDAR expression in the STN.
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Introduction

N-Methyl-D-Aspartate receptors (NMDARs) are tetrameric assemblies comprising GluN1 

and GluN2 subunits that mediate a slow, Ca2+-permeable component of excitatory synaptic 

transmission (Traynelis 2010). Of the four different GluN2 subunits (A–D), the GluN2D 

subunit has been suggested to be a potential target for antiparkinsonian therapies due to its 

expression in multiple basal ganglia nuclei (Hallett 2004, Zhang 2014), specifically the 

subthalamic nucleus (STN, Standaert 1994). In the STN, NMDARs play an important role in 

mediating synaptic transmission in the cortico-subthalamic projection, among others (Chu 

2015, Swanger 2015). In individuals with Parkinson’s Disease (PD) and in animal models of 

parkinsonism, altered activity along this pathway may contribute to firing pattern changes in 

the STN, specifically the well-described changes of increased firing, increased bursting, and 

abnormal synchronized oscillatory activity that are typical for the parkinsonian state (Nambu 

2005, Baudrexel 2011, Brunenberg 2012, Kita 2004, Rubin 2012, Wichmann 2011, Gatev 

2008, Soares 2006, Bergman 1994, Miller and DeLong 1987, Galvan and Wichmann 2008).

Our understanding of the potential therapeutic use of NMDAR blocking agents in 

parkinsonism has slowly emerged. Decades ago, administration of the broad-spectrum 

NMDAR antagonists like MK801 was shown to ameliorate some of the motor abnormalities 

in dopamine-depleted rodents (JT Greenamyre 1993, Klockgether T and Turski L 1989, 

Blandini 2001, Allers 2005), but the use of broad-spectrum NMDAR blockers was 
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considered unlikely to be clinically useful, as they would have many severe cognitive and 

other side effects. Studies have further shown administration of APV into the STN corrected 

locomotor activity, burst firing, and cortex-STN synchronization in a 6-OHDA rat model 

(Pan 2014). However, the use of NMDAR subunit-selective antagonists remains an attractive 

strategy to treat PD, based on the possibility that selective blockade of NMDA receptors in 

the STN, either through local administration of drugs, or through the use of compounds that 

act at the STN level with some specificity, such as GluN2D antagonists, may have potential 

as an antiparkinsonian therapy (Hallett and Standaert 2004).

To further explore the idea that local blockade of NMDAR-mediated glutamatergic 

transmission in the STN may have antiparkinsonian properties, we studied the neuronal 

effects of local injections of an NMDAR antagonist in the STN of a parkinsonian monkey 

(supported by in silico modeling of drug diffusion at the local injection sites), and used 

immuno-labeling to determine the expression of GluN2D NMDARs in the STN, the 

substantia nigra pars compacta (SNc), and the striatum in rodent models of acute or chronic 

loss of dopamine.

Methods

Non-human primate

The primate experiments were performed in accordance with the United States Public Health 

Service Policy on the Humane Care And Use Of Laboratory Animals, including the 

provisions of the “Guide for the Care and Use of Laboratory Animals” (Garber 2011), and 

were approved by the Biosafety Committee and the Animal Care and Use Committee of 

Emory University. The studies were carried out in a male Rhesus monkey (Macaca mulatta, 

4.7kg, 5 years old). The animal was pair-housed with an animal used in other studies, and 

had ad libitum access to food and water. For the first weeks of the experiment, the monkey 

was slowly conditioned to being handled by the experimenter and to sit in a primate chair, 

using positive reinforcement methods (as detailed in McMillan 2014).

The animal was then rendered parkinsonian by weekly administration of small doses of 

MPTP (0.2–0.6 mg/kg i.m.). The animal was kept in quarantine (with a companion animal) 

for 72 hours after each injection. The animal received a total of 39.3 mg MPTP (8.2 mg/kg), 

in 15 individual injections, 0.4–0.6 mg/kg each. The total duration of treatment was 19 

weeks. After the final MPTP treatment, we waited 8 weeks before recordings to let the 

parkinsonian signs stabilize. To assess the degree and stability of the MPTP-induced motor 

disability, we scored ten aspects of motor function (bradykinesia, freezing, extremity 

posture, trunk posture, action tremor, the frequency of arm and leg movements, finger 

dexterity, home cage activity, and balance), each on a 0-to-3 scale, as done in multiple other 

studies before (Galvan 2016, Devergnas 2014, Kammermeier 2016). The animal eventually 

reached a state of stable moderate parkinsonism, scoring 19/30 on the above scale.

The monkey then underwent an aseptic surgical procedure under isoflurane anesthesia (1–

3%) for placement of two stainless steel recording chambers (Crist Instruments, 

Hagerstown, MD; inner chamber diameter 16mm). The chambers were stereotactically 

positioned over trephine holes in the skull targeting the STN (A=10, L=6, D=1.5, based on 
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the atlas by Winters 1969) on each side with a coronal approach, 40° from the vertical. The 

chambers were embedded into an acrylic skull ‘cap’, along with a stainless-steel head holder 

and multiple bone screws. After the surgery, the monkey received analgesics and 

prophylactic antibiotic treatment for one week. Recordings started after the end of this post-

procedural treatment.

Electrophysiological recordings

The monkey was seated in a primate chair with its head immobilized, leaving body and 

limbs free to move. Recordings were performed while the monkey was awake, as determined 

by continued visual observations. We lowered tungsten microelectrodes (FHC, 

Bowdoinham, ME; Z=0.5–1.0MΩ at 1kHz) into the brain with a microdrive (MO-95B; 

Narishige, Tokyo, Japan). The electrical signals were amplified (DAM-80 amplifier; WPI, 

Sarasota, FL), filtered (400−6000 Hz; Krohn-Hite, Brockton, MA), displayed on a digital 

oscilloscope (DL1540; Yokogawa, Tokyo, Japan), and made audible via an audio amplifier. 

The location and borders of the STN were defined based on the single unit extracellular 

recordings (Soares 2006, Devergnas 2016, Kliem 2010) and later confirmed by histology 

(see below).

Intracerebral injections

The intracerebral microinjections in primates utilized a custom-built device (“injectrode”), 

consisting of a tungsten microelectrode that was glued to a thin silica tube (Kliem and 

Wichmann 2004). The tip of the electrode protruded 175–200 μm beyond the tip of the silica 

tubing. The tubing was connected to a 1 ml gas-tight syringe (CMA Microdialysis, Solna, 

Sweden) driven by a computer-controlled injection pump (model 102, CMA). The injectrode 

was lowered into the STN with a microdrive, and positioned to record single neuron activity. 

Recordings of individual neurons started with a baseline recording period, lasting at least 60 

s, followed by recordings during the drug injections (0.5 μl at 0.1–0.2 μl/min) and post-

injection (up to 10 min). Only one injection was made in each experimental session.

We used injections of D-APV or saline. The drug solution was prepared by dissolving 5 mM 

APV into sterile saline. The drug injections were done by an investigator blinded to the 

injected compound, using randomly coded matched tubes of vehicle or APV.

Termination of primate experiments

To terminate the series of experiments, the monkey was injected with an overdose of sodium 

pentobarbital (100 mg/kg, i.v.) and then transcardially perfused with cold oxygenated 

Ringer’s solution, followed by a fixative containing 4% paraformaldehyde and 0.1% 

glutaraldehyde in a phosphate buffer (PB) solution. After perfusion, the brains were removed 

from the skull, cut coronally into 10 mm thick blocks, and post-fixed overnight in 4% 

paraformaldehyde. The blocks were then cut into 60 μm-thick coronal sections using a 

vibrating microtome and stored at −20 °C in an anti-freeze solution, containing 30% 

ethylene glycol and 30% glycerol in PB, until ready for immunohistochemistry. Sections 

containing the STN were stained for Nissl substance to visualize electrode penetrations, 

while alternate sections were immuno-labeled for the neuronal marker microtubule 

associated protein 2 (mouse anti-MAP2, 1:1000, Millipore) to assess the extent of neuronal 
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damage induced by the electrode tracks and to localize the borders of the thalamus. 

Injectrode tracks were visualized using images of the MAP2-stained sections. Using depth 

readings obtained during the injectrode recordings sessions, individual recording sites were 

verified to be in the STN.

Analysis of electrophysiological data

We used off line waveform-matching spike sorting (Spike2; CED, Cambridge, UK) to detect 

spikes in records of neuronal activity. The spike sorting was performed by an investigator 

unaware of the injected compound. Principal component analysis and an analysis of the 

distribution of inter-spike intervals (ISIs) were used to verify the quality of the spike sorting. 

All subsequent data analysis steps were carried out in MATLAB (MATLAB version 9.1, The 

Mathworks, Natick, MA, USA), using the ISI information. To analyze the effects of 

microinjections of saline or APV on the firing rates and pattern of neurons, we compared in 

each cell a “control”, and an “effect” period. The control epoch consisted of the entire 

(usable) baseline segment of data. The effect period was a segment of post-injection data, 

starting at least 30 s after the start of the injection. To determine the onset and offset of the 

drug effect period, we generated second-by-second readouts of firing rates (based on a 

sliding 30 s window), which were subsequently smoothed with a 20-point moving averaging 

technique. The onset and offset of “effects” were defined as the time during which the post-

injection firing rate first moved beyond or below the mean ± 2SD of the baseline period. In 

case no significant firing rate effect was detected, we used the entire post-injection data 

window for the analysis.

Several parameters of neuronal firing were calculated in the analysis of the extracted 

baseline and effect ISI sequences, including the average firing rate (number of spikes/s 

within the analyzed segment), the coefficient of variation of the ISIs (ISI CV), the power 

spectra of neuronal firing, as well as parameters describing bursts in discharge. The power 

spectral analysis utilized the Neurospec 2.0 Matlab functions for frequency domain analyses 

of neuronal spiking data (Nielsen 2005, Halliday 2008). For each neuron, raw spectra were 

integrated in the 1–3 Hz, 3–8 Hz, 8–13 Hz, 13–30 Hz, and 30–100 Hz ranges, and the 

resultant values expressed as a fraction of the power in the entire 1–100 Hz band. Similar 

methods have been used in our previous publications (Legendy 1985, Wichmann 2006, 

Galvan 2010). To detect bursts in firing, we used the method described by Legendy and 

Salcman (Legendy and Salcman 1985, see also Soares 2006, Sanders 2013, Devergnas 

2014), with a ‘surprise’ value of 3. We calculated the frequency of occurrence, the mean 

intra-burst firing rate, the proportion of spikes in bursts (compared to the total number of 

spikes), and the average number of spikes per burst. Comparisons between control and effect 

periods (for saline and APV) were carried out using paired t-tests.

Simulation of D-APV diffusion in the STN

The space-time concentration profile of D-APV (5 mM), pressure applied in the STN (500 

nl), was modelled according to a modified version of the classic solution of the diffusion 

equation in an isotropic medium:
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C(r, t) = Q

8(πD∗t)3/2exp − r2

4D∗t
(Eq. 1)

Here, Q represents the total amount of diffusing D-APV molecules (in moles), D* is the 

apparent diffusion coefficient of D-APV, r and t represent the distance from and time after 

release, respectively. The equation below represents the modified version of the classic 

solution of the diffusion equation used in our simulations:

C(r, t) =
C0
t3/2exp − r2

4D∗t
(Eq. 2)

Here, C0 represents the initial concentration of diffusing D-APV injected in the neuropil (5 

mM). The apparent diffusion coefficient for D‐APV (D∗ =
D free

λ2 = 0.28 μm2/ms) was 

calculated using the free diffusion coefficient of Alexa Fluor 350 (AF350) in aqueous 

solution at room temperature (Dfree=0.51 μm2/ms, Sweeney 2017) adjusted to physiological 

temperature using the temperature dependence of diffusion (Q10=1.3), and the tortuosity of 

the rat striatum (λ=1.54, Rice and Nicholson 1991). The diffusion coefficient of AF350 was 

used because its molecular weight (350 Da) is similar to that of D-APV (197 Da). In 

separate models, we simulated prolonged injections of D-APV at a rate of 0.1–0.2 μl/min 

(i.e. 300 s or 150 s, respectively), to mimic more closely the injection rates of D-APV used 

in the experiments. The term C0 was normalized by the number of time steps in the 

simulation. At each time step, a new release event was simulated and added to the to the 

previously evoked concentration profile of D-APV. All calculations were performed using 

custom-made codes written in IgorPro 6.37 (Wavemetrics, Lake Oswego, OR).

MPTP treatment and dopamine transporter (DAT) immunoreactivity in mice

All procedures using mice were approved by the Institutional Animal Care and Use 

Committee of Emory University. Male C57Bl/6J mice (6 months old) received five 

subcutaneous injections of 20 mg/kg MPTP (Sigma, cat. M0896) with an inter-injection 

interval of 24 hr (Lohr 2014). While it is important to incorporate gender differences into 

studies, this model is only suitable for male mice because of the increased mortality of 

female animals (Jackson-Lewis and Przedborski, 2007). The animals were housed according 

to standard guidelines, with ad libitum access to food and water, and under standard light 

and dark cycle. The animals were monitored by trained staff at the animal housing facility at 

Emory University. In two separate groups of MPTP-treated animals (n=4 per condition), the 

lesion was allowed to stabilize for either 21 or 42 days following the final injection. No 

animal was excluded from the analyses. The assignment of the animals to their experimental 

group was done at random. The experiments were performed between two research groups, 

one performing the DAT immunoreactivity experiments, and the other group performing the 

GluN subunit detection experiments. At the termination of the in vivo portion of the 

experiment, the animals were sacrificed by rapid decapitation. Their brains were 
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immediately removed, and the striatum dissected and frozen on dry ice. The frozen striatal 

samples were then homogenized in buffer (640mM sucrose + 10mM HEPES) using a 

TissueTearor and differentially centrifuged to generate a crude synaptosomal fraction. The 

striatal DAT immunoreactivity was assessed by immunoblot and normalized to the β-actin 

immunoreactivity to determine the extent of the dopaminergic lesion. The following 

antibodies and dilutions were used for immunoblotting: rat anti-DAT (Millipore Cat# 

MAB369, RRID:AB_2190413, 1:1,000), mouse anti-β-actin (Sigma-Aldrich Cat# A5441, 

RRID:AB_476744, 1:10,000), HRP-conjugated goat anti-rat (Jackson ImmunoResearch 

Labs Cat# 112-035-003, RRID:AB_2338128, 1:5,000), and HRP-conjugated goat anti-

mouse (Jackson ImmunoResearch Labs Cat# 115-035-003, RRID:AB_10015289 1:10,000). 

Immunoreactivity was detected using a chemiluminescent substrate (SuperSignal, Thermo 

Fisher) and visualized using a BioRad UV imager.

Micro-punching and NMDAR immunoblotting from mouse tissue

Brains obtained from rapidly decapitated animals (separate from those used for the 

aforementioned DAT immunoreactivity studies) were quickly removed and 250–300 μm 

sagittal slices containing the STN, SNc and striatum were prepared in ice-cold PBS using a 

vibrating microtome (VT1200S, Leica). Tissue discs from the above-mentioned three nuclei 

were removed using a 0.5 mm tissue punch under a dissecting light microscope (Stoelting, 

Wood Dale, IL) and frozen immediately on dry ice (Swanger 2015). The tissue was 

homogenized in lysis buffer (pH 7.4) containing (in mM) 150 NaCl, 50 Tris, 50 NaF, 5 

EDTA, 5 EGTA, 1% Triton, 1% SDS, and protease inhibitor cocktail obtained from Sigma 

Aldrich (Cat# P8340) using a Model CL-18 tissue homogenizer with a setting below 10 for 

the amplitude to minimize protein degradation (Fisher Scientific). We used 4 mice per group 

(one group per age i.e. 21 and 42 days, one group per treatment). Animals were randomly 

selected for assignment to different groups. The investigators were not blinded to these 

group assignments.

Equal amounts of protein were loaded for each sample quantified by Bradford assay and 

diluted with lysis buffer (1μg/μl or as possible), and normalized to α-tubulin as loading 

control. Samples were then either stored at −80 or −20°C for later use or heated at 95°C for 

5 min, and loaded on a 12% SDS-PAGE gel (Bio-Rad). Samples were run at 60 mV for 15 

minutes and then at a constant voltage of 80 V after crossing the stacking gel. Proteins were 

then transferred to PVDF membranes (Immun-Blot, Bio-Rad, 0.2 μM pore size) for Western 

blotting for 3 h at 90 V. The antibodies used for immunoblotting were mouse anti-GluN2D 

(Millipore Cat# MAB5578, RRID:AB_838227, 1:5000, incubated for 4 hr at room 

temperature, Swanger 2015), rabbit anti- GluN2B (Millipore Cat# AB1557, 

RRID:AB_2112907, 1:1000, incubated for 1 hr at room temperature, Swanger 2016), mouse 

anti-α-tubulin (Sigma-Aldrich, RRID: AB_477593, 1: 50,000, incubated for 1 hr at room 

temperature), and HRP-conjugated goat anti-mouse (Thermo Fisher Scientific Cat# 31430, 

RRID:AB_228307, 1:10,000, incubated for 1 hr at room temperature) and anti-rabbit 

secondary (Jackson ImmunoResearch Labs Cat# 111-035-144, RRID:AB_2307391, 1: 

10,000, incubated for 1 hr at room temperature). Details of antibodies are listed in Table 1. 

Blocking of non-specific binding at membranes was performed with 5% milk in TTBS for 

all antibodies except for GluN2B (2% non-fat milk used for blocking and 1% for antibody 
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incubation). To re-evaluate the same membrane, they were exposed to Restore Stripping 

Buffer (Pierce, Cat# 21059) for 15 min, washed with PBS and blocked with 4% milk again 

before being re-blotted with the next primary antibodies. Signals from antibodies were 

imaged with raw films, using a Bio-Rad Gel Doc Imager. The blots were analyzed using 

Alpha View immunoblotting analysis software (Bhattacharya 2017).

Statistics

For each cell in primate recording, the values for the different descriptor of firing patterns 

(such as global firing rates, intra-burst firing rates, etc.) obtained from the effect periods 

were divided by the values obtained during the control period from the same cells. We then 

used independent-sample t-tests, comparing the ratios obtained in the D-APV injection 

experiments to those obtained with saline injections. A p-value of less than 0.05 was 

accepted as indicating a significant difference. For all other experiments statistical tests are 

mentioned in the individual results section or figure legends.

Results

Effect of D-APV on spike firing in an MPTP-treated primate

We performed diffusion simulations to estimate the time course of the drug concentration in 

the brain parenchyma, following microinjections of D-APV into the STN (Figure 1A). In 

these simulations, we estimated the apparent diffusion coefficient (D* = 0.28 μm2/ms) using 

a value for tortuosity (λ=1.54) that matched the one measured experimentally in the rat 

striatum (Rice and Nicholson 1991). We first modeled the release of 0.5 μl D-APV (5 mM) 

at a rate of 0.1–0.2 μl/min using a modified version of the classic solution of the diffusion 

equation (see Methods) to mimic closely the injection rate of D-APV used in the 

experiments (Figure 1B–C). The diffusion analysis showed that in the first 5 min after the 

pressure-application, there is a 10,000-fold dilution of D-APV at 175–200 μm from the 

injection point (the distance at which the recording electrode was located). Therefore, the 

concentration of D-APV is 0.6–0.7 μM at 175–200 μm away from the injection site, 5 min 

after an intra-parenchymal application of 500 nl of 5 mM D-APV. Similar estimates were 

also obtained when we modelled the release of D-APV from the injectrode as an 

instantaneous release event from a point source (Eq. 1; Figure 1D). These simulations show 

that slight variations in the location of the recording site with respect to the position of the 

injectrode lead to modest changes in the effective concentration of D-APV in the neuropil 

(Figure 1E). In contrast, slight variations in the time at which the recordings are made lead 

to profound changes in the concentration of D-APV in the neuropil. Accordingly, the 

concentration of D-APV at the recording site varies over 4 orders of magnitude within the 

first 5 min after the injection. Based on these findings, in our recordings, we made sure that 

our electrophysiology measures were performed consistently 5 min after the end of the D-

APV injection (see Figure 2). We then performed a series of simulations of NMDAR-EPSCs 

using a kinetic scheme described by Clements and Westbrook (1994) following pre-

equilibration with different D-APV concentrations and instantaneous release of 1 mM 

glutamate (Figure 1F–G). The glutamate transient decayed exponentially with a time 

constant of 1 ms (Clements 1992, Figure 1D). The EC50 for block by pre-equilibrated D-

APV was ~0.5 μM, similar to the concentration predicted to be reached by the diffusion 
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analysis. The analysis thus indicates that APV blocked >50% NMDARs near the recording 

site within the time period analyzed in this report.

In the in vivo portion of these experiments, we injected vehicle or D-APV into the STN of a 

parkinsonian monkey while simultaneously recording neuronal spike firing in this nucleus. 

As shown in Figure 2, we identified neurons with a stable baseline rate of spontaneous spike 

firing. We then injected 500 nl of either vehicle or 5 mM D-APV directly into the STN. The 

results are shown in Table 2. We found that both the spike firing rate and the intra-burst 

firing rate were significantly reduced. The proportion of spikes in bursts (out of all spikes 

recorded) and the number of spikes per burst remained the same for both vehicle and D-APV 

microinjection, suggesting that the cells continued to fire bursts, but that the bursting was 

less intense after the D-APV injections. D-APV did not alter power spectral measures of 

oscillatory spiking activity (Table 2).

Subsequent post mortem analysis of the STN revealed that the location of all recording 

electrodes and microinjections were in the STN (Figure 2B). These data provide the first 

evidence of a contribution of NMDAR activity to STN spike firing in a non-human primate 

model of parkinsonism.

Impaired GluN2D expression in STN of MPTP-treated mice

We assessed the loss of striatal dopaminergic terminals in mice treated with MPTP by 

measuring the DAT immunoreactivity. DAT immunoreactivity has been further shown to 

strongly correlate with other markers of dopamine terminal integrity, such as dopamine 

content and tyrosine hydroxylase expression (Caudle 2007). Mice injected with MPTP (5 

daily injections of 20 mg/kg) showed an 80% loss of striatal DAT immunoreactivity 21 days 

after the final injection (Figure 3, left panel, n=5, ****p < 0.0001). Forty-two days after 

completing the MPTP injection protocol, the animals showed a 55% loss of striatal DAT 

(Figure 3, right panel, n=5, **p = 0.005). A 2-tailed t-test was performed to establish 

statistical significance in these experiments.

Murine STN neurons express the GluN1, GluN2A, GluN2B, and GluN2D subunits of 

NMDARs, which likely combine to form triheteromeric NMDARs and their altered structure 

is involved in disease states (Swanger 2015, Standaert 1994). GluN2D-containing NMDARs 

mediate synaptic transmission and control spike firing in the STN. Hence, we wanted to 

examine GluN2D protein expression in the parkinsonian state (Swanger 2015, Swanger 

2017). To investigate if MPTP-treated mice showed altered GluN2D subtype expression, we 

quantified GluN2D protein expression in tissue micropunches, using western blots. We 

found that GluN2D immunoreactivity was significantly reduced in the STN both 21 days 

and 42 days after the MPTP injections as compared to their age matched controls (Figure 

4A, B, and C; n=4 animals per group; * p < 0.05, ** p < 0.005; 2-tailed t-test, each sample 

was replicated two times). GluN2D expression was also reduced 42 days post MPTP 

injections in the SNc and the striatum, but not in 21 days age group, suggesting a gradual 

progression of the effect of MPTP on GluN2D expression in adjoining areas of the brain in 

our MPTP model.
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We also quantified the expression of GluN2B subunits in the same mice (n = 4 animals per 

group, each sample measured once). There were no significant differences in GluN2B 

subunit expression in the three regions under investigation STN, SNc and striatum (Figure 

4A, B, and C; p>0.05, 2-tailed t-test). This finding shows that not all receptor subunits are 

affected in MPTP-treated rodents leading to an altered ratio of different subunits. These 

findings might have far-reaching effects on the need of subtype-selective compounds for the 

treatment of PD.

Discussion

NMDARs are potentially important CNS targets for the treatment of neurological and 

psychiatric disorders (Zhou and Sheng 2013). In the last decade, the development of drugs 

targeting NMDAR subunits has gained momentum due to the fact that these receptors are 

expressed in a subtype-specific manner in different areas and nuclei of the CNS (Hallett and 

Standaert 2004, Paoletti 2007, Paoletti 2013, Zhang 2014b). While GluN2D receptors are 

expressed in parts of the brain outside of the basal ganglia and related structures, high levels 

of these receptors exist in several basal ganglia structures in the adult brain, including the 

globus pallidus, substantia nigra, and prominently, the subthalamic nucleus (Standaert 1994, 

Monyer 1994, Wenzel 1996, Clarke and Bolam 1998, Hamani 2004, Wilson and Bevan 

2011, Swanger 2015). GluN2D subunit expression in these nuclei suggests that these 

receptors could be a useful pharmacologic target for the treatment of parkinsonism.

While parkinsonism results from the loss of the dopaminergic nigrostriatal tract, the 

pathophysiology of PD includes secondary changes in GABAergic and glutamatergic 

transmission throughout the basal ganglia (Kish 1988, DeLong 1990, Carlsson and Carlsson 

1990, Fearnley 1991, Obeso 2000). The STN is a site of prominent alterations in 

glutamatergic transmission (Chu 2015 and Chu 2017), which may contribute to increased 

firing, increased burst firing, and the development of alpha- and beta-band oscillations in 

firing in the STN which are typical for the parkinsonian state (Galvan 2008, Pan 2014 and 

Pan 2016).

Our study of the effects of NMDA receptor blockade was limited because of the fact that 

only one animal was studied, and because only a single dose of the NMDA receptor blocker 

D-APV could be used. However, even given these limitations, we were able to show that 

NMDAR blockade with D-APV significantly reduced spike firing rate and the intensity of 

burst firing (as judged by the maximal number of spikes in bursts), although not affecting the 

overall prevalence of bursts. Importantly, the D-APV dose, and the timing of recording 

relative to the drug injections was clearly adequate to assess the effects of blocking 

NMDARs in the STN, as demonstrated through our drug diffusion simulations. Both the 

effects on firing rates and on bursting would counteract important components of the 

pathophysiology of parkinsonism, i.e., increased spiking activity, and increased bursting in 

the STN, but it is worth pointing out that we studied this animal only in the parkinsonian 

state. It is therefore not possible to say with certainty that the drug infusions ‘normalized’ 

STN firing in this particular animal. Studies in rodent models have previously shown the 

positive effects of APV in ameliorating Parkinsonian symptoms (Pan 2014). Taken together, 
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this data is the first evidence of NMDAR control of spike firing in a non-human primate 

model of PD.

Our previous study emphasized the importance of glutamatergic transmission at GluN2D-

containing NMDA receptors for STN function (Swanger 2015), suggesting that GluN2D-

containing NMDARs would be an attractive target for the development of novel 

pharmacological tools for therapeutic approaches in PD (Hallett and Standaert 2004). Our 

experiments profiling NMDAR expression in the basal ganglia provide further insight in this 

regard. We found in both short- and long-term mouse models of dopamine depletion (21 and 

42 days after the end of MPTP treatment) that the expression of GluN2D subunits was 

reduced in the STN, and that GluN2D expression in the SNc and striatum was significantly 

reduced in the chronic exposure paradigm (42 days age). Other studies using 6-OHDA 

model showed increased GluN2D expression in the striatum (Zhang 2015). However, the 

differences in results might be due to usage of different model. We also investigated changes 

in GluN2B subunit expression in the same regions and found that there were no significant 

changes across different nuclei. Data from our rodent MPTP model is congruent with our 

electrophysiological observations from our primate experiment. In our primate MPTP 

model, we observed rescue of spike firing activity after NMDAR blockade with D-APV. 

Matching this observation, we expectedly found that expression of at least one subunit 

(GluN2D) was impaired while the other subunit (GluN2B) was unaltered increasing the 

contribution of GluN2B containing NMDARs. This finding suggests that an altered ratio of 

GluN2D to GluN2B might be an important change associated with loss of dopaminergic 

neurons. Our current data are consistent with our previous study showing that the 

glutamatergic corticosubthalamic innervation of the STN was substantially reduced in 

MPTP-treated parkinsonian animals (Pan 2014, Mathai 2015, Sanders 2016, Sanders 2017, 

Chu 2017, Wang 2018), perhaps as a component of a more general glutamatergic 

disconnection of the basal ganglia (the cortico- and thalamo-striatal innervation also fail in 

this disease, Villalba and Smith 2017 and Villalba, Mathai and Smith 2015). Thus, while 

blockade of glutamatergic transmission in the STN, e.g., through the use of GluN2D-

selective antagonists, may have antiparkinsonian effects, these effects may be limited, given 

the apparent loss of GluN2D expression in the STN and at other basal ganglia sites. Yet, 

given the finding that NMDAR blockade reduced the activity of STN neurons in a 

parkinsonian monkey, further exploration of the therapeutic potential of NMDA receptor 

antagonist therapies targeting the STN remains important.
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Significance statement

Our research shows that NMDAR blockade can ameliorate abnormalities of spike firing 

of STN neurons in parkinsonian non-human primates. We also show that GluN2D 

subunit containing NMDARs are downregulated in our parkinsonian model. Taken 

together, our data suggests that blockade of NMDARs in the STN could be a viable 

antiparkinsonian strategy. However, the ultimate success of this approach may be limited 

by parkinsonism-associated changes in NMDAR expression in the STN.
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Figure 1. 
Diffusion of D-APV from the injection site. A. Analytical simulations were used to evaluate 

the D-APV concentration at different distances from the injection site. B, C. Diffusion 

analysis demonstrates that, after a single D-APV injection at 0.1 μl/min (B) or 0.2 μl/min 

(C), there is a 10-fold dilution of D-APV at 175–200 μm from the point of injection. D. 

Time course of the D-APV concentration obtained when approximating the release of D-

APV from the injectrode as an instantaneous event from a point source. E. Distribution of D-

APV concentration within a 400 μm radius from the injection site, at different times after the 

injection. Slight inaccuracies in the distance between the location of the injectrode and the 

recording site do not confound our estimates of the effective D-APV concentration in the 

neuropil, measured 10 min after the injection. F. Simulations of NMDAR-EPSCs using a 

kinetic scheme after pre657 equilibration with different D-APV concentrations (0 nM to 10 

μM) with instantaneous release of 1 mM glutamate. Glutamate transient decays 

exponentially with a time constant of 1 ms; G. The EC50 for blockade of NMDARs by D-

APV was approximately 0.5 mM as shown in the relative response vs. concentration of D-

APV curve. Because the EC50 was lower than the concentration predicted to be reached by 

the diffusion analysis within the stipulated time window, the chosen dose of D-APV can be 

assumed to effectively block >50% of the NMDARs during this time.
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Figure 2. 
Effects of D-APV on spike firing in the primate subthalamic nucleus (STN). The top row 

shows representative extracellular in vivo recordings of the spiking activity of STN neurons 

before, during and after the microinjection of 0.5 μl of saline/0.1% DMSO (left) or D-APV 5 

mM/0.1% DMSO (right). The bar graph on the left shows the average responses of firing 

rates to injection of saline or 5 mM D-APV, expressed as a ratio of the pre-injection firing 

rate in individual cells. The bar graph on the right shows the average intra-burst frequencies 

following the injections. Data are from 11 experiments in which the vehicle was injected, 

and 4 cells recorded after exposure to D-APV, respectively. *, p < 0.05, t-tests, examining 

differences between saline vehicle and D-APV experiments. Lower row shows Nissl stained 

coronal section of the brain at approximately A10. The outlines of relevant surrounding 

brain structures are marked with dashed lines. An injection system tract is visible (arrows). 

Abbreviations: STN, subthalamic nucleus; SN, substantia nigra; ZI, zona incerta; GPe, 

external pallidal segment; GPi, internal pallidal segment; RN, reticular nucleus of the 

thalamus.
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Figure 3. 
Analysis of dopamine transporter (DAT) expression in the mouse striatum following 5 daily 

injections of MPTP (20 mg/kg), 21 (left) and 42 days post injection (right). The insets are 

representative western blots demonstrating the reduction of DAT immunoreactivity (S= 

Saline, M= MPTP treated sample, the numbers correspond to different samples, n=5 

independent experiments, ****p < 0.0001 for 21 days post-lesion and n=5, **p = 0.005 for 

42 days post-lesion, 2-tailed t-test).
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Figure 4. 
(A) Representative western blots showing GluN2D and GluN2B immunoreactivity and 

tubulin (Tub) loading controls from tissue obtained from micropunches from STN, SNc, and 

striatum (striatum- Str, C= Control and M= MPTP treated sample). Negative controls shown 

for anti-GluN2D antibody using GluN2D knock out (2D−/−690) mouse brain tissue sample 

compared with wild type (Wt). (B and C). Quantification of data from n= 4 animals 

evaluated in independent experiments, samples repeated one to two times per animal. Shown 

are the GluN2D expression for each animal as means of replicates, GluN2B expression for 

each sample tested once, with the intensity normalized to tubulin as loading control. * p < 

0.05, ** p < 0.005 as compared to age-matched controls; two-tailed t-test.
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Table 2

Effects of D-APV or saline on firing properties of STN neurons recorded during the control and effect periods. 

Data are presented as mean ± SEM of post-injection values, normalized to the pre-injection baseline of the 

respective cells. The significance was assessed using independent-sample t-tests, comparing the ratios 

obtained with D-APV to those obtained with saline injections.

D-APV (4) Saline (11)

Normalized values Normalized values P

Firing rate 0.30 ± 0.06 1.14 ± 0.14 <0.001

CV of inter-spike intervals 1.55 ± 0.48 1.33 ± 0.28 0.714

Integrated spectral power

1–3 Hz 0.95 ± 0.36 1.12 ± 0.15 0.681

3–8 Hz 0.84 ± 0.13 1.06 ± 0.03 0.182

8–13 Hz 1.01 ± 0.09 1.02 ± 0.04 0.882

13–30 Hz 1.39 ± 0.20 1.08 ± 0.04 0.224

30–100 Hz 1.15 ± 0.15 0.98 ± 0.01 0.332

Proportion spikes in bursts 1.15 ± 0.06 1.03 ± 0.06 0.198

Number of spikes per burst 1.12 ± 0.21 1.00 ± 0.04 0.623

Intra-burst firing rate 0.66 ± 0.05 1.10 ± 0.07 <0.001
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