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Abstract

PURPOSE—Demonstrate a novel fast method for reconstruction of multi-dimensional MR 

Fingerprinting (MRF) data using Deep Learning methods.

METHODS—A neural network (NN) is defined using the TensorFlow framework and trained on 

simulated MRF data computed with the Extended Phase Graph formalism. The NN reconstruction 

accuracy for noiseless and noisy data is compared to conventional MRF template matching as a 

function of training data size, and quantified in simulated numerical brain phantom data and 

ISMRM/NIST phantom data measured on 1.5T and 3T scanners with an optimized MRF EPI and 

MRF FISP sequences with spiral readout. The utility of the method is demonstrated in a healthy 

subject in vivo at 1.5 T.

RESULTS—Network training required 10 to 74 minutes and once trained, data reconstruction 

required approximately 10 ms for the MRF EPI and 76 ms for the MRF FISP sequence. 

Reconstruction of simulated, noiseless brain data using the NN resulted in a root-mean-square 

error (RMSE) of 2.6 ms for T1 and 1.9 ms for T2. The reconstruction error in the presence of noise 

was less than 10% for both T1 and T2 for signal-to-noise greater than 25 dB. Phantom 

measurements yielded good agreement (R2=0.99/0.99 for MRF EPI T1/T2 and 0.94/0.98 for MRF 

FISP T1/T2) between the T1 and T2 estimated by the NN and reference values from the ISMRM/

NIST phantom.

CONCLUSION—Reconstruction of MRF data with a NN is accurate, 300–5000 fold faster and 

more robust to noise and undersampling than conventional MRF dictionary matching.
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Introduction

Magnetic Resonance Fingerprinting (MRF) (1) is an acquisition strategy that uses a variable 

schedule of RF excitations and delays to induce differential signal evolution in tissue of 

differing types. Quantitative tissue parameter maps are then obtained by matching the 

acquired signal to a pre-computed dictionary consisting of the time-evolution of the 

magnetization for different values of the set of tissue parameters. Multiple quantitative tissue 

parameter maps can be simultaneously obtained from a single experiment, significantly 

reducing the total scan time.

To avoid errors in the reconstructed tissue maps, the reconstruction dictionary is typically 

computed with fine granularity over the entire range of possible tissue values. Dictionary 

size, however, grows exponentially as the number of tissue parameters (i.e the dictionary 

dimension) is increased which can quickly result in prohibitively large dictionaries that 

require extensive computational resources to process (2). This increased memory, storage 

and computational burden is a limiting factor for clinical adoption of MRF methods and is 

particularly pernicious in innovative high dimensional applications of MRF (3,4). Reducing 

the dictionary density is a poor solution for this problem since it limits the a priori accuracy 

of the reconstruction even before experimental factors are accounted for.

Existing methods address aspects of this problem but important challenges remain. 

Dictionary compression (5,6) uses the compressibility of the fingerprints to reduce the 

dimensionality of the dictionary leading to faster post-processing. Unfortunately, to create 

the compressed dictionary the full fine-grained dictionary must first be generated prior to 

decomposition with the singular value decomposition (SVD), itself a computationally 

expensive operation. Recent work by Yang et al (7) used a randomized SVD with an iterative 

polynomial fit to reduce the memory requirements though at the cost of increased processing 

time. Additionally, when optimized acquisition schedules are used (8,9), the compressibility 

of the dictionary may be significantly reduced rendering these methods less effective. 

Optimizing the acquisition schedule can indeed reduce the number of image frames needed 

for accurate reconstruction but the reduction is smaller than the exponential growth of the 

dictionary with increasing dimensions.

In recent years, the availability of inexpensive graphical processing units (GPU) has led to 

significant advances in neural networks (NN) and Deep Learning (DL) algorithms used to 

train these networks (10). Mathematical work in NN theory has shown that any Borel 

measurable function can be represented by a NN with a finite number of neurons (11) which 

can therefore offer a compact representation of complicated functions. In this paper we 

exploit this property and describe a novel method that reframes the MRF reconstruction 

problem as learning an optimal function that maps the acquired signal magnitudes to their 

corresponding tissue parameter values, trained on a sparse set of dictionary entries (12). The 

trained neural network reconstruction function is remarkably compact (~20 times smaller 

than typical MRF dictionaries) and reconstruction is nearly instantaneous (~300–5000 fold 

faster than conventional dictionary matching techniques) due to its rapid feedforward 

processing. We call our method the MRF Deep RecOnstruction NEtwork (DRONE) and we 
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validate it by numerical simulations and phantom experiments at 2 different magnetic field 

strengths and demonstrate its utility in the brain of a healthy subject scanned at 1.5T.

Methods

Neural Network

A four layer fully-connected NN composed of input and output layers and two hidden layers 

was defined using the TensorFlow framework (13) as shown in Fig. 1. The input layer 

consisted of 25 or 50 nodes to correspond to the magnitude images acquired with our 

schedule optimized echo-planar imaging (EPI) MRF sequence (8) or 571 nodes to 

correspond to images acquired with a conventional MRF sequence with sliding-window 

filtering (14,15). Complex-valued images can also be processed by this network topology by 

splitting the real and imaginary channels, or through the use of a complex-valued network 

(16). In this proof-of-concept study only T1 and T2 were considered so the output layer 

consisted of two nodes; reconstruction of additional parameters would require a larger 

output layer. Each of the two hidden layers had 300 nodes. The network size was empirically 

selected to ensure accurate functional mapping while avoiding the risk of overfitting. The 

chosen size represented a good compromise between the required training time, storage 

space and accuracy of the resultant reconstructions. The network was trained by the ADAM 

stochastic gradient descent algorithm (17) with the learning rate set to 0.001 and the loss 

function (cost) defined as the mean squared error:

LF = 1
n ∑

k = 1

n
(Ptraining

k − Precon
k )2, (1)

where k ranges over the n training samples and P is the training or reconstructed tissue 

parameter of interest (T1 or T2 in this study). Two different activation functions were 

defined. A hyperbolic tangent (tanh) function was used for the hidden layers with a sigmoid 

function used for the output layer. In total, the NN required storage of 300×300=90,000 

coefficients.

Pulse Sequence

Numerical simulations, phantom and in vivo experiments in this study used a modified 

gradient-echo EPI MRF pulse sequence with Cartesian sampling whose flip angles (FA) and 

repetition times (TR) were set according to an optimized measurement schedule, shown in 

Supporting Fig. S1, as previously described (8,18,19). To illustrate the flexibility of the 

proposed reconstruction a conventional MRF FISP pulse sequence (20–23) with a variable 

density spiral readout and 600 time-points (571 after sliding-window filtering) was also used 

(14,15) for the phantom experiments.

Network Training

Numerical simulations and phantom experiments were carried out using a training dictionary 

of ~69000 entries consisting of T1 and T2 in the range 1–2500 ms in increments of 2 ms 

between 1–300 ms and increments of 10 ms between 300–2500 ms, excluding entries where 
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T1 < T2. An additional set was also defined consisting of T1 and T2 values absent from the 

training dictionary to test the network’s ability to reconstruct tissue parameters values 

outside its training set. The same range and increments of T1 and T2 values were used for 

the test set but with a different starting point to ensure that there was no overlap with the 

training dictionary. Reconstruction of the test set data was used to verify the efficacy of 

training by comparing the resultant values to the true values. A larger range dictionary was 

used for the in vivo experiments which consisted of T1 in the range 1–5000 ms in increments 

of 5 ms between 1–300 ms, increments of 10 between 300–1500 ms and increments of 50 

ms between 1500–5000 ms. The same set of increments was used for T2 but only up to 3000 

ms. The magnetization due to each (T1, T2) pair was calculated using the Extended Phase 

Graph formalism (20,24). Gaussian noise with 1% standard deviation and zero mean was 

added to the training dictionary to promote robust learning, as previously exhibited with 

denoising autoencoders (25). This dictionary was used to train the network to convergence, 

requiring approximately 10 to 74 mins on an Nvidia K80 GPU with 2 GB of memory. The 

size of the dictionary required approximately 13 MB of storage for the MRF EPI sequence 

and 313 MB for the MRF FISP sequence.

Numerical Simulations

The performance of the network in reconstruction of realistic brain T1 and T2 values was 

assessed using the Brainweb digital brain phantom (26). An MRF EPI acquisition was 

simulated as described above, and the resulting signal used as an input to the network.

Signal-to-noise (SNR) vs reconstruction error—Monte Carlo simulations were used 

to test the network reconstruction of noisy data. Complex Gaussian random noise was added 

to the data for variable levels of SNR. The SNR was defined as 20log10(S/N) where S is the 

average white matter signal intensity in the acquisition and N is the noise standard deviation. 

The SNR was varied from 10 to 40 dB in increments of 5 dB and the noisy data 

reconstructed with the proposed network. This was repeated 100 times for each SNR level. 

The resulting T1 and T2 maps were compared to their ground truth values according to the 

formula: Error = 100 × |True – Measured|/True and the mean and standard deviation of the 

percent error calculated.

Training dictionary density vs reconstruction error—The effect of the training 

dictionary density on the resulting reconstruction error was measured by sub-sampling the 

initial dictionary variously from 2 to 60 fold. The network was then trained with each sub-

sampled dictionary and used to reconstruct the initial, fully sampled dictionary whose entries 

were corrupted by zero mean Gaussian noise with standard deviation of either 0 (i.e. 

noiseless) or 1%. No noise was injected into the training dictionary for reconstruction of the 

noiseless data. This was repeated 5 times for each undersampling factor and the the root-

mean-square error (RMSE) calculated for each repetition. The NN reconstruction was also 

compared to a conventional MRF dictionary matching reconstruction by matching the initial, 

fully sampled dictionary to each sub-sampled dictionary and calculating the resultant error. 

The mean and standard deviation of the RMSEs, across the 5 repetitions, of the 

reconstructed T1 and T2 maps of each reconstruction method were then calculated as a 

function of the dictionary sub-sampling factor.
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MRI

All experiments with the optimized MRF EPI sequence were conducted on a 1.5 T whole-

body scanner (Avanto, Siemens Healthineers, Erlangen, Germany). The manufacturer’s body 

coil was used for transmit and a 32-channel head coil array used for receive. The TI/TE/BW 

was set to 19 ms/13 ms/2009 Hz/pixel. The slice thickness was set to 5 mm and the in-plane 

resolution set to 2×2 mm2 with a matrix of 128×128 and an acceleration factor R=2 for a 

total scan time of ~3 seconds for the 25 frames acquired with the optimized schedule. A 

higher in-plane resolution could be obtained by increasing the number of phase encoding 

steps hence the echo time or, alternatively, by increasing the acceleration factor at the cost of 

decreased signal-to-noise (SNR). To ensure sufficient SNR in the in vivo experiments, the 

same acquisition parameters were used but with a slightly longer (~5 seconds) acquisition. 

The images were reconstructed online using the GRAPPA (27) method.

The MRF FISP experiments were conducted on a 3 T whole-body scanner (Prisma, Siemens 

Healthineers, Erlangen, Germany) with 2-channel parallel transmit and 20-channel parallel 

receive array. The TI/TE/BW was 20 ms/2.5 ms/261 Hz/pixel with a 5 mm slice thickness, 

an in-plane resolution of 1.2×1.2 mm2 and a matrix size of 200×200. A 30 point sliding-

window filter was applied to the 600 time-points to yield the 571 images used in the 

DRONE reconstruction as described in Ref. (14). The total acquisition time was ~7.5 

seconds for the 600 frames acquired.

Phantom

The accuracy and precision of the NN reconstruction was assessed using the International 

Society for Magnetic Resonance in Medicine (ISMRM)/National Institute of Standards and 

Technology (NIST) multi-compartment phantom with calibrated T1 and T2 values similar to 

those of the human brain (28). The phantom was scanned at the two magnetic field strengths 

with the pulse sequences described above and the images reconstructed with both the 

proposed NN as well as conventional dictionary matching. The resulting T1/T2 maps were 

compared to the true phantom values which were characterized by NIST for each magnetic 

field strength and calculated using gold-standard NMR spectroscopy IR and CPMG 

sequences (28,29).

In Vivo Human

A healthy 35-year-old male subject was recruited for this study and provided informed 

consent prior to the experiment in accordance with our Institution Human Research 

Committee. Following DRONE reconstruction of the measured data, regions-of-interest 

(ROIs) of 10 pixels were defined corresponding to grey matter, white matter and 

cerebrospinal fluid (CSF). The mean±standard deviation of the T1/T2 values within those 

ROIs was calculated and compared to values from the literature.

Results

Network Training

The reconstructed test data is shown in Fig. 2 in comparison to the true values. Excellent 

agreement was obtained between the true and reconstructed T1 and T2 values yielding a 
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correlation coefficient of R2=0.99 for both T1 and T2 with a negligible bias of 1.6 ms for T1 

and 3.2 ms for T2 and an RMSE of 3.8 ms for T1 and 16 ms for T2. T1 and T2 values at the 

edge of the training dictionary range showed increased deviation from the true values, likely 

due to the vanishing gradient of the activation function in these regions (30) as described in 

the Discussion section below.

Numerical Simulation

The true and reconstructed T1 and T2 maps of the noiseless numerical brain phantom are 

shown in Fig. 3 along with the associated error map calculated as the absolute value, i.e. 

Error=|True-Reconstructed|. The RMSE for each map was 2.6 and 1.9 ms for T1 and T2 

respectively. The largest error in the brain was less than 0.5% in T1 and less than 3% in T2.

SNR vs reconstruction error—The mean T1 and T2 error as a function of SNR is shown 

in Fig. 4. The error was relatively large (~15% and ~48% for T1 and T2) at the lowest SNRs 

but dropped rapidly with increasing SNR, reaching less than 2% for the highest SNR levels 

tested.

Training dictionary density vs reconstruction error—The mean T1 and T2 RMSEs 

across the five repetitions are shown as a function of the dictionary undersampling factor in 

Supporting Fig. S6 for the different noise levels tested. For a noiseless acquisition with small 

dictionary undersampling, the error was similar for both the NN and MRF dictionary 

matching reconstructions. The error increased with increasing undersampling factors for 

both methods but at a significantly higher rate for the dictionary matching. Indeed, at the 

largest undersampling factor tested (×60), the error in the NN reconstruction was 2 fold 

smaller than the dictionary matching for T1 and 4 fold smaller for T2 (Supporting Figs. 

S2,S3,S6). Moreover, the dictionary matching performance degraded rapidly in the presence 

of noise. In particular, dictionary matching of short (< 11 ms) T2 tissues resulted in large 

errors that dominated the total RMSE (Supporting Figs. S4,S5). Such T2 values were not 

estimable by conventional dictionary matching (but were estimable by DRONE 

reconstruction) and were therefore not included in the RMSE calculations shown in 

Supporting Fig. S6, unlike the DRONE reconstruction which included all tissues. Despite 

the smaller set of tissues used in calculation of the dictionary matching error, the DRONE 

reconstruction error was still 7–44% smaller for T1 and 2–8% smaller for T2 in the presence 

of noise.

Phantom

The DRONE reconstruction accuracy was evaluated by estimating T1 and T2 values in the 

well-characterized calibrated ISMRM/NIST phantom. The measured T1 and T2 values were 

derived from the mean T1 and T2 values estimated within each compartment.

MRF EPI—The estimated T1 and T2 values from all compartments (Fig. 5) showed good 

agreement to the true phantom values (R2=0.99) and a small estimation bias of 6.3 ms for T1 

and 15 ms for T2. The calculated T1 and T2 RMSEs were 49 and 42 ms respectively. In 

contrast, conventional dictionary matching yielded higher RMSEs (89 and 56 ms for T1 and 

T2). The reconstruction of the 128×128 T1 and T2 maps required ~10 ms with the NN which 
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was ~300 fold faster than the ~3s required with conventional dictionary matching using a 

~69000 entries dictionary.

MRF FISP—The T1 and T2 values estimated with the MRF FISP sequence also showed 

good agreement to the true phantom values (R2=0.94 for T1 and 0.98 for T2) with an 

estimation bias of 49 ms for T1 and 3.8 ms for T2. The T2 RMSE was similar to that of the 

MRF EPI acquisition at 59 ms but the T1 RMSE (150 ms) was larger. Although B1 

correction was not applied to either sequence, the B1 inhomogeneity is greater at 3 T which 

likely contributed to the larger error in the MRF FISP sequence. The larger number of time-

points in the MRF FISP sequence naturally required a longer time for reconstruction (76 ms) 

compared to the MRF EPI acquisition. Remarkably, despite the nearly 23 fold increase in 

the number of time-points, the increase in reconstruction time was only ~7 fold. 

Conventional dictionary matching with the same size dictionary yielded RMSEs of 141 and 

80 ms for T1 and T2 and required ~380 seconds or 5000 times longer.

In Vivo Human Brain

The T1 and T2 maps reconstructed by DRONE are shown in Fig. 6 along with the ROIs 

chosen. The mean±standard deviation T1 and T2 for each tissue compartment are listed in 

Table 1 and are similar to values obtained from the literature (1,31).

Discussion

MRF enables quantitative tissue mapping in a short acquisition time at the cost of increased 

complexity in the reconstruction. While computational resources are typically cheaper and 

more accessible than scanner time, the large dictionaries required for MRF applications can 

overburden even the most advanced hardware. To avoid this problem multi-parametric MRF 

dictionaries are by necessity undersampled in some dimensions entailing an a priori 
reduction in accuracy. Instead, in this work, a four layer NN capable of modeling the 

history-dependent Bloch equations used in MRF sequences was demonstrated. Unlike 

conventional dictionary matching where the acquired signals can only be matched to the 

discrete entries computed in the dictionary, the proposed method relies on the functional 

representation of the NN which yields continuous-valued parameter outputs. This is a 

notable advantage of the NN reconstruction since the reconstruction accuracy is no longer 

strictly limited by the dictionary density. Moreover, the network training process results in a 

signal-to-parameter mapping that is more robust to noise than a conventional dictionary 

matching approach (Fig. 4 and Supporting Fig. S6) because the mapping is forced to be 

expressed in low-dimensional space and is thus insensitive to small corruptive input 

perturbations. This mapping need not result a loss of accuracy provided that the salient 

features of the signal are adequately preserved by the NN, in analogy with truncation of 

small singular values in the singular value decomposition (32). Because conventional MRF 

dictionaries are generated from combinations of tissue parameters, each T1 and T2 value can 

be repeated multiple times in the dictionary. Despite this natural redundancy, the error in the 

NN reconstruction was still smaller for increasing dictionary undersampling than with 

conventional dictionary matching.
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Conventional dictionary matching does not learn a functional mapping, relying instead on 

the similarity between the normalized measured data and the corresponding normalized 

dictionary entry. An unfortunate side-effect of the normalization is that noisy signals, arising 

from tissues with short T2 for example, are amplified and then matched to some dictionary 

entry leading to increased reconstruction errors (Supporting Fig. S4). The dictionary 

matching was greatly influenced by the low SNR of the short T2 values rendering them 

nonestimable. Those values, corresponding to T2s smaller than 11 ms, were excluded from 

the calculations of the dictionary matching error but were included in those of the NN 

reconstruction. It should be noted that as the noise is increased, the smallest detectable T2 

value will get correspondingly larger. Because the NN was trained on noisy signals it yielded 

smaller error for both T1 and T2 (Fig. 4 and Supporting Figs S4,S5,S6).

The in vivo MRF EPI T1 and T2 maps reconstructed by DRONE (Fig. 6) correspond well to 

the known anatomy and the average values of the associated ROIs are similar, for grey and 

white matter, to those reported by Ma et al and references therein (1). The average CSF 

value obtained in our study (~1600 ms for T2) was similar to other studies (33,34) but 

significantly larger than the 550 ms reported by Ma et al. Susceptibility of the MRF FISP 

sequence to out-of-plane flow, as proposed in that paper, may explain the discrepancy 

though recent work by Daoust et al (34) suggests that flow only has a small effect on the T2 

of CSF at 1.5T.

A successful application of deep learning networks requires large and high quality training 

data. In a clinical context, large, high quality datasets may be difficult to obtain and 

expensive to generate. Training the network on simulated dictionary data eliminates this 

concern and permits generating arbitrarily large training sets. Our results (Figs. 5,6) show 

that networks trained on simulated data can accurately reconstruct measured data despite the 

presence of inevitable noise and other sources of errors in the measurements.

The compact size of the NN solves many of the problems inherent to conventional dictionary 

matching. Specifically, DRONE required merely ~5% of the storage and memory needed for 

storing even the small training dictionary used - larger dictionaries would reduce this 

fraction further. Because of its feedforward structure, reconstruction with the network was 

300-fold faster than conventional dot product dictionary matching of the optimized MRF 

EPI data and up to 5000-fold faster for the larger MRF FISP data. Accelerated matching 

techniques such as that reported by Cauley et al (5) still necessitated 2 seconds per slice for 

reconstruction which was ~16 fold longer than what would be required with a NN 

reconstruction of an equivalent number of time-points. While the dictionary used in that 

study was larger than the one used in this work, the number of entries in the NN training 

dictionary has no effect on the final reconstruction time once the network is fully trained. 

Because the network topology is fixed, additional training entries simply modify the 

weights/biases of the network but do not increase the reconstruction time. Similarly, because 

the architecture of our network (300×300 fully-connected hidden layers) theoretically allows 

up to 6002 degrees of freedom (one weight and one bias per node), the inclusion of 

additional parameters in the reconstruction would only require increasing the size of the 

training dictionary which would not affect the post-training reconstruction time. In theory, a 

larger network can better represent complicated functional mappings albeit at the cost of 
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increased reconstruction time and increased risk of overfitting the data. The relatively simple 

network architecture used in this study provided accurate reconstructions at near 

instantaneous processing time.

This work represents an initial proof-of-concept for MRF reconstruction by a NN and can be 

optimized to further improve the results. For instance, although the training time for the 

network used in this study was relatively small (~10–74 minutes), alternative methods may 

yield faster training. The size of the network and the small number of images used with the 

optimized MRF EPI schedule contributed to the short training time but conventional MRF 

sequences that require a greater number of acquisitions (10–100 fold higher) will require a 

longer training time as will simultaneous reconstruction of additional tissue parameters 

given the larger training dictionary needed. The sigmoid and tanh activation functions used 

in this study are a common choice for NN training (35) but skew the accuracy of the network 

towards the middle of the training dictionary range (Fig. 2) where the gradient is largest and 

the back-propagation algorithm is thus most effective. This problem is well known in the 

machine-learning literature with a number of techniques available for addressing it (36). 

Alternative training strategies and activation functions such as Softmax and ReLu are 

beyond the scope of this work and will be examined in future studies.

Conclusion

We have demonstrated the feasibility of using deep learning networks for reconstruction of 

MRF data. The proposed approach yields fast and accurate reconstruction with a limited 

storage requirement despite training on sparse dictionaries and can therefore resolve the 

technical issues inherent to the exponential growth of multi-dimensional dictionaries.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Schematic of the reconstruction approach used in this study. MRI data acquired with the 

optimized MRF EPI sequence is fed voxelwise to a four layer neural network containing two 

300×300 hidden layers. The network is trained by a dictionary generated with the Extended 

Phase Graph algorithm with the tanh and sigmoid functions used as activation functions of 

the first and last hidden layers respectively. The network then outputs the underlying tissue 

parameters T1 and T2. Additional tissue parameters including M0, B0, B1 etc… (gray boxes) 

can similarly be obtained by training the network with a suitable dictionary.
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Fig. 2. 
Shown is a comparison between the true T1 and T2 and those reconstructed by a network 

trained on a distinct dictionary. The red line indicates the least-squares fit curve. The 

reconstructed T1 and T2 values showed excellent agreement (R2=0.99) with the true values 

with a negligible bias in T1 and T2 of 1.6 and 3.2 ms respectively, validating the feasibility 

of the proposed approach. Very short and very long T1 and T2 values showed increased 

deviation from the true values due to vanishing gradient of the activation function used for 

those ranges.
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Fig. 3. 
True and reconstructed T1/T2 images from the numerical brain phantom shown on a 

common ms scale and the associated absolute error map. The true phantom values 

approximate those of the in vivo brain, e.g. white matter T2 > 70 ms. Note the close 

agreement between the reconstructed and true maps. The T1 and T2 RMSEs of 2.6 and 1.9 

ms respectively are shown inset in white in the error map for this noiseless acquisition.
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Fig. 4. 
The T1 and T2 reconstruction error in percent as a function of the SNR. The mean (circles) 

and standard deviation (whiskers) were calculated across the 100 Monte Carlo iterations. 

Reconstructions at the lowest SNR level showed significant error that nevertheless dropped 

rapidly with increasing SNR and was less than 2% for T1 and T2 at the highest SNR level 

tested.
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Fig. 5. 
NN and MRF dictionary matching reconstructions of the ISMRM/NIST phantom for the 

sequences tested. Shown is a comparison between the reference and measured compartment 

T1 and T2 values for data acquired with the optimized MRF EPI sequence at 1.5T (top) and 

with the MRF FISP sequence at 3T (bottom). The reference values were calculated by NIST 

using spectroscopic inversion-recovery and spin-echo sequences. The dashed line is the 

identity line and the error bars represent the standard deviation of the measured T1 and T2 

values within each compartment. The uncorrected larger B1 inhomogeneity at 3T may have 

contributed to the larger T1 RMSE with the MRF FISP sequence.
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Fig. 6. 
In vivo quantitative T1 and T2 maps from the brain of a healthy subject reconstructed with 

the proposed NN. Because no fat suppression was applied, a mild chemical shift artifact is 

visible in the images (white arrows). The numbered black circles indicate the locations of 

the grey matter, white matter and CSF ROIs used to calculate the mean T1 and T2 values 

shown in Table 1.

Cohen et al. Page 17

Magn Reson Med. Author manuscript; available in PMC 2019 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Cohen et al. Page 18

Table 1

Mean±standard deviation T1s and T2s values of the ROIs selected.

ROI T1 (ms) T2 (ms)

White Matter

 1 608±9 62±3

 2 642±12 67±4

 3 633±9 66±3

 Average 627±10 65±3

Grey Matter

 4 895±153 92±14

 5 1182±65 102±10

 6 1241±187 120±17

 Average 1106±135 105±14

CSF

 7 3292±515 1475±118

 8 3665±413 1710±332

 9 4026±123 1544±147

 Average 3815±424 1576±199
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