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Abstract

Vitamin E is obtained only through the diet and has a number of important biological activities, 

including functioning as an antioxidant. Evidence that free radicals may contribute to pathological 

processes such as bronchopulmonary dysplasia (BPD), a disease of prematurity associated with 

increased lung injury, inflammation and oxidative stress, led to trials of the antioxidant vitamin E 

(α-tocopherol) to prevent BPD with variable results. These trials were all conducted at 

supraphysiologic doses and two of these trials utilized a formulation containing a potentially 

harmful excipient. Since 1991, when the last of these trials was conducted, both neonatal 
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management strategies for minimizing oxygen and ventilator related lung injury and our 

understanding of vitamin E isoforms in respiratory health have advanced substantially. It is now 

known that there are differences between the effects of vitamin E isoforms α-tocopherol and γ-

tocopherol on the development of respiratory morbidity and inflammation. What is not known is 

whether improvements in physiologic concentrations of individual or combinations of vitamin E 

isoforms during pregnancy or following preterm birth might prevent or reduce BPD development. 

The answers to these questions require adequately powered studies targeting pregnant women at 

risk of preterm birth or their premature infants immediately following birth, especially in certain 

subgroups that are at increased risk of vitamin E deficiency (e.g. smokers). The objective of this 

review is to compile, update, and interpret what is known about vitamin E isoforms and BPD since 

these first studies were conducted, and suggest future research directions.
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Introduction

Bronchopulmonary dysplasia (BPD) is a form of chronic lung disease associated with 

premature birth, most commonly seen among extremely preterm infants (prior to 28 weeks 

of gestation) requiring treatment for respiratory distress syndrome (RDS). The United States 

has the highest rate of preterm birth among high income countries.[1] Advances in neonatal 

care have improved the survival of extremely preterm infants who are at the highest risk of 

developing BPD. In spite of major advances in the treatment of RDS, the incidence of BPD 

has not changed over the last several decades. Substantial evidence suggests that oxidative 

stress likely plays an important role in the development of certain phenotypes of BPD.[2] 

Understanding the mechanisms underlying the role of oxidative stress as a risk factor for 

BPD or in the pathogenesis of BPD is of substantial interest, as interventions that safely 

prevent or ameliorate oxidative stress might serve as prevention strategies for this disease.

One such potential intervention is vitamin E, which is known to neutralize free radicals and 

reduce oxidative stress. Vitamin E is also well tolerated as an oral supplement throughout 

pregnancy and infancy, and is routinely present in total parenteral nutrition for premature 

infants, making it an attractive option for BPD prevention or treatment. This review will 

focus on outlining the association between oxidative stress, vitamin E, and BPD 

pathophysiology. We will then review new developments in understanding of individual 

vitamin E isoforms since the initial vitamin E trials were conducted in BPD. Finally, we will 

discuss knowledge gaps where future research should focus.

Bronchopulmonary Dysplasia

The most commonly applied definition of BPD is a requirement for oxygen at 36 weeks of 

corrected gestational age, although the physiologic usefulness of this definition has been 

questioned[3] and is being actively studied.[4,5] BPD was once thought to be a natural 

progression of respiratory distress syndrome (RDS) and therefore ameliorable by surfactant 
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administration; however, the incidence of BPD has not decreased since surfactant became 

widely available.[6] Despite a multifactorial approach involving antenatal steroid therapy, 

early administration of surfactant, careful oxygen saturation targeting, avoidance of 

volutrauma and atelectasis, and an emphasis on intubation avoidance and early extubation, 

the incidence of BPD has remained stable.[3,7–13] Demographically and pathologically, 

however, BPD is substantially different now.[12,14–16] In the current era, many infants 

diagnosed with BPD at 36 weeks gestational age have minimal respiratory distress at birth,

[6,17] and the new clinical and histological picture of BPD is conceived as a failure or arrest 

of normal alveolar and lung vascular formation in the setting of extreme prematurity, 

uncommon in infants greater than 1200g and greater than 30 weeks gestation.[18,19] In 

addition it is increasingly recognized that there are different phenotypes of BPD with 

variable contributions of oxidative stress, lung injury, lung repair, genetic predisposition, and 

epigenetic influences among other factors.[3]

Bronchopulmonary Dysplasia and Oxidative Stress

Oxidative stress results from the disrupted balance between generation of free radicals (such 

as reactive oxygen species) and their removal by free radical scavenging systems.[20] 

Reactive oxygen species exist, therefore, in a delicate balance in the human body. They are 

generated by multiple enzyme systems and act as intermediates of normal cellular 

metabolism,[21] performing essential roles as second messengers,[22] in induction of cell 

death and apoptosis,[23] and as local mediators of infection control and inflammation.[24]

Multiple investigators have noted that in the first few days of life there is a difference in 

oxidation of lipids and proteins in preterm infants who develop BPD compared to full term 

infants and adults,[14] and compared to preterm infants who do not develop BPD.[2] These 

differences manifest as increased presence of free iron, transferrin, ferritin and lactoferrin in 

bronchoalveolar secretions, which in the presence of oxygen become free radicals.[25–28] 

In settings of local increases of reactive oxygen species, the imbalance triggers downstream 

damage to the neonatal lung, possibly via nitric oxide-dependent pathways of lung 

development[29,30] or another downstream pathway that causes activation of the immune 

system and local inflammatory destruction of lung architecture. Thus, multiple studies 

suggest a role for free radical generation and lipid peroxidation in the presence of inhaled 

oxygen either causing or being a biomarker for BPD development.[25–28]

Interventions that mitigate or control oxidative stress might therefore prevent the 

development of BPD in at-risk infants. Vitamin E is a potent antioxidant, known to be 

essential for human health, and its easy tolerability as a normal part of the diet represents a 

feasible and acceptable potential antioxidant intervention. In 2015, Miller et al. concluded 

that increasing first trimester maternal plasma α-tocopherol is associated with differential 

neonatal airway epithelial cell inflammatory mediator release, especially a decrease in 

Tumor Necrosis Factor-α (TNF-α) production, suggesting that α-tocopherol may be an 

important local anti-inflammatory factor in the neonatal lung.[31] Hereafter we will review 

what is known about vitamin E, its isoforms, and their potential role/ association in the 

development of BPD.
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The Role of Vitamin E and its Isoforms

Vitamin E is one of the essential fat-soluble vitamins, but it is not synthesized by the human 

body and requires intake from food sources, typically oils. (FIGURE 1) There are 8 isoforms 

of vitamin E, known as α-, β-, γ-, and δ-tocopherol and α-, β-, γ-, and δ-tocotrienol.[32] 

The two best-studied isoforms of vitamin E are α-tocopherol and γ-tocopherol. Dietary 

consumption of each isoform varies by food source.[33] At present, many foods and the 

majority of neonatal formulas in the United States deliver much greater γ-tocopherol than 

α-tocopherol.[34] The functions of each isoform in the human body, while not fully 

described, appear to be different, some with anti-inflammatory and some with 

proinflammatory properties.[35] Human tissues preferentially retain α-tocopherol and 

metabolize the other forms at higher rates.[36,37] The main carrier vehicle for tocopherols 

in the body are lipid particles (chylomicrons, LDL and HDL).[38] Increased lipids can 

elevate measured plasma tocopherols, and decreased lipids can lower measured plasma 

tocopherols.[39] Premature infants on TPN can have elevations in measured cholesterol 

compared to infants on enteral breastmilk.[40] Simultaneous measurement of tocopherols 

and lipids is currently recommended for scientific investigations, and is important to identify 

measurements of plasma tocopherols that have been altered by extremes of lipid status.

[39,41]

Both α-tocopherol and γ-tocopherol have been called anti-inflammatory, but their 

downstream effects appear to be different, outlined in TABLE 1. α-tocopherol has been 

more extensively studied as has its documented anti-inflammatory profile.[42] γ-tocopherol 

also has anti-inflammatory effects,[42] especially in animal models and subjects with 

neutrophilic inflammation.[43–51] However, γ-tocopherol has also been reported to 

promote Type II inflammation in the lungs and in other organs.[33,52,53] In human subjects 

with asthma increased serum concentrations are associated with lower forced expiratory 

volume in 1 second (FEV1).[54] Supplementation of primarily γ-tocopherol was shown to 

reduce plasma and urine concentrations of α-tocopherol via undefined competitive 

mechanisms.[55] Subsequently, α- and γ-tocopherol were noted by Marchese et al. to have 

different primary roles in lung inflammation, with the isomers appearing to antagonize each 

other’s metabolism.[54] In human studies, higher α-tocopherol is associated with a 

significantly decreased risk of asthma development, but the relationship of γ-tocopherol 

with asthma development is unclear.[56]

Vitamin E and Fetal Lung Development

Maternal prenatal factors including nutrition play a vital role in fetal and infant lung growth, 

and the normal development of the lungs may be interrupted by preterm birth. Amongst 

other nutrients, maternal α-tocopherol intake during pregnancy has been shown to be an 

important growth factor for fetal respiratory system development and other outcomes 

(FIGURE 2).[57] Murine models of BPD show accelerated growth in hypoplastic lung, 

increased lung complexity, and increased air surface with maternal supplementation of 

vitamin E containing α-tocopherol and γ-tocopherol.[58,59]
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Vitamin E Concentrations in Prematurity

Falciglia et al. noted in 1988 that premature infants born at less than 33 weeks gestational 

age with RDS who went on to develop BPD had lower total plasma vitamin E at 3 days of 

life (0.58 ± 0.43 mg/dL) compared to those with RDS who recovered without the 

development of BPD (1.29 ± 0.54 mg/dL, p<0.05).[60–62] Decreased cord blood α-

tocopherol and selenium concentrations in premature infants less than 30 weeks gestation 

who were on a standardized respiratory and ventilatory protocol for RDS were subsequently 

found to predict increased risk of developing BPD.[61] Haga et al. reported that even 

healthy, term infants appear to have a lower transport capacity for vitamin E compared with 

adults, resulting in lower plasma concentrations in cord blood samples compared to maternal 

plasma concentrations at delivery.[63] Initial plasma concentrations of vitamin E in infancy 

have been shown to be associated with maternal concentrations prior to birth.[64–66] 

Placental transfer of tocopherol isoforms to the infant is limited due to maternal metabolism 

of excess tocopherols compared to postnatal breastfeeding. [64–66] Preterm infants who are 

not receiving breastmilk may also have lower measured α-tocopherol concentrations after 

birth. Breastfeeding typically provides a higher α- tocopherol content in colostrum and 

transitional milk compared with formula and TPN. [67,68]

Wu et al. measured α- and γ-tocopherol isoforms and lipid concentrations from venous 

blood in term infants of 38–42 weeks gestation and preterm infants of 28–34 weeks 

gestation to establish a comparison between the two infant groups. The 28 to 34 week 

gestation infants had significantly lower serum mean α-tocopherol concentrations compared 

to the older infants, but they had similar ratios of overall vitamin E to total lipids.[65] There 

was a statistically significant correlation between neonatal and maternal vitamin E to total 

lipids ratios.[65] Better understanding of effects of postnatal supplementation with various 

tocopherol isoforms will be crucial, because at the present time dietary supplementation of 

vitamin E in neonatal care may be predominantly γ- and δ-tocopherol based, as is also the 

case with prenatal vitamins.[69]

Vitamin E Supplementation and the Development of Bronchopulmonary 

Dysplasia

Vitamin E has been extensively studied as an essential nutrient for the growth and 

development of infants, especially in its role as a potent antioxidant. It was hypothesized to 

be important in decreasing lung damage caused by the toxic effects of oxidant stress and 

oxygen toxicity.[70] Early studies, such as that by Ehrenkranz et al., measured infant 

vitamin E concentrations following birth and demonstrated a protective effect of higher 

vitamin E concentrations on pressure-related lung injury.[70,71] These early observational 

studies did not account for the interaction (and likely opposing effects) of the vitamin E 

isoforms α- and γ-tocopherol on airway inflammation and lung disease risk that have 

subsequently been demonstrated.[33,54,72]

Investigators hypothesized that α-tocopherol supplementation might prevent either the 

oxidative lung injury or altered lung growth seen in preterm infants with bronchopulmonary 

dysplasia, and seven randomized controlled trials of α-tocopherol supplementation in 
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preterm infants were conducted for the prevention of BPD, four of which studied 

development of BPD as the primary outcome[70,71,73,74] and three which studied it as a 

secondary outcome[75–77] (TABLE 2). The results of these studies differ, with one 

reporting statistically significant reductions in BPD, and six showing nonsignificant 

reductions in BPD or no difference. A Cochrane meta-analysis of these same studies 

reported no association between vitamin E and BPD, (Estimated RR 0.91, CI 0.73, 1.14; 

Risk Difference −0.02, CI −0.07, +0.03) with wide confidence intervals suggesting that 

studies of BPD and vitamin E have been underpowered, even when combined in this way.

[78] What all seven studies have in common is utilization of high dose vitamin E 

supplementation rather than normalization of deficiency, lack of prestratification of 

participants into categories at risk for vitamin E deficiency, delivery of the intervention in 

the neonatal period rather than during pregnancy, and failure to quantify and account for an 

interaction effect of γ-tocopherol or its potential presence in the product being delivered.

[33] Of note, all seven provided α-tocopherol formulated by one company. Of more concern, 

two of the negative studies, in particular the same two with reported increased side effects of 

necrotizing enterocolitis, utilized a preparation which included a carrier of polyoxyethylated 

castor oil.[75,77] Polyoxyethylated castor oil is not biologically inert, as was believed at the 

time, and may cause serious adverse reactions, including direct epithelial damage.[79]

There is hesitancy on the part of neonatologists to reopen investigations into vitamin E 

isoforms, due to reported adverse events such as necrotizing enterocolitis, noted during the 

trial period in which the investigational product was being administered.[77] In undertaking 

this review, however, it appears that side effects may have been more likely related to the 

carrier vehicles,[79,80] to osmolality of preparations,[81] or to selection of supraphysiologic 

doses and target levels (TABLE 2). Lower concentrations of vitamin E are routinely 

included in the enteral feeds and total parenteral nutrition given to preterm infants without 

increased adverse effects, suggesting that more careful selection of vehicles and cautious 

dose finding trials prior to use would protect against adverse effects seen in previous trials. 

In addition, supportive pilot trials of specific vitamin E isoforms demonstrating 

improvements in established biomarkers for the development of BPD would be important 

prior to initiating large randomized controlled trials.

It is also important to acknowledge that there are some studies in opposition to the 

hypothesis that supplementation of α-tocopherol is sufficient to protect against the 

development of BPD. The predictive model of Falciglia et al. for which preterm human 

infants went on to develop BPD did not demonstrate the protective effect of α-tocopherol to 

be independent of the effect of selenium.[61] As selenium deficient rats had been shown to 

have increased metabolism of vitamin E,[82] this group speculated that vitamin E may be 

metabolized more quickly due to selenium deficiency in preterm infants under conditions of 

oxidative stress.[61] In another study Berger et al. administered high doses of α-tocopherol 

to premature baboons exposed to prolonged hyperoxia (FiO2 of 1.0) and, despite increasing 

α-tocopherol plasma concentrations, BPD was not prevented.[83] In one of the human trials, 

done by Watts et al., additional supplementation of 16 mg d-l α-tocopherol, an amount less 

than what is currently contained in daily consumption of standard infant formula, starting in 

the first week of life to 266 infants weighing less than 1500g, did not prevent BPD, defined 

at that time as continued oxygen requirement at 28 days of postnatal life.[73] It is 
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noteworthy that at least 40% of both the control and treatment groups in this study were 

receiving inspired oxygen concentrations that were much higher (FiO2 >0.8) than those 

typically used with close oxygen saturation targeting in neonatal intensive care units today.

[84] Watts et al. speculated that their study might have been underpowered for effect size, 

and that the lack of response could possibly be explained by the fact that predisposition for 

BPD may require vitamin E deficiency to be both severe and chronic (i.e., present in utero), 

with exposure therefore dependent on maternal status (and not infant status) at birth.[73] 

Another possible explanation for some of the contradictory studies is that beyond a certain 

concentration of hyperoxia, antioxidant defenses, no matter how replete, may simply be 

inadequate to compensate for the damage caused by high fractions of inspired oxygen, free 

radical generation and inflammation. A third explanation is that the current definition of 

BPD could encompass some phenotypes which are mechanistically connected to oxidative 

stress, and others which are not.[3] Demonstrating a protective dose response or threshold 

effect of α-tocopherol based on delivered inspired oxygen concentrations may be helpful in 

delineating this relationship.

Future Research Directions

Fifty years after the original description of BPD, it remains a major complication of 

premature birth.[85,86] However, not all extremely premature infants develop BPD, 

suggesting that BPD can be prevented, if premature birth cannot. The original hypotheses 

driving studies of vitamin E on BPD are worth revisiting, even in the presence of conflicting 

and negative trials. Previous trials conducted utilizing lower dose oral supplements of 

vitamin E were underpowered,[73,74] and studies utilizing parenteral dosing remain in the 

shadow of adverse outcomes related to supraphysiologic doses with a possibly toxic vehicle.

[75–77] Lastly, none of the trials targeted prenatal supplementation, as all were delivered 

postnatally.

As vitamin E is a required vitamin, and deficiency is associated with increased BPD risk, a 

definitive understanding of the role vitamin E isoforms play in BPD development is needed 

to inform potential prevention efforts. TABLE 3 outlines what we know about vitamin E and 

BPD, and important remaining gaps in our knowledge. Observational studies could identify 

infants and mothers at risk of vitamin E deficiency and BPD, such as those born to mothers 

who smoke[87] and could determine the optimal concentration ranges of each isoform to 

minimize BPD risk in premature neonates. Proof of concept studies could reveal the optimal 

timing of vitamin E isoform delivery on biomarkers of BPD risk, and demonstrate potential 

mechanisms of action of individual isoforms. Mechanistic studies could help to elucidate 

how individual vitamin E isoforms affect lung growth and lung inflammation. Any future 

tocopherol based intervention will have to account for and quantify the content of individual 

isoforms. In particular, we feel that renewed study of the α-tocopherol isoform should be 

considered given its protective association with development of respiratory health outcomes 

such as asthma, allergic airway inflammation, and with improved lung growth parameters, 

compared with γ-tocopherol.[33,57,88]

As part of this strategy, properly conducted epidemiology studies to identify subgroups of 

mothers and infants at greater risk of vitamin E deficiency should take higher initial priority. 
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In addition to vitamin E, vitamin C and selenium are also known to be important in the 

interdependent human antioxidant system.[32,82] Infants of mothers who smoke have 

already been shown to gain significant increases in lung function and decreased likelihood of 

wheezing in a randomized controlled trial of supplementation of another antioxidant 

micronutrient, vitamin C, during pregnancy.[89,90] Status of vitamin E isoforms, vitamin C, 

and selenium should be examined in the maternal, infant and cord blood of smoking mothers 

who deliver preterm, in order to determine their association with risk of subsequent BPD.

Proof of concept studies will also be of great value moving forward. Determining the 

optimal timing and delivery of a tocopherol intervention will be especially important. 

Maternal supplementation may only lead to increased transmission of tocopherol 

metabolites,[66] as only very specific isomers of α-tocopherol cross the placenta.[91,92] 

This does not necessarily mean that the antioxidant activity is diminished, as the primary 

transmissible metabolite (alpha-carboxyethyl hydroxychroman) has also been shown to have 

good in-vitro antioxidant activity,[93] but with limited evidence of in vivo antioxidant 

activity.[94] Prenatal supplementation favoring very specific placentally transmissible 

isomers of α-tocopherol, such as naturally derived RRR-α-tocopherol,[91,92] in a 

supplement with high overall α-tocopherol to γ-tocopherol ratio may yield the best strategy 

for influencing postnatal lung outcomes. For infants at risk in the postnatal environment, 

administration of tocopherol interventions may need to occur immediately after birth to 

prevent, rather than treat, lung damage leading to BPD. Because the intravenous route of 

administration of vitamin E in very low birth weight infants may carry an increased risk of 

sepsis and other adverse outcomes, and because poor vehicle selection may have contributed 

to toxicity in the past, we think that future intervention trials should focus on the enteral 

route or on modification of existing TPN formulas, and be appropriately cautious with the 

target dose.[78]

Conclusions

At present, there is insufficient evidence about the benefits and risks of vitamin E in BPD 

prevention to make evidence-based recommendations about supplementation. However, new 

data on the effects of the individual vitamin E isoforms on lung health should make us 

relook at this essential dietary factor as a potential preventive or treatment intervention for 

BPD. Adequately powered studies will be needed to address whether supplementation of 

specific vitamin E isoforms either in pregnant women at risk of preterm birth, or in at-risk 

premature infants immediately following birth, reduces the development of BPD and 

subsequent long-term pulmonary morbidity in childhood and adult life.
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Figure 1. 
Metabolism of vitamin E isoforms α- and γ-tocopherol during pregnancy. Tocopherols are 

found only in the diet and are transported via lipid pathways. The main site of tocopherol 

action is in tissues, where they are incorporated into cellular membranes and act to stabilize 

lipids and prevent lipid peroxidation by free radicals. Drawing modified from public image 

(Image modified with licensed permission. Artist: Blamb, source: www.shutterstock.com)

Stone et al. Page 16

Neonatology. Author manuscript; available in PMC 2019 March 07.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://www.shutterstock.com


Figure 2. 
Beneficial and adverse effects of α-tocopherol on pregnancy, perinatal and early childhood 

outcomes, with strength of evidence. Low birth weight[57,94] Preeclampsia[95–99] 

Intrauterine growth restriction[57,94] intraventricular hemorrhage[78] retinopathy of 

prematurity[74,77,78,100–104] bronchopulmonary dysplasia anemia[105] sepsis[78] 

intracranial hemorrhage[78] asthma[54,56,106–108] viral infection[109–113]
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Table 1

Comparing the Effects of Alpha- and Gamma- Tocopherol Isoforms of Vitamin E on Lung Growth and Lung 

Inflammation

Effect Alpha-Tocopherol Gamma-Tocopherol

Infant FEV1 and FVC[54] Increased infant α-tocopherol associated with 
increases in FEV1 and FVC

Increased γ-tocopherol associated with 
decreases in FEV1 and FVC

Effect on lipid peroxidation[69,95] Associated with greater reductions in lipid 
peroxidation

Associated with lesser reductions in lipid 
peroxidation

Effect on IL-2 production[96,97] Increased production by stimulated peripheral blood 
mononuclear cells

Unknown

Effect on cyclooxygenase 
enzymes[96,98–100]

Decreased prostaglandin E2 synthesis Decreased prostaglandin E2 synthesis

Effect on intracellular 
pathways[97,101–104]

Inhibition of protein kinase B and C, reduced nuclear 
factor kappa B

Inhibition of protein kinase B, with mixed 
inhibition/activation of protein kinase C

Effect on leukocyte trafficking/
adhesion[53,105,106]

Decreased expression of VCAM-1 Increased expression of VCAM-1

Effect on offspring cytokine production 
after allergen challenge in infant 
murine models (maternal 
supplementation)[107,108]

Decreased IL-4, IL-33, TSLP, CCL11, and CCL24 Increased CCL11, amphiregulin, activin A, 
and IL-5

Effect on prevalent Type I 
inflammation[43,44,46–50,98,107,108]

Decreases neutrophilic inflammation Decreases neutrophilic inflammation more 
than α-tocopherol, reduced tumor necrosis 
factor-α

Effect on prevalent Type II 
inflammation[43,44,46–50,98]

Decreases recruitment of dendritic cells and 
eosinophils

Increases recruitment of dendritic cells and 
eosinophils in some models

Decreases eosinophil and basophil 
recruitment in other models

Reductions in leukotriene B4
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Table 3

Use of Vitamin E Isoforms in Therapy or Prevention of BPD: Review of What is Known and Key Questions 

that Need to be Answered

Observational and RCTs Proof of concept Mechanism of Action

What is Known:

• There is an association 
between decreased tocopherols 
and increased BPD.59–61,64,69

• Trials have shown mixed 
results, but may have been 
affected by vehicle, route and 
dose.69,72,74–76,127

What is Known:

• Alpha- and gamma- tocopherol 
have differing associations with 
childhood respiratory outcomes.
53,55,105–107

What is Known:

• Alpha- and gamma-
tocopherol have differing 
effects on lung growth and 
lung inflammation. (Table 1)

What is not known:

• Are there subpopulations of 
infants/mothers at greater risk 
of vitamin E deficiency and 
BPD? (Example: smokers)

• Is there an optimal alpha- and 
gamma- tocopherol range 
associated with the lowest risk 
of BPD in premature neonates?

What is not known:

• Does supplementation with a 
specific isoform of tocopherol 
during pregnancy or after 
premature birth protect against 
BPD development?

• What are the dietary co-factors 
(vitamin C, selenium)?

• What is the optimal route of 
delivery? Enteral vs. TPN?

• When is the optimal timing of 
intervention? At-risk pregnancy 
or after premature birth?

What is not known:

• How does supplementation 
with specific isoforms of 
tocopherol alter lung 
growth?

• How does supplementation 
with alpha- and gamma-
tocopherol alter oxygen 
induced lung inflammation 
in premature infants or in 
models of prematurity?
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