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Abstract

Many gene mapping studies of complex traits have identified genes or variants that influence 

multiple phenotypes. With the advent of next-generation sequencing technology, there has been 

substantial interest in identifying rare variants in genes that possess cross-phenotype effects. In the 

presence of such effects, modeling both the phenotypes and rare variants collectively using 

multivariate models can achieve higher statistical power compared to univariate methods that 

either model each phenotype separately or perform separate tests for each variant. Several studies 

collect phenotypic data over time and using such longitudinal data can further increase the power 

to detect genetic associations. While rare-variant approaches exist for testing cross-phenotype 

effects at a single time point, there is no analogous method for performing such analyses using 

longitudinal outcomes. In order to fill this important gap, we propose an extension of Gene 

Association with Multiple Traits (GAMuT) test, a method for cross-phenotype analysis of rare 

variants using a framework based on the distance covariance. The approach allows for both binary 

and continuous phenotypes and can also adjust for covariates. Our simple adjustment to the 

GAMuT test allows it to handle longitudinal data and to gain power by exploiting temporal 

correlation. The approach is computationally efficient and applicable on a genome-wide scale due 

to the use of a closed-form test whose significance can be evaluated analytically. We use simulated 

data to demonstrate that our method has favorable power over competing approaches and also 

apply our approach to exome chip data from the Genetic Epidemiology Network of Arteriopathy.
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1 Introduction

Pleiotropy refers to the phenomenon of one genetic variant influencing more than one 

distinct trait. Several studies in recent years suggest the existence of many genetic variants 

that influence multiple phenotypes (Lees, Barrett, Parkes, & Satsangi, 2011; Liu et al., 

2012). In the presence of such cross-phenotypic effects, joint genetic analysis of multiple 

phenotypes can be more accurate for phenotype prediction and statistically more powerful 

for gene mapping than univariate methods that model each phenotype separately (Maier et 

al., 2015; Galesloot, Van Steen, Kiemeney, Janss, & Vermeulen, 2014; Allison et al., 1998). 

Genetic pleiotropy induces phenotypic correlation which is more readily detectable through 

cross-phenotype analyses using the extra information provided by the correlation among the 

phenotypes. Although several tests of pleiotropy for common variants exist, they are usually 

less powerful for rare variants (Schaid et al., 2016). A recent method called ‘Gene 

Association with Multiple Traits (GAMuT)’ (Broadaway et al., 2016) was proposed to fill 

this gap for rare variants. The authors also argued that performing cross-phenotypic tests for 

rare variants might be more important than performing the same types of analyses for 

common variants since population-genetic models suggest rare variants are likely to be 

pleiotropic in nature under the model of infintesimal genetic architecture (Broadaway et al., 

2016).

In many studies related to genetic epidemiology, such as the Genetic Epidemiology Network 

of Arteriopathy (GENOA) study (Daniels et al., 2004), observations at multiple time points 

are available for each subject. More accurate inference can be drawn by exploiting the 

temporal correlation in these measurements. However, most of the researchers tend to use 

existing single time point methodologies on such data after collapsing the repeated 

measurements into a single value (e.g. average across time points). Such a simple approach 

fails to take advantage of the extra information provided by repeated measurements and can 

be less powerful as a result.

A rare-variant statistical approach for cross-phenotype analysis of longitudinal outcomes 

requires a framework that can handle multiple phenotypes observed over multiple time 

points and furthermore can simultaneously handle information from multiple rare variants 

within a gene, since gene-based testing can be more powerful than testing of individual 

variants (Morris & Zeggini, 2010; He et al., 2016; M. C. Wu et al., 2011; Kwee, Liu, Lin, 

Ghosh, & Epstein, 2008). Such an approach currently does not exist in the statistical or 

genetics literature. There exist methods for longitudinal analysis of genetic data (Fan et al., 

2012; Furlotte, Eskin, & Eyheramendy, 2012) based on random effects models (Fitzmaurice, 

Laird, & Ware, 2012) or generalized estimating equations (GEE) (Zeger & Liang, 1986). 

However, such models cannot be applied to test the association of the longitudinal 

phenotype data with an entire gene or thousands of markers taken together in a flexible 

manner. A recent method based on the longitudinal genetic random field model allows 

longitudinal analysis of multiple genetic variants simultaneously (He et al., 2016), but no 

extension of the method is available for cross-phenotypic effects. Finally, there are other 

multi-marker approaches such as sequence kernel association test (SKAT) (M. C. Wu et al., 

2011) and similarity regression (SIMreg) (Tzeng, Zhang, Chang, Thomas, & Davidian, 

2009) that are used for gene mapping, but such approaches do not directly apply to multi-
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phenotype data or longitudinal data. There has been some recent work on multivariate 

extensions to SKAT (B. Wu & Pankow, 2016; Sun et al., 2016). However, like GAMuT 

(Broadaway et al., 2016), these methods do not apply to longitudinal data. Another method 

using multivariate functional linear models (MFLM) (Wang et al., 2015) uses multi-

phenotype data, but does not apply to longitudinal data. MFLM has also been shown to have 

much inferior power compared to GAMuT and SKAT in the single phenotype case 

(Broadaway et al., 2016). Moreover, the above tests require continuous phenotypes and 

therefore cannot be applied to important categorical phenotypes like presence or absence of 

a disease, which is not ideal for a test of pleiotropy.

In this article, we propose an extension of the GAMuT method for longitudinal data using 

some simple adjustments. The approach utilizes the correlation across time since it does not 

collapse the repeated measures, and also uses the correlation across phenotypes. Therefore it 

is appropriate for testing the genetic association for cross-phenotype longitudinal data and is 

especially powerful for rare variants. We demonstrate its power and control of type-I error 

through simulations and also apply the method to perform exome-chip analysis of 

multivariate repeated measures of cardiovascular-related phenotypes from the GENOA study 

(Daniels et al., 2004).

2 Methods

The GAMuT test (Broadaway et al., 2016) relies on a machine-learning framework called 

kernel distance-covariance (KDC) (Gretton et al., 2007; Hua & Ghosh, 2015; Székely, 

Rizzo, Bakirov, et al., 2007) and provides a non-parametric test for independence between a 

set of phenotypes and a set of genetic variants within a gene of interest. The framework is 

based on comparing pairwise phenotypic similarity between samples with genotypic 

similarity between samples. It allows for arbitrary number of genotypes and phenotypes, and 

therefore it is ideal for testing rare variants. It also allows for covariates and is 

computationally efficient due to its ability to provide analytic p-values using Davies’ 

(Davies, 1980) method.

Let us start with a single time point. Suppose a sample of N subjects has data on L 
phenotypes. The phenotype vector for the jth subject (j = 1,2,…,N) is Pj = (Pj1,Pj1,…,PjL). 

Each phenotype can be either continuous or categorical. Let P = P1
T, P2

T, …, PN
T  be the 

phenotype matrix for all samples. Similarly, the genotype vector for sample j at V rare-

variant sites in the gene of interest, Gj = (Gj1,Gj2,…,GjV), and the genotype matrix 

G = G1
T, G2

T…, GN
T  for all samples can be defined. Here Gjv (j = 1,2,…,N;v = 1,2,…,V) is 

the number of copies of the minor allele that the subject possesses at variant v. P is an N × L 
matrix and G is an N × V matrix, and kernel similarity measure between these two matrices 

is used by GAMuT to test the independence between the set of rare variants and the set of 

phenotypes.

To apply the GAMuT test, an N × N phenotypic similarity matrix Y and N × N genotypic 

similarity matrix X are first defined. Different kernels can be used to define the similarity 

matrices. For example, Y can be modeled using a projection matrix (Schork & Zapala, 
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2012), such that Y = P(PT P)−1PT. A linear, quadratic or Gaussian kernel can also be used. 

Let the kernel function y(Pi,Pj) denote the similarity between phenotype vectors of subject i 

and subject j. For linear kernel, y Pi, P j = ∑l = 1
L PilP jl; for quadratic kernel, 

y Pi, P j = 1 + ∑l = 1
L PilP jl

2
; and for Gaussian kernel, y Pi, P j = exp −∑l = 1

L Pil − P jl
2

(M. C. Wu et al., 2011; Kwee et al., 2008; Schaid, 2010). Similar kernels can be used for the 

genotypes.

Once the similarity matrices X and Y are defined, they are centered as Xc = HXH and Yc = 

HYH, where H = I − 1N1N
T /N is the centering matrix, I being the identity matrix of 

dimension N, and 1N being the N × 1 vector with each element equal to 1. The GAMuT test 

statistic is then defined as

TGAMuT = 1
N trace YcXc (1)

Under the null hypothesis that the genotypes and the phenotypes are independent, the test 

statistic has the same asymptotic distribution as 1
N ∑i, j = 1

N λXiλYizi j
2 , where λXi and λYi are 

the ith ordered nonzero eigenvalue of Xc and Yc, respectively, and zi j
2  are independent and 

identically-distributed χ1
2 random variables. Davies’ method can then be used to compute the 

p-value (Davies, 1980).

When phenotype data are available at multiple time points, the phenotypes for jth subject at 

time point t can be defined as P j
t = P j1

t , P j2
t , …, P jL

t . If we combine all samples and time 

points, it will result in a three-dimensional array, for which it is harder to apply a kernel 

method. Instead, we concatenate the P j
t  s for t = 1,2,…,T and define the phenotype vector 

for jth sample as

P j = P j
1 , P j

2 , …, P j
T

which now has dimension 1 × LT. Subsequently the N × LT phenotype matrix P and the 

genotype matrix G are defined similar to the single time point case. GAMuT (or any other 

multi-phenotype rare variant model) can be applied using these matrices in the usual manner. 

For our analysis we applied a weighted linear kernel for modeling the genotypes. A 

projection matrix or a linear kernel was used for modeling the phenotypes. The weighting 

scheme for modeling the genotypes, following (M. C. Wu et al., 2011), is based on the minor 

allele frequency (MAF) of each variant. The observed GAMuT test statistic is then 

compared with the appropriate mixture of chi-square distribution and p-values are obtained 

using Davies’ method.

We note that the concatenated phenotype vector differs from the normal case since it can 

impose an unusual correlation structure. The correlation structure among phenotypes at the 
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same time point (within time point correlation) may not be similar to the correlation of the 

same phenotype across time (between time point correlation). Methods that inherently 

assume exchangeability of the phenotypes in some sense may perform poorly on such 

concatenated data. However, we have performed extensive simulation studies to verify that 

in most cases, the performance of the longitudinal version of GAMuT is better than other 

methods considered here (See 3). We applied GAMuT using both a projection matrix and a 

linear kernel for measuring phenotypic similarity. These two versions of GAMuT were 

compared against competing methods.

2.1 Simulations

Various simulations were done to verify that longitudinal GAMuT controls the type-I error 

at the desired level and to compare its statistical power with that of other methods. The 

model to generate longitudinal phenotype data is simple yet realistic. For each sample j, first 

we generated phenotype vectors for each time point t independently. Let us denote the 

independently generated phenotype vector at time t for subject j as P j
t ∗. The model used to 

generate the P j
t ∗ s is the same model used in the original GAMuT paper (Broadaway et al., 

2016) which considers different biological factors to simulate realistic datasets. A coalescent 

model was used to simulate the genotype data, while a multivariate normal distribution was 

used to simulate the phenotype data. See the supplementary materials for a more detailed 

description of the simulation procedure.

To obtain the final phenotype vectors P j
t ∗ s, a fixed effect of time and an error across time 

is then added to these values according to the following model:

P j
t = P j

t ∗ + βtimet + εt j, (2)

where εtj = (εtj1,εtj2,…,εtjL). We assume (ε1ji,ε2ji,…,εTji) are iid from N(0,Γ) for all i = 1,2,

…,L. The variance covariance matrix Γ is assumed to have a first order autoregression 

(AR(1)) or a compound symmetry (CS) structure. The variances of P j
t ∗ and εtj are both 

assumed to be 1. We used several choices of the parameter ρ corresponding to the AR(1) or 

CS structure. This model ensures that the correlation between P jl1
t  and P jl2

t  is driven by the 

single time point simulation scheme and the correlation between P j
t1  and P j

t2  is driven by 

Γ. The final correlation between observations across time is half the value of the correlations 

in the matrix Γ, since the final variance of the observations is 2. We carried out the 

simulations in such a way (See Supplementary Materials Section 1) that the final correlation 

between phenotypes within a time point are between 0 and 0.3 (0.3 and 0.4 for high 

correlation). The coefficients corresponding to effect of time βtime were simulated using a U 
(0,1) distribution.

We also simulated cases where the additive fixed effect of time is not linear. However, at the 

model fitting stage, the effect of time is regressed away using a linear regression (Hua & 

Ghosh, 2015). Such simulation frameworks illustrate the performance of our approach under 
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model misspecification. Situations with a quadratic and a sinusoidal time effect are 

considered. One important advantage of GAMuT is that it is also applicable to categorical 

data. We simulated a binary phenotype data using a probit model from the already simulated 

continuous data, we coded the phenotype as 1 when it is greater than some fixed value c and 

0 when it is less than c. We chose c to be the arithmetic mean of the phenotype. We used a 

linear effect of time when simulating binary data. Only GAMuT and univariate SKAT allow 

for binary data, therefore we compared only these two for the binary data simulations. We 

used linear regression to adjust for the effect of time even in case of binary phenotypes. 

Adjustment using a logistic regression was also compared and had very similar results 

(results not shown).

A feature of longitudinal data is potential dropout over time, resulting in missing data. We 

applied our approach on the case where 20% observation are missing (completely at 

random) and the effect of time is linear. kNN imputation (Torgo & Torgo, 2011; Kowarik & 

Templ, 2016) was used to impute the missing data before applying the association tests.

For each simulated dataset, we used 1000 samples, 10 correlated phenotypes and 3 time 

points (6 time points in one scenario). The correlation between the phenotypes within a time 

point was either low (between 0 and 0.3) or high (between 0.3 and 0.4). The number of 

associated phenotypes varied between 0 (null case), 2, 4, 6, and 8. We used 106 for type-I 

error simulations and 10000 replications for power simulations.

For the simulated datasets, we compared the performance of the longitudinal version of 

GAMuT (using either projection matrix or linear kernel for phenotypes) with variations of 

other existing approaches. In particular, we considered competitors MFLM and multivariate 

SKAT (MSKAT) (B. Wu & Pankow, 2016), which can be applied on the concatenated data 

in a manner similar to GAMuT. The parameters in the MFLM method were used as 

suggested by the authors (Wang et al., 2015) and the Q-statistic was used for implementing 

MSKAT. We also comapared univariate SKAT for which the phenotypes are first collapsed 

into single time point using arithmetic mean and then tested individually. To adjust for the 

multiple testing due to testing each phenotype individually, we used a 98% principal 

component approach similar to the original GAMuT paper (Broadaway et al., 2016). The 

approach finds the effective number of independent tests by computing the number of 

principal components needed to explain 98% variability. The effective number of tests is 

then used to adjust the p-values in a way similar to Bonferroni adjustment. Similarly, an 

approach combining the single time-point GAMuT p-values is also included in the 

simulation study. The approach computes the GAMuT p-value (Broadaway et al., 2016) for 

each time point and combines them using a Bonferroni adjustment. This method is referred 

to as ’GAMuT (Multi)’. A second method GAMuT (Meta) to combine the individual 

GAMuT p-values is also used in one simulation scenario (see Supplementary Materials 

Section 2 for details). GAMuT (Meta) performs meta-analysis using the estimate of the 

correlation structure across the time points, which was only possible in simulations. 

Therefore, it is unusable in practice and was included only to demonstrate the power gain by 

the joint analysis compared to the meta-analysis approach.
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2.2 Analysis of GENOA data

High body mass index (BMI), low high-density lipoprotein (HDL), and high blood pressure 

are related phenotypes that are known to be associated with high risk of cardiovascular 

diseases, stroke and diabetes. These phenotypes are moderately heritable (Vattikuti, Guo, & 

Chow, 2012; Zarkesh et al., 2012; Hottenga et al., 2005) and understanding their genetic 

basis is clinically important. The GENOA study (Daniels et al., 2004) seeks to identify 

genetic variants that influence risk for hypertension and arteriosclerotic complications of 

hypertension (Lange et al., 2002). It includes a cohort of African American sibships from 

Jackson, Mississippi, that were genotyped for a large collection of rare variants using the 

Illumina Human Exome Beadchip. Over two different time points, data were collected on 

several phenotypes including BMI, HDL, systolic blood pressure (SBP) and diastolic blood 

pressure (DBP). We selected these four phenotypes for our analysis.

Following Broadaway et al. (2016), we randomly sampled 1 sibling from each sibling pair 

and performed standard data cleaning on this resulting dataset of independent subjects. After 

further data cleaning, our sample consisted of 539 subjects. For each subject, we included 

data from both time points and the samples having missing data at one time point (116 

samples) were not dropped. The missing data were subsequently imputed using k nearest 

neighbors. The data also included covariates such as gender, age, and smoking status (ever 

smoked at least 100 cigarettes) and use of anti-hypertension or lipid-lowering medication. 

Following Broadaway et al. (2016), we also calculated the top ten genetic principal 

components using ancestry informative markers included on the Illumina array. The final 

imputed phenotype data along with the covariate data were analyzed using longitudinal 

GAMuT (both projection matrix and linear kernel), univariate SKAT, multivariate SKAT and 

MFLM. The use of the methods, including the choice of kernels and tuning parameters, was 

similar to the application to the simulated datasets.

3 Results

3.1 Type-I error simulations

In the main text, we present simulation results for datasets generated under an AR(1) 

correlation structure across time. Results for simulated datasets generated assuming a 

compound symmetry structure across time have very similar results and are provided in the 

Supplementary Materials. Figures 1 and 2 show the quantile-quantile (QQ) plots for the 

longitudinal version of GAMuT, using linear kernel and projection matrix, respectively, on 

simulated null datasets. The plots are provided for both linear and binary cases with no 

missing data. QQ plots for datsets generated with missing data as well as those for high 

correlation among phenotypes are shown in the Supplementary Materials and they show 

similar patterns to those in Figures 1 and 2. Table 1 shows the type-I errors for different 

methods under various simulation set up. It is evident that GAMuT controls the type-I error 

for almost all the simulation models considered. For tests with small level of significance 

(10−5), GAMuT (and SKAT) shows a slight inflation in type-I error in a few cases 

(Supplementary Table 1). However, the inflation is not significant and can be due to unstable 

estimation of Type-I error for the very small threshold. The only methods that show 

significant size inflation in some cases are GAMuT (Multi) and MFLM.
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3.2 Power simulations

Next we compared the statistical power of the longitudinal GAMuT against univariate SKAT 

(which uses the mean of each phenotype across phenotypes), multivariate SKAT, MFLM 

and GAMuT (Multi). All results reported correspond to an AR(1) correlation structure 

across time and a genomewide p-value threshold of 5×10−6. However, we also performed 

simulations for CS type correlation structure and less stringent p-value thresholds. They are 

reported in the Supplementary Materials. Figure 3 shows the power comparison when a 

linear effect of time was assumed to simulate the data (See Supplementary Materials for 

quadratic and sinusoidal time effects). Figure 4 shows the case of binary phenotypes and 

Figure 5 shows the missing data scenario. Simulations to compare the statistical power of the 

methods for a larger number of time points (T = 6) was also done and the results are shown 

in Supplementary Figure 4. The performance of the methods are similar across all the 

simulations with low correlation. GAMuT (Linear) has the highest power in all situations 

except the case when only two phenotypes have genetic association and the correlation 

across time is 0, which is unlikely in practice. The power of GAMuT (Linear) increases 

rapidly compared to other methods with the increase in number of associated phenotypes, 

illustrating its usefulness under pleiotropy. Also, GAMuT (Linear) has much increased 

power compared to other methods as the correlation of phenotypes across time increases. 

The power curves for GAMuT (Projection) are not shown since it had very similar 

performance as MSKAT. Univariate SKAT is the second most powerful method when the 

number of associated phenotypes is small, but MSKAT (and GAMuT(Projection)) and 

GAMuT (Multi) have improved power over SKAT as the number of associated phenotypes 

continues to increase.

However, when the correlation among the phenotypes are high, MSKAT and GAMuT 

(Projection) performes better than GAMuT (Linear) for low temporal correlation and/or 

small number of associated phenotypes (Figure 6). Similar results are observed for other 

simulation scenarios with high correlation (results not shown). MFLM has inferior power 

compared to the other fours methods in every simulation set up. As discussed in Broadaway 

et al. (2016), the performance of MFLM is sensitive to departure from very specific type of 

data they simulated (Wang et al., 2015). If data are simulated using the approach of (Wang et 

al., 2015), the performance of MFLM is comparatively better, but GAMuT had very similar 

performance and still outperforms all other approaches. Therefore we have not reported any 

result using their simulation approach.

3.3 Analysis of GENOA data

We applied longitudinal GAMuT and the competing methods to the four phenotypes BMI, 

HDL, SBP and DBP from the GENOA exome-chip study. Prior to the analysis, covariate 

adjustment were made for gender, age, smoking status, use of anti-hypertension medication, 

use of lipid lowering medication, and ancestry on the 539 unrelated subjects. We applied 

longitudinal GAMuT using both projection matrix and linear kernel to the information 

collected at two time points. We also applied MSKAT and MFLM to this same dataset. We 

also applied univariate SKAT on the collapsed data using the average value of phenotypes 

across time. For GAMuT and SKAT, we applied a weighted linear kernel to quantify 
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pairwise genotypic similarity, where weights were a function of minor-allele frequency and 

was of the same form to that typically utilized in SKAT (M. C. Wu et al., 2011).

We used a study-wise significance threshold of 1.5 × 10−5, which corresponds to a 

Bonferroni correction based on the number of genes tested (3278). P-values less than 10−3 

were considered as suggestive.

Figure 7 shows the QQ-plot for different methods. MFLM shows sizeable inflation of p-

values which could not be resolved by transformations. The MFLM method was 

subsequently dropped from the analysis of GENOA data. The other four approaches did not 

show such large p-value inflation.

Figure 8 shows the genome-wide results using different methods on the GENOA data. All 

the genes passing the suggestive or genomewide threshold by at least one method are 

reported in Table 2. Consistent with our simulation findings, we observed that GAMuT with 

a projection phenotype matrix yielded quite similar findings to MSKAT in the GENOA 

analyses. The top two genes identified by these two methods were EFCAB7 and COL9A3, 

with the results from MSKAT being genomewide significant while the result from GAMuT 

(projection) being borderline significant. No variants in EFCAB7 or COL9A3 have been 

reported to be associated with any traits in genome wide studies. EFCAB7 (EF-hand 

calcium binding domain 7) may play a physiological role in cardiac development based on a 

study of patients with Ellis-van Creveld syndrome (Nguyen et al., 2016). COL9A3 (collagen 

type 9 alpha 3) is associated with intervertebral disc disease, a disease frequent among older 

individuals (Martirosyan et al., 2016).

ZNF667 (zinc finger protein 667) and ENPP3 (ectonucleotide pyrophosphatasep/

phosphodiesterase 3) were genomewide suggestive with GAMuT with a projection 

phenotype matrix. No ZNF667 variants have been reported to be associated with any traits in 

genome wide studies. The ZNF667 protein, however, may play a role in neuroprotection by 

acting as a transcriptional repressor (Yuan, Huang, Yuan, Zhao, & Jiang, 2013). A variant in 

ENPP3 was associated with response of circulating adiponection in response to fenofibrate 

treatment (Aslibekyan et al., 2013). Adiponectin, a protein secreted by adipose tissue, is 

associated with improved insulin sensitivity, suppressed development of atherosclerosis, and 

altered inflammation. Fenofibrate targets circulating adiponectin levels to prevent the onset 

and progression of cardiovascular disease.

The top gene identified by longitudinal GAMuT with a linear kernel was CD33, which also 

was borderline significant. CD33 (sialic acid-binding immunoglobulin-like lectin 3) is an 

established gene for Alzheimers disease (Lambert et al., 2013). Recently this gene was 

associated with cognitive decline (Nettiksimmons, Tranah, Evans, Yokoyama, & Yaffe, 

2016). Mid-life hypertension is associated with cognitive decline (Gottesman et al., 2014).

Univariate SKAT analysis identified a different gene, FNDC1 (fibronectin type III domain 

containing 1), which was genomewide significant. Interestingly, none of the methods that 

directly model cross-phenotype effects showed a strong signal for FNDC1, suggesting 

perhaps that this gene is associated only with a single phenotype rather than the multiple 

phenotypes that were considered. In a case-control study, several variants in FNDC1 showed 
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suggestive association with coronary artery disease (Wild et al., 2011). Several suggestive 

genes were identified by each method. However, only MSKAT found two genes just passing 

the genomewide significance threshold. All the genes passing the suggestive or genomewide 

threshold by at least one method are reported in Table 2. We performed a non-parametric 

bootstrap analysis (with 1000 bootstraps) for each gene to confirm that the results are stable 

and not extra-sensitive to sampling fluctuations. The bootstrap confidence interval of the p-

values are narrow in most cases indicating the stability of the methods. (Supplementary 

Table 2).

4 Discussion

There is increasing evidence that genetic variants can exhibit cross-phenotypic effects and 

the statistical power to find such cross-phenotypic effects can be enhanced by utilizing 

longitudinal phenotype data collected over time. We propose a simple extension of GAMuT 

for longitudinal data which can be applied on both continuous and binary phenotypes and 

can adjust for covariates. It is computationally efficient due to the use of Davies’ exact 

method for p-value computation and becomes usable at the genome-wide scale (Software 

will be made available for public use and will be made available on GitHub pages).

Instead of defining a kernel on the complicated three dimensional data (Phenotypes × 

Subjects × Time), we considered a concatenated data and have shown in simulation studies 

that such adjustment results in high statistical power and achieves proper control of the type-

I error. The longitudinal extension of GAMuT was also shown to have higher power 

compared to other competing methods, similarly adjusted for longitudinal data.

The concatenated data may result in a completely different correlation structure among the 

columns of the phenotype matrix compared to what is usually observed for a single time 

point phenotype matrix. We performed extensive simulation studies to verify that GAMuT 

preserves its advantages of being highly powerful and being able to control type-I error at 

the desired level for such data. The construction of a projection matrix may be harder for 

longitudinal data and our results indicate that the linear kernel for measuring the phenotypic 

similarity has favorable statistical power over projection matrix. For low correlation among 

phenotypes, GAMuT with linear kernel dominated every other competing methods in almost 

every situation that were considered. However, GAMuT (Projection) had higher power for 

scenarios with low temporal correlation and/or small number of associated phenotypes.

Additionally, the longitudinal extension of GAMuT was also applied on the GENOA data 

collected at two time points. Every gene passing the suggestive threshold using any of the 

competing methods were also detected by at least one of the two GAMuT methods. GAMuT 

(Projection) was able to identify more genes passing the suggestive threshold. It is not 

surprising since the phenotypes in this study had high correlations and only 4 phenotypes 

were used. In general, we suggest to use GAMuT (Projection) for longitudinal data when the 

correlation among the phenotypes is high and/or the correlation across time is very small. 

However, GAMuT (linear) may be the better choice if many phenotypes are expected to be 

associated.
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In the age of information explosion, more and more data are collected and often data are 

available on many phenotypes and over several time points. Our extension of GAMuT for 

longitudinal data can scale efficiently to handle an arbitrary number of phenotypes and time 

points, and enables the statistical analysis of cross-phenotypic effect of rare variants by 

taking advantage of such data to enhance statistical power and helps to develop a better 

understanding of the genetic background of important complex traits.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments

This work was supported by NIH grants GM117946, HG007508, HL054457, HL086694, HL119443, MH071537, 
and AR060893.

References

Allison DB, Thiel B, Jean PS, Elston RC, Infante MC, Schork NJ. Multiple phenotype modeling in 
gene-mapping studies of quantitative traits: power advantages. The American Journal of Human 
Genetics. 1998; 63(4):1190–1201. [PubMed: 9758596] 

Aslibekyan S, An P, Frazier-Wood A, Kabagambe E, Irvin M, Straka R, et al. Preliminary evidence of 
genetic determinants of adiponectin response to fenofibrate in the genetics of lipid lowering drugs 
and diet network. Nutrition, Metabolism and Cardiovascular Diseases. 2013; 23(10):987–994.

Broadaway KA, Cutler DJ, Duncan R, Moore JL, Ware EB, Jhun MA, et al. A statistical approach for 
testing cross-phenotype effects of rare variants. The American Journal of Human Genetics. 2016; 
98(3):525–540. [PubMed: 26942286] 

Daniels PR, Kardia SL, Hanis CL, Brown CA, Hutchinson R, Boerwinkle E, Turner ST. Familial 
aggregation of hypertension treatment and control in the genetic epidemiology network of 
arteriopathy (genoa) study. The American journal of medicine. 2004; 116(10):676–681. [PubMed: 
15121494] 

Davies RB. Algorithm as 155: The distribution of a linear combination of χ 2 random variables. 
Journal of the Royal Statistical Society Series C (Applied Statistics). 1980; 29(3):323–333.

Fan R, Zhang Y, Albert PS, Liu A, Wang Y, Xiong M. Longitudinal association analysis of quantitative 
traits. Genetic epidemiology. 2012; 36(8):856–869. [PubMed: 22965819] 

Fitzmaurice, GM., Laird, NM., Ware, JH. Applied longitudinal analysis. Vol. 998. John Wiley & Sons; 
2012. 

Furlotte NA, Eskin E, Eyheramendy S. Genome-wide association mapping with longitudinal data. 
Genetic epidemiology. 2012; 36(5):463–471. [PubMed: 22581622] 

Galesloot TE, Van Steen K, Kiemeney LA, Janss LL, Vermeulen SH. A comparison of multivariate 
genome-wide association methods. PloS one. 2014; 9(4):e95923. [PubMed: 24763738] 

Gottesman RF, Schneider AL, Albert M, Alonso A, Bandeen-Roche K, Coker L, et al. Midlife 
hypertension and 20-year cognitive change: the atherosclerosis risk in communities neurocognitive 
study. JAMA neurology. 2014; 71(10):1218–1227. [PubMed: 25090106] 

Gretton A, Fukumizu K, Teo CH, Song L, Schölkopf B, Smola AJ, et al. A kernel statistical test of 
independence. Nips. 2007; 20:585–592.

He, Z., Zhang, M., Lee, S., Smith, JA., Kardia, SL., Diez Roux, AV., Mukherjee, B. Journal of the 
American Statistical Association. 2016. Set-based tests for gene-environment interaction in 
longitudinal studies. (just-accepted)

Hottenga JJ, Boomsma DI, Kupper N, Posthuma D, Snieder H, Willemsen G, de Geus EJ. Heritability 
and stability of resting blood pressure. Twin Research and Human Genetics. 2005; 8(05):499–508. 
[PubMed: 16212839] 

Rudra et al. Page 11

Genet Epidemiol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hua WY, Ghosh D. Equivalence of kernel machine regression and kernel distance covariance for 
multidimensional phenotype association studies. Biometrics. 2015; 71(3):812–820. [PubMed: 
25939365] 

Kowarik A, Templ M. Imputation with r package vim. Journal of Statistical Software. 2016; 74(7):1–
16.

Kwee LC, Liu D, Lin X, Ghosh D, Epstein MP. A powerful and flexible multilocus association test for 
quantitative traits. The American Journal of Human Genetics. 2008; 82(2):386–397. [PubMed: 
18252219] 

Lambert JC, Ibrahim-Verbaas CA, Harold D, Naj AC, Sims R, Bellenguez C, et al. Meta-analysis of 
74,046 individuals identifies 11 new susceptibility loci for alzheimer’s disease. Nature genetics. 
2013; 45(12):1452–1458. [PubMed: 24162737] 

Lange LA, Lange EM, Bielak LF, Langefeld CD, Kardia SL, Royston P, Peyser PA. Autosomal 
genome-wide scan for coronary artery calcification loci in sibships at high risk for hypertension. 
Arteriosclerosis, thrombosis, and vascular biology. 2002; 22(3):418–423.

Lees C, Barrett J, Parkes M, Satsangi J. New ibd genetics: common pathways with other diseases. Gut. 
2011; 60(12):1739–1753. [PubMed: 21300624] 

Liu F, Van Der Lijn F, Schurmann C, Zhu G, Chakravarty MM, Hysi PG, et al. A genome-wide 
association study identifies five loci influencing facial morphology in europeans. PLoS Genet. 
2012; 8(9):e1002932. [PubMed: 23028347] 

Maier R, Moser G, Chen GB, Ripke S, Coryell W, Potash JB, et al. Joint analysis of psychiatric 
disorders increases accuracy of risk prediction for schizophrenia, bipolar disorder, and major 
depressive disorder. The American Journal of Human Genetics. 2015; 96(2):283–294. [PubMed: 
25640677] 

Martirosyan NL, Patel AA, Carotenuto A, Kalani MYS, Belykh E, Walker CT, Theodore N. Genetic 
alterations in intervertebral disc disease. Frontiers in Surgery. 2016; 3

Morris AP, Zeggini E. An evaluation of statistical approaches to rare variant analysis in genetic 
association studies. Genetic epidemiology. 2010; 34(2):188–193. [PubMed: 19810025] 

Nettiksimmons J, Tranah G, Evans DS, Yokoyama JS, Yaffe K. Gene-based aggregate snp associations 
between candidate ad genes and cognitive decline. Age. 2016; 38(2):1–10. [PubMed: 26695510] 

Nguyen TQN, Saitoh M, Trinh HT, Doan NMT, Mizuno Y, Seki M, Mizuguchi M. Truncation and 
microdeletion of evc/evc2 with missense mutation of efcab7 in ellis-van creveld syndrome. 
Congenital anomalies. 2016; 56(5):209–216. [PubMed: 26748586] 

Schaid DJ. Genomic similarity and kernel methods ii: methods for genomic information. Human 
heredity. 2010; 70(2):132–140. [PubMed: 20606458] 

Schaid DJ, Tong X, Larrabee B, Kennedy RB, Poland GA, Sinnwell JP. Statistical methods for testing 
genetic pleiotropy. Genetics. 2016; 204(2):483–497. [PubMed: 27527515] 

Schork NJ, Zapala MA. Statistical properties of multivariate distance matrix regression for high-
dimensional data analysis. Frontiers in genetics. 2012; 3:190. [PubMed: 23060897] 

Sun J, Oualkacha K, Forgetta V, Zheng HF, Richards JB, Ciampi A, Greenwood CM. A method for 
analyzing multiple continuous phenotypes in rare variant association studies allowing for flexible 
correlations in variant effects. European Journal of Human Genetics. 2016; 24(9):1344–1351. 
[PubMed: 26860061] 

Székely GJ, Rizzo ML, Bakirov NK, et al. Measuring and testing dependence by correlation of 
distances. The Annals of Statistics. 2007; 35(6):2769–2794.

Torgo, L., Torgo, L. Data mining with r: learning with case studies. Chapman & Hall/CRC; Boca 
Raton, FL: 2011. 

Tzeng JY, Zhang D, Chang SM, Thomas DC, Davidian M. Gene-trait similarity regression for 
multimarker-based association analysis. Biometrics. 2009; 65(3):822–832. [PubMed: 19210740] 

Vattikuti S, Guo J, Chow CC. Heritability and genetic correlations explained by common snps for 
metabolic syndrome traits. PLoS Genet. 2012; 8(3):e1002637. [PubMed: 22479213] 

Wang Y, Liu A, Mills JL, Boehnke M, Wilson AF, Bailey-Wilson JE, Fan R. Pleiotropy analysis of 
quantitative traits at gene level by multivariate functional linear models. Genetic epidemiology. 
2015; 39(4):259–275. [PubMed: 25809955] 

Rudra et al. Page 12

Genet Epidemiol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Wild PS, Zeller T, Schillert A, Szymczak S, Sinning CR, Deiseroth A, et al. A genome-wide 
association study identifies lipa as a susceptibility gene for coronary artery diseaseclinical 
perspective. Circulation: Cardiovascular Genetics. 2011; 4(4):403–412. [PubMed: 21606135] 

Wu B, Pankow JS. Sequence kernel association test of multiple continuous phenotypes. Genetic 
epidemiology. 2016; 40(2):91–100. [PubMed: 26782911] 

Wu MC, Lee S, Cai T, Li Y, Boehnke M, Lin X. Rare-variant association testing for sequencing data 
with the sequence kernel association test. The American Journal of Human Genetics. 2011; 89(1):
82–93. [PubMed: 21737059] 

Yuan D, Huang J, Yuan X, Zhao J, Jiang W. Zinc finger protein 667 expression is upregulated by 
cerebral ischemic preconditioning and protects cells from oxidative stress. Biomed Rep. 2013; 
1:534–538. [PubMed: 24648981] 

Zarkesh M, Daneshpour MS, Faam B, Fallah MS, Hosseinzadeh N, Guity K, Azizi F. Heritability of 
the metabolic syndrome and its components in the tehran lipid and glucose study (tlgs). Genetics 
research. 2012; 94(06):331–337. [PubMed: 23374242] 

Zeger SL, Liang KY. Longitudinal data analysis for discrete and continuous outcomes. Biometrics. 
1986:121–130. [PubMed: 3719049] 

Rudra et al. Page 13

Genet Epidemiol. Author manuscript; available in PMC 2019 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1. 
QQ-plots based on application of GAMuT (Linear) on simulated null datasets. Top row 

shows the plots for continuous phenotypes and the bottom row shows the plots for binary 

phenotypes (linear time effect). The correlation structure across time is considered to be 

AR(1) with parameter ρ.
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Figure 2. 
QQ-plots based on application of GAMuT (Projection) on simulated null datasets. Top row 

shows the plots for continuous phenotypes and the bottom row shows the plots for binary 

phenotypes (linear time effect). The correlation structure across time is considered to be 

AR(1) with parameter ρ.
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Figure 3. 
Comparison of power curves for different methods in the linear time effect set up. The 

correlation structure across time is considered to be AR(1) with parameter ρ and the tests are 

done at the p-value threshold 5 × 10−6. The value of the power function corresponding to 0 

associated phenotypes shows the type-I error and the horizontal dotted line indicates the 

level of the test.
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Figure 4. 
Comparison of power curves for different methods in the binary phenotypes case. The 

correlation structure across time is considered to be AR(1) with parameter ρ and the tests are 

done at the p-value threshold 5 × 10−6. The value of the power function corresponding to 0 

associated phenotypes shows the type-I error and the horizontal dotted line indicates the 

level of the test.
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Figure 5. 
Comparison of power curves for different methods in the missing data scenario. The 

correlation structure across time is considered to be AR(1) with parameter ρ and the tests are 

done at the p-value threshold 5 × 10−6. The value of the power function corresponding to 0 

associated phenotypes shows the type-I error and the horizontal dotted line indicates the 

level of the test.
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Figure 6. 
Comparison of power curves for different methods in the linear time effect set up when the 

correlations between phenotypes were higher. The correlation structure across time is 

considered to be AR(1) with parameter ρ and the tests are done at the p-value threshold 5 × 

10−6. The value of the power function corresponding to 0 associated phenotypes shows the 

type-I error and the horizontal dotted line indicates the level of the test.
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Figure 7. 
QQ-plots based on application of different methods on GENOA data.
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Figure 8. 
Manhattan plots based on application of different methods on GENOA data.
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