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Abstract

This study presents the theory for liquid–liquid phase separation for systems of molecules 

modeling monoclonal antibodies. Individual molecule is depicted as an assembly of seven hard 

spheres, organized to mimic the Y-shaped antibody. We consider the antibody–antibody 

interactions either through Fab, Fab′ (two Fab fragments may be different), or Fc domain. 

Interaction between these three domains of the molecule (hereafter denoted as A, B, and C, 

respectively) is modeled by a short-range square-well attraction. To obtain numerical results for 

the model under study, we adapt Wertheim’s thermodynamic perturbation theory. We use this 

model to calculate the liquid–liquid phase separation curve and the second virial coefficient B2. 

Various interaction scenarios are examined to see how the strength of the site–site interactions and 

their range shape the coexistence curve. In the asymmetric case, where an attraction between two 

sites is favored and the interaction energies for the other sites kept constant, critical temperature 

first increases and than strongly decreases. Some more microscopic information, for example, the 

probability for the particular two sites to be connected, has been calculated. Analysis of the 

experimental liquid–liquid phase diagrams, obtained from literature, is presented. In addition, we 

calculate the second virial coefficient under conditions leading to the liquid–liquid phase 

separation and present this quantity on the graph B2 versus protein concentration.

Graphical Abstract

*Corresponding Author: vojko.vlachy@fkkt.uni-lj.si.
†Present Address
National Institute of Chemistry, Hajdrihova 19, SI-1001 Ljubljana, Slovenia
ORCID
Vojko Vlachy: 0000-0002-1840-3348

Notes
The authors declare no competing financial interest.

Supporting Information
The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcb.7b11458.
Effect of the range of square-well potential ω on the liquid–liquid phase separation (PDF)

HHS Public Access
Author manuscript
J Phys Chem B. Author manuscript; available in PMC 2019 May 31.

Published in final edited form as:
J Phys Chem B. 2018 May 31; 122(21): 5400–5408. doi:10.1021/acs.jpcb.7b11458.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



1. INTRODUCTION

Information about protein phase behavior in aqueous salt solutions is needed in 

crystallization and precipitation processes or, as in biology and pharmacy, to avoid an 

undesired aggregation (see for example refs 1–7) during the various steps of the solution 

preparation. In past years monoclonal antibodies (mAbs) have emerged as a promising class 

of proteins useful in treatment of several very serious diseases.8 The problem is that mAbs 

are prone, as other proteins, to aggregate, making reversible and sometimes irreversible 

clusters. This process yields several unwanted effects: (i) it decreases mAbs therapeutic 

efficacy and (ii) increases the formulation viscosity, which then causes problems in the 

subcutaneous applications, not to mention that it (iii) makes the production process 

complicated. Researchers from pharmaceutical companies and academic institutions invest 

lots of effort to solve these challenges and to develop the formulations leading to high 

concentration of protein (high efficacy) at minimum viscosity; for a recent review, see also 

refs 9 and 10.

Despite the rapidly increasing number of papers published in this area of research, the 

process of protein aggregation (and even more that of mAbs) is not well understood. 

Experimental studies of these systems (here we mention only those most relevant for our 

present work)11–22 are in the majority. Among theoretical papers, treating the phase behavior 

of these systems, we have to mention refs 23–25. Authors of these papers used coarse 

grained computer simulations to get molecular insights on the mAbs association. A 

somewhat different approach, designed to analyze viscosity data, has recently been 

published by Schmitt et al.26 Notice that mAbs have a specific (Y-like) shape, which makes 

the theories based on centrally symmetric interactions less realistic.

In several recent papers we used Wertheim’s theories27,28—in particular his thermodynamic 

perturbation theory (TPT1)—to study protein solutions including the liquid–liquid phase 

transition.29–33 It is known34 that interactions leading to correct description of the liquid–

liquid phase separation must be directional and of short-range. We showed that Wertheim’s 

theories are suitable to study phase separations in protein solutions; initially we analyzed 

experimental data for lysozyme and γIIIa-Crystallin solutions.29 In subsequent papers we 

extended the theory to molecules modeled as dumbbells30 and to mixtures of two proteins.32 

In all cases, the molecules were decorated with attractive sites, allowing a short-range and 

directional inter-protein attraction. We found this approach very useful: in the spirit of the 

engineering theories, we needed only a few parameters to be extracted from experiment in 
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order to calculate a spectrum of thermodynamic quantities, such as the second osmotic virial 

coefficient, liquid–liquid phase diagram, and several others.

In this study we model the mAbs molecule as an assembly of seven hardspheres.33 The 

model molecule has a shape of the letter Y, two upper terminals are named fragment antigen-

binding domains Fab and Fab′ (in the case of unequal Fab domains), and the bottom one is 

called the fragment crystallizable, Fc, terminal (see Figure 1). For simplicity we denote Fab 

by the letter A, Fab′ by B, and the Fc domain by C. Such Y-shaped particles may then 

interact via the attractive sites A, B, and C to form aggregates. In this way we construct a 

one-component liquid of mAbs molecules, having fairly realistic shape as well as an internal 

flexibility possessed by real molecules. The model allows, in conjunction with Wertheim’s 

thermodynamic perturbation theory (TPT1), calculation of thermodynamic properties.33 It is 

necessary to emphasize that such an approach is only applicable in the domain of 

concentrations and pH values where protein does not undergo major conformational 

changes.35,36

In the preceding study33 we analyzed experimental viscosities and we did not examine 

possible phase separations. To fill this gap, our present work explores the liquid–liquid phase 

separation (LLPS) in aqueous monoclonal antibody solutions. We aim to calculate the 

coexistence curve between two liquid phases (one poor and one rich on the protein) for the 

model mAbs described above. As for other proteins, the liquid–liquid phase separation is 

metastable; from this point on, the molecules may either crystallize or an amorphous 

precipitate can be formed. Among experimental studies we need to mention the work of 

Wang et al.14 who evaluated the, so-called “colloidal stability” of antibody solutions in the 

presence of poly(ethylene glycol). In yet another interesting study,22 which applies to low 

added salt concentrations, authors use multivalent ions to trigger the phase separation. 

Several experimental studies11,13,14,18,19,21,22,37 also contain a theoretical analysis. Perhaps 

the closest model to the one examined here is presented in the simulation study of Sun et al.
25

In the continuation of this work, we first examine how different site–site interactions 

influence the shape of the phase diagram. The fractions of molecules connected by the site i 
to the site j of another molecule are calculated. The study makes a connection with the 

available experimental data for the liquid–liquid separation curve and calculates the second 

virial coefficient under conditions of the phase separation.

2. THEORY AND COMPUTATIONAL DETAILS

2.1. The 7-Bead Model of Antibody Molecule

To construct the Y-shape molecule (see Figure 1), we use seven hard spheres of diameter σ, 

having attractive short-range sites located on the surface.33 The sites named A are shown in 

green, sites named B in blue, C in red, D in orange, and sites E are shown in black; only the 

sites of the same color are allowed to make bonds. Sphere number 1 is at the center of the 

molecule and has 3 D sites, contacting spheres 2, 3, and 4. Each of these three spheres is in 

contact with an additional sphere; they are numbered as 5, 6, and 7 (see Figure 1). In the 

introductory stage we use the D–D and E–E bonds to combine hard spheres into the object, 
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resembling the Y-shape of antibody molecules. An ensemble of such molecules forms a one-

component fluid of mAb molecules. Once the molecules are formed, they may interact via 

the intermolecular sites A (Fab), B (Fab′), and C (Fc). Notice that the number density of 

hard spheres of type i (i = 1–7) ρi equals the number density of mAb molecules ρ.

The procedure of assembling mAbs from hard spheres, shown schematically in Figure 1, is 

mathematically formulated by eqs 1 and 2). First we define the short-range interactions 

between spheres i and j, uDD
(i j)(zDD), uEE

(i j)(zEE) as

〈 exp [ − βuDD
(i j)(zDD)] − 1〉ΩiΩ j

= (δi1 + δ1 j)(1 − δi j) ∑
m = 2

4
(δim + δm j) KDD

(i j)δ(ri j − σ) (1)

〈 exp [ − βuEE
(i j)(zEE)] − 1〉ΩiΩ j

= (1 − δi1)(1 − δ1 j)(δi( j + 3) + δi( j − 3)) KEE
(i j)δ(ri j − σ) (2)

where β = (kBT)−1 and T is the absolute temperature. Here rij denotes the distance between 

spheres of the type i and j, and Ωi,Ωj their orientations. zDD and zEE are the distances 

between sites D–D and E–E. Angular brackets 〈…〉Ω1Ω2 denote the orientation average, 

δ(…) is the Dirac delta function, and δij the Kronecker delta. Kronecker delta symbols, 

written within the curly brackets {…}, provide rules for the intramolecular bond formations 

between the spheres i and j, and sites D and E: 1D–D2, 1D–D3, 1D–D4, 2E–E5, 3E–E6, and 

4E–E7 (six intra–molecular bonds altogether). Note that each of the sites D and E can be 

bonded only once. Finally, the molecules representing antibodies are formed upon enforcing 

conditions KDD
(i j) and KEE

(i j) ∞. Within Wertheim’s thermodynamic perturbation theory38–40 

the model mAbs molecules are flexible, and the only restriction is the sequence of “bonds” 

(eqs 1 and 2), connecting hard spheres as shown in Figure 1.

Attractive interactions among mAb molecules are modeled by three additional attractive 

interaction sites, called A (Fab domain), B (Fab′ domain), and C (Fc domain). These sites 

permit intermolecular association. The pair potential among the model molecules k and l, 
ukl, can be written in the form

ukl( r k, r l) = ∑
i = 1

7
′ ∑

j = 1

7
′ uhs

(i j)(ri j) + ∑
m = 5

7
∑

n = 5

7
δimδn juα(m)α(n)

(i j) (zα(m)α(n)) (3)

The primes on the summation signs label the spheres composing antibody molecules k and l. 

uhs
(i j)(ri j) is the hard-sphere potential, while the sums over m and n count the interactions 

among A, B, and C sites belonging to different molecules. Notice that α(5) = A, α(6) = B, 

and α(7) = C. Similarly as above, zAA, zAB, zAC, zBB, zBC, and zCC refer to the distances 
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between the pairs of sites. Interactions among the sites A, B, and C in eq 3, uα(m)α(n)
(i j) , have a 

form of the site–site square well potentials:

uα(m)α(n)
(i j) (zα(m)α(n)) =

m = 5, n = 5:
−εAA for zAA < ω,

0 for zAA ≥ ω,

m = 5, n = 6:
−εAB for zAB < ω,

0 for zAB ≥ ω,

m = 5, n = 7:
−εAC for zAC < ω,

0 for zAC ≥ ω,

m = 6, n = 6:
−εBB for zBB < ω,

0 for zBB ≥ ω,

m = 6, n = 7:
−εBC for zBC < ω,

0 for zBC ≥ ω,

m = 7, n = 7:
−εCC for zCC < ω,

0 for zCC ≥ ω

(4)

where εAA, εAB = εBA, εAC = εCA, εBB, εBC = εCB, and εCC (all defined as positive) are the 

square-well depths, and ω is the range of interaction.

2.2. Thermodynamic Perturbation Theory and the Liquid–Liquid Phase Separation

To obtain measurable properties for the model one-component system presented above, we 

utilize the thermodynamic perturbation theory (TPT1) of Wertheim.27,28,40 This approach 

proved to be useful in studies of systems of molecules interacting with strong directional 

forces and has been used in several recent papers.29–33 We apply here the version of the 

theory adapted for the 7-bead model of mAbs, suggested in our previous paper.33

In thermodynamic perturbation theory the Helmholtz free energy F is written as a sum of the 

ideal Fid, hard-sphere Fhs, and the association term Fass.

F = Fid + Fhs + Fass (5)

The free energy terms are defined by the following expressions:

βFid
V = ∑

i = 1

7
ρ[ ln (Λ3ρ) − 1] (6)
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βFhs
V = 4η − 3η2

(1 − η)2 ρt (7)

βFass
V = ρ ln (XAXBXC) −

XA + XB + XC
2 + 3

2 − 6[ ln (ρσ3ghs
(py)) − 1] (8)

where ρ is the number density of antibody molecules, Λ is the de Broglie thermal 

wavelength,41 ρt = 7ρ, η = πρtσ3/6, ghs
(py) = (1 − η/2)/(1 − η)2 is the Percus–Yevick expression 

for the contact value of the hard-sphere radial distribution function,42 and XA, XB, and XC 

are the fractions of the particles, which do not bond via sites A, B, and C, respectively. 

These fractions are calculated as40

XA = (1 + ρΔAAXA + ρΔABXB + ρΔACXC)−1 (9)

XB = (1 + ρΔABXA + ρΔBBXB + ρΔBCXC)−1 (10)

XC = (1 + ρΔACXA + ρΔBCXB + ρΔCCXC)−1 (11)

where

Δi j = 4πghs
(py)∫

σ

σ + ω
f i j(r)r2dr (12)

f i j(r) = ( exp (βεi j) − 1)(ω + σ − r)2(2ω − σ + r)/(6σ2r) (13)

and i and j can be A, B, or C. Here f̄ij(r) is the orientation average of the Mayer function for 

the square-well site–site interaction,43 taken over all possible positions of sites A, B, C, D, 

and E on the beads. The association free energy, given by eq 8, contains the intermolecular 

association term (in round brackets), and six identical intramolecular terms, each equal to 

[ ln (ρσ3ghs
(py)) − 1]. The attractive potential εij in eq 13 is specified by the reduced 

temperature T* = kBT/ε.
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Chemical potential μ of the protein species and pressure P, needed in further calculations, is 

obtained from41

μ = ∂(F /V)
∂ρ T , V

(14)

P = ρμ − F
V (15)

The density derivatives of Fid/V, Fhs/V, and Fass/V are evaluated analytically.44 In the one-

component system with two coexisting phases (low density denoted by ρa and high density 

as ρb), the pressure and chemical potentials of each component must be equal in the 

equilibrated phases. For a temperature T, these conditions read

μ(T , ρa) = μ(T , ρb) (16)

P(T , ρa) = P(T , ρb) (17)

The Newton–Ralphson method is used to compute number concentrations of the coexisting 

dilute and dense phases ρa and ρb. All the calculations are performed in dimensionless 

energy units.

The results of calculations, shown in Figure 2, apply to the case where the attractive 

interactions between the three sites, A–B, A–C, and B–C are equal to each other: εAB = εAC 

= εBC = ε (ω = 0.05 σ). First, we show the chemical potential of the protein μ(T) as a 

function of its concentration in solution (Figure 2a). Three isotherms are shown: (i) one 

above the reduced critical temperature Tc (top isotherm; T* = 0.0550), (ii) the isotherm at Tc 

(the middle one; T* = 0.0539), and (iii) the one below Tc (the bottom one; T* = 0.0525), 

showing typical van der Waals loops. In addition, in panel b of the same figure, we present 

the graphs of the reduced pressure βPσ3, using the same values of parameters as above.

2.3. Fraction of the Molecules Connected by the Site i to the Site j of Another Molecule

Within the model presented above, the Y-shaped molecules interact via sites A, B (Fab and 

Fab′ fragments), and C (Fc fragment) allowing A–A, A–B, A–C, B–B, B–C, and C–C site–

site interactions. Fractions of molecules not bonded via sites A, B, and C (XA, XB, and XC), 

defined by eqs 9–11, allow calculation of the free energy function and subsequently the 

thermodynamic properties of interest. Additional information about the system can be 

obtained by calculating the probability for the sites i and j, belonging to two different 
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molecules, to be connected by a bond. To calculate this quantity, we define fractions of 

molecules that are bonded via sites A (PA), B (PB), and C (PC) as

PA = 1 − XA = PA A + PA B + PA C (18)

PB = 1 − XB = PB A + PB B + PB C (19)

PC = 1 − XC = PC A + PC B + PC C (20)

where Pi↔j (i, j ∈{A, B, C}) denotes the fraction of molecules that are connected by the site 

i on the first molecule with the site j on the second one.

Pi j =
ρΔi jX j

1 + ρΔiAXA + ρΔiBXB + ρΔiCXC
(21)

Pi j = ρΔi jXiX j (22)

We seek the solution of this set of equations in the form of eq 21, which can be rationalized 

using the analogy with expressions of the statistical mechanics. The denominator of eq 21 

defines the partition function for site i as a sum of weights for four accessible states: (i) non-

bonded (1), (ii) bonded to site A (ρΔiAXA), (iii) bonded to site B (ρΔiBXB), or (iv) bonded to 

site C (ρΔiCXC). With the weight in the nominator in eq 21 we get the fraction (probability) 

of molecules that are bonded from site i to site j. Equation 22 simply follows from the mass 

action law, and because Δij = Δji, we conclude that Pi↔j = Pj↔i. The last possibility to be 

considered is the fraction of molecules not bonded through any of the sites A, B, and C. The 

fraction of such molecules (monomers), P0, is

P0 = XAXBXC (23)

Graphical illustration of these results is given in the next paragraph.
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3. RESULTS AND DISCUSSION

3.1. Site–Site Interactions Shape the Liquid–Liquid Phase Separation Curve

Crystal structures of the complete length mAbs are difficult to obtain and not very many are 

available.45,46 A successful result, where crystal structures of fragments are combined with 

computer analysis, is reported by Brandt and co-workers.47 Protein structure, obtained this 

way, was then used to construct the coarse-grained models used in computer simulations.23 

Chaudri et al.23 simulated two different mAbs models and concluded that in the first one 

(named MAb1) Fab–Fc interactions are equally dominant as Fab–Fab interactions. In 

contrast to this, the second protein, named MAb2, is characterized by an absence of strong 

Fab–Fab interactions. This feature results in a more homogeneous distribution of molecules 

as for the MAb1 species, where clusters are formed.23 In both cases, the Fc–Fc interactions 

have little impact. It appears that interaction between the antibodies and, consequently, their 

self-association depends on chemical details of the interacting domains.

In this first study we take an advantage of the fact that our approach is practically analytical 

and accordingly computationally very efficient. This allows us to explore a range of different 

interaction possibilities among the relevant domains, which may or may not lead to the 

liquid–liquid phase separation. While the model presented here is not able to include 

chemical details of the mAb molecule explicitly, it allows relatively simple and fast 

calculations of thermodynamic properties, which may be difficult (or even impossible) to 

obtain through the more realistic computer modeling. Preliminary calculations indicate that 

at least three attractive intermolecular site–site interactions are needed for the model solution 

to undergo the liquid–liquid phase separation. Note that this is only the necessary and not 

also the sufficient condition for the phase separation to occur.

As mentioned before, with three attractive sites A, B, and C, six different site–site 

interactions are possible. While so far our treatment was general in the numerical 

calculations from now on we only allow for the A–B, A–C, and B–C site–site interactions to 

be meaningful, while all the others (A–A, B–B, and C–C interactions) are ignored. This 

choice is motivated by simplicity, it requires a small number of parameters. Despite this, the 

model is rich enough to allow an examination of the effect of asymmetry in the site–site 

interaction to the phase separation curve. In what follows, we explore three different 

situations: (i) the symmetric case, where εAB = εAC = εBC, varying from ε over 1.1 ε and 

1.2 ε to 1.3 ε.; example (ii), where εAB = εAC vary between ε and 1.3 ε, while εBC is fixed 

at ε; and example (iii), where εAC = εBC = ε, while εAB assumes the values equal to ε, 1.1 ε, 

1.2 ε, and 1.3 ε. Notice again that volume physically excluded by molecules η is equal to 

πρtσ3/6. In all the calculations performed in this section, the intermolecular interaction 

between the identical sites, εAA = εBB = εCC is assumed to be zero as already mentioned 

above.

3.1.1. The Symmetric Case: εAB = εAC = εBC vary from ε to 1.3 ε—Two principal 

parameters of the model are the strength εij and the range of attractive interaction ω among 

the sites A, B, and C. The results of calculations are for the symmetric case, where εAB = 

εAC = εBC and for a fixed value of ω, presented in Figure 3. The top panel presents the 

liquid–liquid phase separation curve as a function of the attractive interaction strength εij. 
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The middle panel shows the fraction of molecules Pi↔j (i, j ∈{A, B, C}) that are connected 

through site i of the first molecule to site j of the second molecule. Finally, in the bottom 

panel, we show the fraction of molecules connected via sites A, B, or C. In all cases, we 

explore the excluded volume, η, dependence of these quantities.

As noticed before for globular proteins, an increase of the strength of the attraction (making 

attraction εij stronger), increases the critical temperature. The same dependence holds true 

for the variation of the attraction range parameter: increasing ω yields an increase of the 

critical temperature. This plot is not shown here (see SI for these graphs). One other 

observation, being in line with experimental findings, is the very low critical concentration 

(critical η here) of the antibody solutions in comparison with the solutions of globular 

proteins. In our case, the critical value of η is around 0.008 and does not change much with 

the strength and range of the protein–protein attraction. Further, the shape of the liquid–

liquid separation curve is asymmetric: it is steeper in its low concentration part. Notice that, 

due to the symmetry of the site–site interaction PA = PB = PC, and the fractions Pi↔j are 

equal for all three i,j pairs. Of course both of these quantities depend on the interaction 

strength εij.

3.1.2. The First Asymmetric Case: εBC = ε and εAB = εAC Vary from ε to 1.3 ε—
In the next two examples, we examine the effects of the interaction asymmetry on the shape 

of the liquid–liquid phase diagram. First, in Figure 4, we examine the case where εBC = ε, 

while εAB = εAC vary from ε to 1.3 ε. We start with the top panel, showing the liquid–liquid 

separation curves. As we see, the critical temperature follows a similar trend as described in 

the previous subsection (symmetric case) above: it increases from εAB = εAC = ε (bottom 

curve, blue) to εAB = εAC = 1.3 ε (top curve, red). An increase of the critical temperature, 

however, is much less than seen in Figure 3. At the same time, critical η value moves toward 

smaller values. In the middle panel we present the fraction of molecules Pi↔j (i, j ∈{A, B, 

C}), connected through sites i and j. As it is easy to notice the effects on the PB↔C (broken 

lines) are relatively small. Finally, the histogram presented at the bottom panel of this figure, 

shows the fractions of molecules connected via the sites A, B, and C. Due to the interaction 

energy values (εAB = εAC > εBC), we have PA > PB = PC. For strong attraction and high η 
values, PA exceeds the value 0.9.

3.1.3. The Second Asymmetric Case: εAC = εBC = ε and εAB varies from ε to 1.3 
ε—In the top panel of Figure 5 we show the liquid–liquid separation curve variations for the 

situation where εAC = εBC is fixed to ε, while εAB assumes the values equal to ε, 1.1 ε, 1.2 

ε, and 1.3 ε. Here the situation is more complex and can be summarized as follows: (i) 

critical temperature does not change monotonically with the εAB increase; it first increases 

and then decreases, being the lowest for the strongest attraction studied here, where εAB = 

1.3 ε. (ii) The critical volume fraction η decreases with the εAB increase. In general (iii) the 

shape of the liquid–liquid separation curve changes with the energy variation more 

dramatically than for the examples shown before. As expected, the effects of the energy 

variations on PA↔C = PB↔C (broken lines) are much smaller than on PA↔B.

So what is the reason for the critical conditions in Figure 5 to behave differently with respect 

to the energy increase as those presented above? The critical temperature is expected to rise 
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with the strength of the attractive interaction among the molecules, as demonstrated in 

Figures 3 and 4. Also in the case presented in this subsection the critical temperature first 

rises with the strength of the attractive interaction (see green and yellow curves, where εAB 

is equal 1.1 and 1.2 ε) but then, with further increase of the attraction (red curve; εAB = 1.3 

ε), it decreases. In our view, the reason is that by favoring the εAB interaction we favor the 

formation of pairs and chains on the expense of the branched structures, which decreases the 

critical temperature. It is topology of clusters which influences the critical conditions. For 

the extreme situation with εAB much greater than εAC = εBC, where chains and clusters of 

two molecules prevail, we expect even to lose the two-phase behavior.

At the end we also wish to briefly comment on the fraction of monomers, P0, not shown in 

the figures above. This quantity monotonically decreases with the increasing strength of 

interaction and fraction of occupied volume η in all three cases discussed in the subsections 

3.1.1–3.1.2.

3.2. Analysis of the Experimental Liquid–Liquid Phase Diagrams

In this section (Figure 6) we use the 7–bead model to analyze experimental data for the 

liquid–liquid phase separation curve. For this purpose we choose the measurements of 

Mason and co–workers11 (example 1 is shown in their Figure 2) and of Wang et al.
37(example 2). Symbols denote experimental data and lines our calculations. For the first 

case11 a reasonably good agreement between measurements and calculations is obtained 

assuming that εAC = εBC = 4104 K kB, εAB = 4730 K kB and for the second37 εAC = εBC = 

4172 K kB, εAB = 4416 K kB. In both cases ω = 0.18 nm. Using these parameters, we can 

reproduce the main experimental features of mAbs solutions: critical concentration is several 

times lower than for globular proteins and the shape of the curve is a bit asymmetric. More 

exactly, for example 1, the calculated critical concentration is around γ = 80 mg/mL and the 

critical temperature is slightly above 270 K. The values, suggested by experiment,11 are 87.1 

± 4.0 mg/mL for the critical concentration, while Tc is 268.5 K.

In example 2 we analyze the measurements of Wang et al.37 (Figure 6). The solution has 

higher critical temperature than the one studied in the example 1. To get agreement with 

experimental data, we need to assume that εAC = εBC = 4172 K kB and εAB = 4416 K kB. 

For this solution the experimental value of Tc is 272.4 ± 0.1 K, and the critical concentration 

γ is 90 ± 9 mg/mL. The calculated values are 272.9 K and 98 mg/mL. We wish to stress that 

we compare two different antibodies, studied at very different experimental conditions. The 

first one is examined11 at low ionic strength (22 mM) of potassium phosphate at pH = 7.1 

(supposedly close to the pI of this antibody) and the second one37 in 0.1 M Tris–HCl buffer 

at pH = 7.4 (pI of this mAb is 8.8). For this reason, the need to use different fitting 

parameters in examples 1 and 2 is not a surprise.

In one of our previous papers,29 we analyzed the liquid–liquid phase diagrams for lysozyme 

in phosphate buffer (pH 6.0, ionic strength 0.6 M)48 and for γIIIa-Crystallin (pH 7.1, 

phosphate buffer of concentration 0.24 M).49 The critical temperatures above which we find 

the one–phase regions were estimated to be 274 ± 2 K for lysozyme and 312 ± 2 K for γIIIa 

Crystallin. Obviously these critical temperatures are not much different from those of the 

mAb molecules analyzed above. On the other hand, globular proteins have much higher 
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critical concentrations than solutions of monoclonal antibodies: for lysozyme it is around 

230 and for γIIIa-Crystallin around 300 mg/mL. Low values of critical concentrations in 

mAbs solutions can be attributed to the shape and size (perhaps also the flexibility) of these 

molecules.11,22,37

3.3. The Second Virial Coefficient

It has been suggested that protein aggregation propensity can be predicted from dilute-

solution measurements. One such example is the second virial coefficient, known also to be 

a predictor for protein crystallization.51–55 Recently we examined the behavior of two 

important coefficients, giving information about binary interactions, that is, B22 and the 

Huggins constant from the viscosity equation.33 The results, showing an excellent 

correlation between these two coefficients, are in line with the findings of Tomar et al.9 

stating, that large positive second virial coefficient is suggestive of low viscosity of antibody 

solutions up to 150 mg/mL.

The second virial osmotic coefficient B22 is defined as56

P
γRT = 1

M2
+ B22γ + O(γ2) (24)

Note that P in a one-component system plays the role of the osmotic pressure (in the 

literature most often denoted by Π), M2 the molar mass of protein, and R the gas constant. 

B22 can be obtained from eq 24 at low mass concentrations γ. The hypothesis of a 

“crystallization slot” (i.e., the region where protein crystallization is most likely to occur), 

proposed by George and Wilson51 to be in the range from −2 × 10−4 to −8× 10−4 cm3 mol g
−2, has been experimentally confirmed for globular proteins with molar masses around 14 

kDa. The situation with antibody solutions appears to be different. Thermodynamic 

connection of B22 with phase behavior of these solutions has been examined by Rakel et al.
18,19 as also by other authors.11,12,57 Rakel et al. determined the B22 values for several 

antibody molecules varying the pH, as also the concentration and nature of added salt in 

solution. Their conclusion is that crystallization probability and measured second virial 

coefficients values are not correlated well enough to make solid predictions about 

crystallization. In their opinion, this finding can be, at least in part, attributed to the specific 

shape of antibodies having considerably larger surface area than globular proteins of similar 

molecular mass. In agreement with these studies Lewus and co-workers57 concluded that the 

osmotic second virial coefficient does not provide clear information to predict the 

crystallization.

The trends in protein phase behavior have their origin in the protein–protein interaction, 

which is reflected in the second virial coefficient. Because B22 is the function of temperature 

only, we can transform graphs in Figure 6 into B22 versus γ graphs, shown in Figure 7. This 

type of graph is called the “universal” phase diagram.58 For the first example11 (bottom 

curve), the calculated value of B22 at critical conditions appears to be considerably more 
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negative than for the second one,37 where it is about −5.1 × 10−4 cm3 mol g−2. It seems that 

both the asymmetry in interactions as well as their magnitude affect this quantity.

4. CONCLUSIONS

Theoretical studies of mAbs solutions are challenging due to the specific shape and 

flexibility of these molecules. In this contribution we present a theoretical approach, which 

treats the model antibody molecule as an assembly of seven equal-in-size hard spheres, 

organized to mimic the shape of the letter Y. In this way the model goes beyond many 

previous studies, treating protein molecules as structureless rigid spheres. The interaction 

between the molecules is possible through the Fab (A), Fab′ (B), and Fc (C) domains, 

which are in this calculation approximated by the attractive square-wells.

Using a relatively simple Hamilton function, coupled with Wertheim’s thermodynamic 

perturbation theory, we constructed the free energy of the one component fluid of Y-like 

molecules. The theory is used to calculate various properties, for example, the liquid–liquid 

phase separation curve and the second virial coefficient, as well as some more microscopic 

properties, reflecting the connectivity of the sites. Effects of varying the attractive energy 

between the tips of the Y-shaped molecule on the critical conditions is investigated. It 

appears that critical protein concentration is only marginally sensitive on the strength of the 

attractive interaction. In contrast to this, the asymmetry in energy parameter ε may cause 

either decrease or an increase of the critical temperature, depending on how the attraction is 

distributed between the three sites.

Next, we use the theory to analyze published experimental data for the liquid–liquid 

separation curves of two different antibodies. In agreement with measurements, we found 

the critical mAbs concentration to be much lower than in case of globular proteins. Notice 

that in this exploratory analysis of experiments, we only allowed for the A–B, A–C, and B–

C interaction to take place, while the A–A, B–B, and C–C inter–molecular interactions are 

set to zero. This can be part of the reason why the agreement between the experimental and 

calculated liquid–liquid phase separation curves is only qualitative. An alternative choice, 

where A–A, B–B, A–C, and B–C pair interactions are the most important, has been 

suggested in literature.59 For different mAbs molecules, however, different pairs of 

interactions may be dominant. In order to make a more realistic judgment of which site–site 

interaction are the most relevant under given experimental conditions, more experimental 

studies, if possible supported by computer simulations, are needed. Finally we use the 

energy parameters extracted from the temperature–concentration graphs to construct the 

B22–protein concentration (B22–γ) dependence.

The study demonstrates that Wertheim’s thermodynamic perturbation theory is able to study 

fluids of complex molecules. While the theory cannot compete with computer simulations in 

describing the microscopic picture, it provides a way to efficiently test simple models 

through calculation of thermodynamic properties. In the next study, we plan to examine the 

phase separation induced by the non-adsorbing polymer and to develop a more realistic 

model of solution, previously proposed for solutions of globular proteins,60 where ions and 

water molecules will be included in the picture. We hope that the present work will stimulate 
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further theoretical studies, fostering better understanding of clustering of monoclonal 

antibodies in aqueous solutions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
(a) Hard spheres form model antibody molecules through intramolecular sites D (orange) 

and E (black). (b) Molecule is formed; A and B sites represent Fab (fragment antigen–

binding) regions, and C site the Fc (fragment crystallizable) region.
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Figure 2. 
(a) Reduced chemical potential βμas a function of the occupied volume, η, at various 

reduced temperatures, T* = kBT/ε. Top curve is supercritical, the middle one represents the 

critical isotherm, and the bottom one applies to conditions where phase separation takes 

place. The values of the reduced temperatures T* are for each graph shown on the figure. 

The open circles connected by the line denote the equilibrium points, while the full circle 

denotes the critical conditions. (b) The reduced pressure βPσ3 as a function of the occupied 

volume η. Notation as for panel (a).
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Figure 3. 
Top panel: liquid–liquid separation curve for the case where εAB = εAC = εBC vary, while ω 
= 0.05 σ is kept constant. Middle panel: fractions of molecules Pi↔j (i, j ∈{A, B, C}) that 

are connected through the site i on the first molecule to the site j on the second molecule. 

Bottom panel: the histogram is showing PA, PB, and PC as a function of the volume fraction 

η of mAbs; T* = kBT/ε = 0.0675.

Kastelic and Vlachy Page 20

J Phys Chem B. Author manuscript; available in PMC 2019 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
Top panel shows the liquid–liquid separation curve: εBC = ε and constant, while εAB = εAC 

vary in the range from ε, 1.1 ε, 1.2 ε, to 1.3 ε (εAA = εBB = εCC = 0). Middle panel shows 

how the probability Pi↔j (i, j ∈{A, B, C}) varies with the attraction strength. Bottom panel: 

the histogram is showing PA, PB, and PC as a function of the volume fraction η of mAbs; 

kBT/ε = 0.0675.
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Figure 5. 
Same as for previous two figures except that εAC = εBC = ε, while εAB varies in the range ε, 

1.1 ε, 1.2 ε, and 1.3 ε. Top panel shows the liquid–liquid separation curves, the middle panel 

Pi↔j, and the bottom one PA, PB, and PC. Again kBT/ε = 0.0675 and ω = 0.05 σ.

Kastelic and Vlachy Page 22

J Phys Chem B. Author manuscript; available in PMC 2019 May 31.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 6. 
Liquid–liquid separation curve temperature (in Kelvin) versus protein concentration γ given 

in mg/mL: calculated (full line), symbols denote experimental data. Example 1:11 εAC = εBC 

= 4104 K kB and εAB = 4730 K kB. Example 2:37 εAC = εBC = 4172 K kB and εAB = 4416 

K kB. In both cases, σ = 1.7 nm (estimated from the specific molar volume suggested to be 

0.728 mL/g50), while ω = 0.18 nm. The two-phase region is indicated by the shaded area.
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Figure 7. 
Second virial coefficient, B22, as a function of γ. The parameters are as for Figure 6.
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