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signaling as a driver for refractive error
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Abstract

Refractive errors, including myopia, are the most frequent eye disorders worldwide and an 

increasingly common cause of blindness. This genome-wide association meta-analysis in 160,420 

participants and replication in 95,505 participants, increased the established independent signals 

from 37 to 161 and revealed high genetic correlation between Europeans and Asians (>0.78). 

Expression experiments and comprehensive in silico analyses identified retinal cell physiology and 

light processing as prominent mechanisms, and functional contributions to refractive error 

development in all cell types of the neurosensory retina, retinal pigment epithelium, vascular 

endothelium and extracellular matrix. Newly identified genes elicited novel mechanisms such as 

rod and cone bipolar synaptic neurotransmission, anterior segment morphology, and angiogenesis. 

Thirty-one loci resided in or near regions transcribing small RNAs, suggesting a role for post-

transcriptional regulation. Our results support the notion that refractive errors are caused by a 

light-dependent retina-to-sclera signaling cascade, and delineate potential pathobiological 

molecular drivers.
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INTRODUCTION

Refractive errors are common optical aberrations determined by mismatches in the focusing 

power of the cornea, lens and axial length of the eye. Their distribution is rapidly shifting 

towards myopia, or nearsightedness, all over the world. The myopia boom is particularly 

prominent in urban East Asia where up to 95% of twenty-year-olds in cities such as Seoul 

and Singapore have this refractive error1–4. Myopia prevalence is also rising throughout 

Western Europe and the USA, affecting ~50% of young adults in these regions5,6. While 

refractive errors can be optically corrected, even at moderate values they carry significant 

risk of ocular complications with high economic burden7–9. One in three individuals with 

high myopia (−6 diopters or worse) will develop irreversible visual impairment or blindness, 

mostly due to myopic macular degeneration, retinal detachment, or glaucoma10,11. At the 

other extreme, high hyperopia predisposes to strabismus, amblyopia and angle-closure 

glaucoma10,12.

Refractive errors result from a complex interplay of lifestyle and genetic factors. The most 

established lifestyle factors for myopia are high education, lack of outdoor exposure, and 

excessive near work3. Recent research has identified many genetic variants for refractive 

errors, myopia, and axial length13–25. Two large studies, the international Consortium for 

Refractive Error and Myopia (CREAM)26 and the personal genomics company 23andMe, 

Inc.17,27 have provided the most comprehensive results.28

Given that only 3.6% of the variance of the refractive error trait was explained by the 

identified genetic variants26, we presumed a high missing heritability. We therefore 

combined CREAM and 23andMe, and expanded the study sample to 160,420 individuals 

from a mixed ancestry population with quantitative information on refraction for a genome-

wide association (GWAS) meta-analysis. Index variants were tested for replication in an 

independent cohort consisting of 95,505 individuals from the UK Biobank. We conducted 

systematic comparisons to assess differences in genetic inheritance and distribution of risk 

variants between Europeans and Asians. Polygenic risk analyses were performed to evaluate 

the contribution of the identified variants to the risk of myopia and hyperopia. Finally, we 

integrated expression data and bioinformatics on the identified genes to gain insight into the 

possible mechanisms underlying the genetic associations.

RESULTS

Susceptibility loci for refractive error

We performed a GWAS meta-analysis on adult untransformed spherical equivalent (SphE) 

using summary statistics from 37 studies from CREAM and on age of diagnosis of myopia 

(AODM) from two cohorts from 23andMe (Supplementary Figure 1, Supplementary Table 

1a)26,27. Analyses were based on ~11 million genetic variants (SNPs, insertions and 

deletions) genotyped or imputed to 1000 Genomes Project Phase I reference panel (version 

3, March 2012 release29) that passed extensive quality control (Supplementary Figures 2–4, 

Supplementary Table 1b).
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Meta-analyses were conducted in three stages: Stage 1 CREAM (CREAM-EUR, N=44,192; 

CREAM-ASN, N=11,935); Stage 2 23andMe (N=104,293; Online Methods); Stage 3 joint 

meta-analysis of Stage 1 and 2. As CREAM and 23andMe applied different phenotype 

measures, we used signed Z-scores as the mean per-allele effect size and assigned equal 

weights to CREAM and 23andMe. We identified 7,967 genome-wide significant genetic 

variants clustering in 140 loci (Figure 1a,b; Supplementary Figure 5–6, Supplementary Table 

2-5, Supplementary Data 1-2), replicating all 37 previously discovered loci and finding 104 

novel loci. We applied genomic control at each stage and checked for population 

stratification using LD score regression30 (Stage 1-2 inflation factors (λGC) <1.1 and LD 

score regression intercepts (LDSCintercept) 0.892-1.023; Supplementary Table 6; 

Supplementary Figure 6-7). At Stage 3, we observed a genomic inflation (λGC=1.129; 

Supplementary Figure 6), probably due to true polygenicity rather than population 

stratification or cryptic relatedness31. LDSCintercept remained undetermined due to mixed 

ancestry.

To detect the presence of multiple independent signals at the discovered loci, a stepwise 

conditional analysis was performed with GCTA-COJO32 on summary statistics from all 

European cohorts (N=148,485) using the Rotterdam Study I-III (RS I-III) as a reference 

panel for LD structure (NRSI-III=10,775). This analysis yielded 27 additional independent 

variants, resulting in a total of 167 loci (Supplementary Table 2).

We advanced these loci for replication in a GWAS of refractive error carried out by the UK 

Biobank Eye & Vision (UKEV) Consortium (N=95,505)33 (Online Methods). Six out of the 

167 variants were not considered for replication analysis. One of these five variants 

(rs3138141, RDH5) was identified previously and therefore still considered as a refractive 

error risk variant26,27. The remaining 161 genetic variants were tested for replication. 86% 

(138/161) of the candidate variants replicated significantly: 104 (65%) replicated surpassing 

genome-wide significance and 34 replicated surpassing Bonferroni correction (P<3.0×10−4; 

21.1%); another 12 showed nominal evidence for replication (0.05<P<3.0×10−4; 7.5%) and 

only 11 (7%) did not replicate at all (Table 1, Supplementary Table 2).

As CREAM and 23andMe employed different phenotypic outcomes, we evaluated 

consistency of genotypic effects by comparing marker-wise additive genetic effect sizes (in 

units diopters per risk allele variant) for SphE from CREAM-EUR against those (in units 

log(HR) per risk allele variant) for AODM from 23andMe. All variants strongly associated 

with either outcome (P<0.001) were concordant in direction-of-effect, and had highly 

correlated effect sizes (Figure 2a,b; Supplementary Figure 8). For these variants a 10% 

decrease in log(HR) for AODM, indicating an earlier age-at-myopia onset, was associated 

with a decrease of 0.15 diopters in SphE. A quantitative analysis for all common SNPs 

(MAF>0.01; HapMap3) using LD score regression yielded a genetic correlation of 0.93 

(95% CI 0.86-0.99; P=2.1×10−159), confirming that effect sizes for both phenotypic 

outcomes were closely related.

Gene annotation of susceptibility loci

We annotated all genetic variants with wANNOVAR using the University of California 

Santa Cruz (UCSC) Known Gene database34,35. The identified 139 genetic loci were 

Tedja et al. Page 5

Nat Genet. Author manuscript; available in PMC 2018 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



annotated to 208 genes and known transcribed RNA genes (Table 1, Supplementary Table 2, 

Online Methods). The physical positions of the lead genetic variants relative to protein-

coding genes are shown in Figure 1c. 86% of the identified variants were either intragenic or 

less than 50 kb from the 5′or 3′ end of the transcription start site. We found seven exonic 

variants (Supplementary Table 7) of which two had MAF≤0.05: rs5442 (GNB3) and 

rs17400325 (PDE11A). The index SNP in the GNB3 locus with MAF 0.05 in Europeans is a 

highly conserved missense variant (G272S) predicted to be damaging by PolyPhen-236 and 

SIFT37. PDE11A is presumed to play a role in tumorigenesis, brain function, and 

inflammation38. The index SNP in the PDE11A locus with MAF 0.03 in Europeans is also a 

highly conserved missense variant (Y727C); this variant was predicted to be damaging by 

PolyPhen36, SIFT39 and align GVGD40,41.The other exonic variants, rs1064583 

(COL10A1), rs807037 (KAZALD1), rs1550094 (PRSS56), rs35337422 (RD3L), and 

rs6420484 (TSPAN10) were not predicted to be damaging.

The most significant variant (Stage 3; rs12193446, P=4.21×10−84) resides on chromosome 6 

within a non-coding RNA, BC035400, in an intron of the LAMA2 gene. This locus had been 

identified previously, but our current fine mapping redefined the most associated variant. 

The function and potential downstream target sites for BC035400 are currently unknown. 

The previously most strongly associated variant, rs524952 on chromosome 15 near GJD2, 

was the second most significant variant (P=2.28×10−65).

Post-GWAS analyses

We performed two gene-based tests, fastBAT42 and EUGENE43, and applied a functional 

enrichment approach using fgwas44 (Online Methods). With fastBAT, we identified 13 genes 

at P <2.0×10−6, one of which (CHD7) had been identified previously26,27. Using EUGENE, 

we found 7 genes at P <2.0×10−6 after incorporation of blood eQTLs. With fgwas, we 

identified 6 loci, which could be annotated to 9 genes, at posterior probability >0.9. Two 

genes (HMGN4 and TLX1) showed significant associations in two or more approaches. 

Taken together, these post-GWAS approaches resulted in a total of 22 additional candidate 

loci for refractive error, annotated to 25 genes (Supplementary Table 8). This increases the 

overall number of significant genetic associations to 161 candidate loci.

Polygenic risk scores

We calculated polygenic risk scores (PGRS)45 per individual at various P thresholds (Online 

Methods) for Rotterdam Study I-III (RS I-III; N=10,792) after recalculating P and Z-scores 

of variants from Stage 3 excluding RS I-III. We found the highest fraction of phenotypic 

variance (7.8%) explained with 7,307 variants at P value threshold 0.005 (Supplementary 

Table 9). A PGRS based on these variants distinguished well between individuals with 

hyperopia and myopia at the lower and higher deciles (Figure 3); those in the highest decile 

had a 40-fold increased risk of myopia. When the PGRS was stratified for the median age 

(<63 or >63+ yrs), we found a significant difference in the variance explained (<63 yrs 

8.9%; 63+ yrs 7.4%; P 0.0038). The variance explained by PGRS was not significantly 

different between males and females (8.3% vs 7.5%; P 0.13). The predictive value (area 

under the receiver operating characteristic curve, AUC) of the PGRS for myopia versus 
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hyperopia adjusted for age and gender was 0.77 (95% CI=0.75–0.79), a 10% increase 

compared to previous estimations46.

Trans-ethnic comparison of genotypic effects

To explore potential ancestry differences in the identified refractive error loci, we calculated 

the heritability explained by common genetic variants (SNP-h2) for Europeans and Asians 

using LD score regression47. SNP-h2 was 0.214 (95% CI 0.185- 0.243) and 0.172 (95% CI 

0.154- 0.190) in the European samples (CREAM-EUR and 23andMe), while it was only 

0.053 (95% CI -0.025- 0.131) in the Asian sample (CREAM-EAS). Next, we estimated the 

genetic correlation between Europeans and Asians by comparing variant effect size for 

common variants using Popcorn48 (Online Methods). Two genetic correlation metrics were 

calculated T; First, a genetic effect correlation (ρge) that quantifies the correlation in SNP 

effect sizes between Europeans and Asians without taking into account ancestry-related 

differences in allele frequency; and second, a genetic impact correlation (ρgi) that estimates 

the correlation in variance-normalized SNP effect sizes between the two ancestry groups 

(Table 2). Estimates of ρge were high between Europeans and Asians, but significantly 

different from 1 (0.79 and 0.80, respectively at P <1.9×10−6; Table 2), indicating a clear 

genetic overlap but a difference in per allele effect size. Estimates of ρgi were similarly high 

(>0.8), but not significantly different from 1 for the correlation between CREAM-EUR and 

CREAM-ASN (P=0.065), indicating that the genetic impact of these alleles may still be 

similar.

In silico pathway analysis

We used an array of bioinformatics tools to investigate potential functions and pathways of 

the associated genes. We first employed DEPICT49 to perform a gene set enrichment 

analysis, a tissue type enrichment, and a gene prioritization analysis, on all variants with P 
<1.00×10−5 from Stage 3. The gene set enrichment analysis resulted in 66 reconstituted gene 

sets, of which 55 (83%) were eye-related. To reduce redundancies between pathways, we 

clustered the significant pathways into 13 meta gene sets (false discovery rate (FDR) <5% 

and a P <0.05) (Supplementary Note 2, Figure 4, Supplementary Table 10). The most 

significant gene set was the ‘abnormal photoreceptor inner segment morphology’ (MP:

0003730; P=1.79×10−7). The eye-related meta gene sets consisted of the ‘thin retinal outer 

nuclear layer’ (MP:0008515; 27 (55%) gene sets), ‘detection of light stimulus’ (GO:

0009583; 13 (24%) gene sets), ‘nonmotile primary cilium’ (GO:0031513; 4 (6%) gene sets), 

and ‘abnormal anterior eye segment morphology’ (MP:0005193; 4 (6%) gene sets). The first 

three meta gene sets had a Pearson’s correlation > 0.6. Interestingly, RGR, RP1L1, RORB 
and GNB3 were present in all of these meta gene sets. Retina was the most significant tissue 

of expression according to the tissue enrichment analysis (P=1.11 × 10−4, FDR <0.01). From 

the gene prioritization according to DEPICT, 7 genes were highlighted as the most likely 

causal genes at P<7.62×10−6 and FDR<0.05: ANO2, RP1L1, GNB3, EDN2, RORB and 

CABP4.

Next, we performed a canonical pathway analysis on all genes annotated to the variants of 

Stage 3 using Ingenuity Pathway Analysis (See URLs). All genes were run against the IPA 

database incorporating functional biological evidence on genomic and proteomic expression 
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based on regulation or binding studies. IPA identified “Glutamate Receptor Signaling” with 

central player Nf-kB gene as the most significant pathway after correction for multiple 

testing (ratio of the number of molecules 8.8% and Fisher’s Exact test P=1.56×10−4; 

Supplementary Figure 9).

From disease-associated loci to biological mechanisms

We adapted the scoring scheme designed by Fritsche et al.50 to highlight genes for which 

there is biological plausibility for a role in eye growth50. We used 10 equally rated 

categories (Online Methods; Figure 5; Supplementary Table 11; Supplementary Note 2). 

One-hundred-and-nine index variants replicated in two or more individual cohorts; we found 

evidence for seven genetic variants with eQTL effects in multiple tissue types; nine exonic 

variants, of which seven predicted protein-alterations (Supplementary Table 7); 31 RNA 

genes, five located in the 3′ or 5′UTR (Supplementary Table 12, Supplementary Figure 10), 

84 genes resulting in an ocular phenotype in humans (Supplementary Table 13) and 36 in 

mice (Supplementary Table 14); 172/212 (81%) genes expressed in human ocular tissue 

(Supplementary Note 2, Supplementary Table 15); 41 genes identified by DEPICT at P 
<5.4×10−4 and FDR<0.05 and 45 genes contributed to the most significant canonical 

pathways of IPA. Notably, 48 of the associated genes encode known drug targets 

(Supplementary Table 16).

The gene with the highest biological plausibility score (score=8) was GNB3, a highly 

conserved gene encoding a guanine nucleotide-binding protein expressed in rod and cone 

photoreceptors and ON-bipolar cells51. GNB3 participates in signal transduction through G-

protein-coupled receptors and enhances the temporal accuracy of phototransduction and ON-

center signaling in the retina51. As described above, the index SNP harbors a missense 

variant associated with refractive errors. Non-synonymous mutations within GNB3 are 

known to cause syndromic congenital stationary night blindness52 in humans, progressive 

retinopathy and globe enlargement in chickens51, and abnormal development of the 

photoreceptor-bipolar synapse in knock-out mice53,54.

Other genes highly ranked (score=7) include CYP26A1, GRIA4, RDH5, RORB, and RGR, 

all previously associated with refractive error, and one newly identified gene: EFEMP1. 

EFEMP1 encodes a member of the fibulin family of extracellular matrix glycoproteins, and 

is found pan-ocularly including in the inner nuclear layer and Bruch’s membrane. Mutations 

in this gene lead to specific macular dystrophies55, while variants have also been shown to 

co-segregate with primary open-angle glaucoma56 and associate with optic disc cup area57.

Several other genes are noteworthy for their function. CABP4, a calcium-binding protein 

expressed in cone and rod photoreceptor cells, mediates Ca2+-influx and glutamate release in 

the photoreceptor-bipolar synapse58. Mutations in this gene have been described in 

congenital cone-rod synaptic disorder59, a retinal dystrophy associated with nystagmus, 

photophobia, and, remarkably, high hyperopia. KCNMA1 encodes pore-forming alpha 

subunits of Ca2+-activated K+ (BK) channels. These channels regulate synaptic transmission 

exclusively in the rod pathway60. ANO2 is a Ca2+-activated Cl− channel recently reported to 

regulate retinal pigment epithelial (RPE) cell volume in a light-dependent manner64. EDN2 
is a potent vasoconstrictor that binds to two G-protein-coupled receptors, EDNRA, which 
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resides on bipolar dendrites, and EDNRB, which is present on Mueller and horizontal cells. 

Both receptors are also present on choroidal vessels65, implying that the choroid as well as 

retinal cells are target sites for this gene. RP1L1 is expressed in cone and rod photoreceptors 

where it is involved in the maintenance of microtubules in the connecting cilium66. 

Mutations in this gene cause dominant macular dystrophy and retinitis pigmentosa67. We 

replicated two genes known to cause myopia in family studies. FBN1 harbors mutations 

causing with Marfan (OMIM #154700) and Weil Marchesani (OMIM #608328) syndrome; 

PTPRR was one of the candidates in the MYP3 locus, which was found by linkage in 

families with high myopia68.

The location of rs7449443 (P=3.58×10−8) is notable as it resides in between DRD1 and 

FLJ16171. DRD1 encodes dopamine receptor 1 and is known to modulate dopamine 

receptor 2-mediated events69,70. The dopamine pathway has been implicated in myopia 

pathogenesis in many studies69,71. SNPs in and near other genes involved in the dopamine 

pathway (dopamine receptors, synthesis, degradation, and transporters)72–74 did not reveal 

genome-wide significant associations (Supplementary Note 3, Supplementary Table 17; 

Supplementary Figure 11).

There were 31 genetic variants in or near DNA structures transcribing RNA genes (non 

coding RNA, linc RNAs, tRNAs, snoRNas, rRNAs). Notably, five were in the transcription 

region and thirteen were in the vicinity (>0 kb and ≤50 kb) of start or end of the RNA gene 

transcription region. They received low scores, since many have no reported function or 

disease association to date (Figure 5, Supplementary Figure 10, Supplementary Table 12). 

Our ranking of genes based on functional information existing in the public domain does not 

necessarily represent the true order of importance for refractive error pathogenesis. The 

observation that genes with strong statistical association were distributed over all scores 

supports this concept. Nevertheless, this list may help to select genes for subsequent 

functional studies.

Finally, integration of all our findings, supported by literature, allowed us to annotate a large 

number of genes to ocular cell types (Figure 6). Remarkably, all cell types of the retina 

harbored refractive error genes, as well as the RPE, vascular endothelium, and extracellular 

matrix.

Genetic pleiotropy

We performed a GWAS catalogue look up using FUMA to investigate overlap of genes with 

other common traits (Supplementary Figure 12)75. Refractive error and hyperopia were 

replicated significantly after correcting for multiple testing (adjusted P value=1.44×10−52 

and 9.34×10−9, respectively). We found significant overlap with 74 other traits, of which 

height (adjusted P value=1.11×10−10), obesity (adjusted P=1.38×10−10), and BMI (adjusted 

P=4.05×10−7) were most important. Ocular diseases significantly associated were glaucoma 

(optic cup area, intraocular pressure; adjusted P=2.69×10−5 and 3.01×10−5, respectively) and 

age-related macular degeneration (adjusted P value=1.27×10−3).
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DISCUSSION

Myopia may become the leading cause of world blindness in the near future, a grim outlook 

for which current counteractions are still insufficient11,76. To improve understanding of the 

genetic landscape and biology of refractive error, we conducted a large GWAS meta-analysis 

in 160,420 participants of mixed ancestry and replicated in 95,505 participants. This led to 

the identification of 139 independent susceptibility loci by single variant analysis and 22 

additional loci through post-GWAS methods, a four-fold increase in refractive error genes. 

The majority of annotated genes were found to be expressed in the human posterior segment 

of the eye. Using in silico analysis, we identified significant biological pathways, of which 

retinal cell physiology, light processing, and, specifically, glutamate receptor signaling were 

the most prominent mechanisms. Our integrated bio-informatic approach highlighted known 

ocular functionality for many genes.

To ensure robustness of our genetic associations, we included studies of various designs and 

populations, sought replication in an independent cohort of significant sample size, and 

stringently accounted for population stratification by performing genomic control at all 

stages of the meta-analysis77. We combined studies with outcomes based on actual refractive 

error measurements as well as on self-reported age-of-myopia-onset, and found the 

direction-of-effect of the associated variants, as well as their effect size, to be remarkably 

consistent. Combining two different outcome measures may appear unconventional, but age 

of onset and refractive error have been shown to be very tightly correlated11,28,78,79. 

Moreover, the high genetic correlation (93%) of common SNPs between the two phenotypes 

underscores their similarity. Most compelling evidence was provided by replication of 86% 

of the discovered variants in the independent UKEV which also used conventional refractive 

error measurements. This robustness indicates that both phenotypic outcomes can be used to 

capture a shared source of genetic variation. In addition, we found trans-ethnic replication of 

significant loci, and a high correlation of genetic effects of common variants in the 

Europeans and Asians. Our findings support a largely shared genetic predisposition to 

refractive error and myopia in the two ethnicities, although ancestry-specific allelic effects 

may exist. The low heritability estimate in Asians may, in part, be explained by the low 

representation of this ethnicity in our study sample. Alternatively, it may imply that 

environmental factors explain a greater proportion of the phenotypic risk and recent rise in 

myopia prevalence in this ancestry group80.

Limitations of our study were the possibility of false negative findings due to genomic 

control, and underrepresentation of studies with Asian ancestry. Heterogeneity of observed 

effect estimates was large for several associated variants, but not unexpected, given the large 

number of collaborating studies with varying methodology.

Although neurotransmission was previously suggested pathway26,27, our current pathway 

analyses provide more in-depth insights into the retinal circuitry driving refractive error. 

DEPICT identified ‘thin retinal outer nuclear layer’, ‘detection of light stimulus’, and 

‘nonmotile primary cilium’ as the most important meta-gene sets. These are the main 

characteristics of photoreceptors, which are located in the outer retina and contain cilia. 

These photosensitive cells drive the phototransduction cascade in response to light, which in 
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turn induces visual information processing. IPA pointed towards glutamate receptor 

signaling as the most significant pathway. Glutamate is released by photoreceptors and 

determines conductance of retinal signaling to the ON and OFF bipolar cells81. Our 

functional gene look ups provide evidence that rod (CLU) as well as cone (GNB3) bipolar 

cells play a role. Taken together, these findings strongly suggest that light response and light 

processing in the retina are initiating factors leading to refractive error.

The genetic association with light-dependent pathways may also link to the well-established 

protective effect of outdoor exposure on myopia. We found suggestive evidence for a genetic 

association with DRD1. The dopaminergic pathway has been studied extensively in animal 

models for its role in controlling eye growth in response to light69,71,82–91. DRD1 was found 

to be a mediator in this process, as bright light increased DRD1 activity in the bipolar ON-

pathway, and diminished form-deprivation myopia in mice. Blockage of DRD1 reversed this 

inhibitory effect92. We did not find evidence for direct involvement of other genes in the 

dopamine pathway, but GNB3 may be an indirect modifier as it is a downstream signaling 

molecule of dopamine and has been shown to influence availability of the dopamine 

transporter DAT93. Although a promising target for therapy, further evidence of DRD1 in 

human myopiagenesis is warranted.

Novel pathways elicited by the newly identified genes are anterior segment morphology 

(TCF7L2, VIPR2, MAF) and angiogenesis (FLT1). In addition, the high number of variants 

residing near small RNA genes suggests that post-transcriptional regulation is an important 

mechanism, as these RNAs are known to play a distinct and central regulatory role in cells94. 

These findings will serve as leads for future studies performing detailed mapping of cellular 

networks, and functional studies on genes implicated in ocular phenotypes, harboring 

protein-altering variants, and proven drug targets.

Our evaluation of shared genetics between refractive error and other disease-relevant 

phenotypes highlighted overlap with anthropometric traits such as height, obesity, and body 

mass index. This could give valuable additional clues as to the phenotypic outcomes of 

perturbations of some of the networks identified.

Our genetic observations add credence to the current notion that refractive errors are caused 

by a retina-to-sclera signaling cascade that induces scleral remodeling in response to light 

stimuli. The concept of this cascade originates from various animal models showing that 

form deprivation, retinal defocus and contrast, ambient light, and wavelength can influence 

eye growth in young animals95–97. Cell-specific moieties in this putative signaling cascade 

in humans were largely unknown, although animal models implicated GABA, dopamine, all-

trans-retinoic acid and TGF-β69,91,98,99. Our study provides a large number of new 

molecular candidates for this cascade, and clearly shows that a wide range of neuronal cell 

types in the retina, the RPE, the vascular endothelium, as well as components of the 

extracellular matrix are implicated. The many interprotein relationships exemplify the 

complexity of eye growth, and provide a challenge to develop strategies to prevent 

pathological eye elongation.
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In conclusion, by using a cross-ancestry design in the largest study population on common 

refractive errors to date, we uncovered numerous novel loci and pathways involved in eye 

growth. Our multi-disciplinary approach incorporating GWAS data with in silico analyses 

and expression experiments provides an example for the design of future genetic studies for 

complex traits. Additional genetic insights into refractive errors will be gained by increasing 

sample size and genotyping depth, by performing family studies to identify rare alleles of 

large effects, and by evaluating population extremes. Our list of plausible genes and 

pathways provide a plethora of data for future studies focusing on gene-environment 

interaction, and on translation of GWAS findings into starting points for therapy.

ONLINE METHODS

Ethics Statement

All human research was approved by the relevant institutional review boards and conducted 

according to the Declaration of Helsinki. All CREAM participants provided written 

informed consent; all 23andMe applicants provided informed consent online, and answered 

surveys according to 23andMe’s human subjects protocol, which was reviewed and 

approved by Ethical & Independent Review Services, an AAHRPP-accredited institutional 

review board. The UK Biobank received ethical approval from the National Health Service 

National Research Ethics Service (reference 11/NW/0382).

Study data

The study populations were participants of the Consortium for Refractive Error and Myopia 

(CREAM) comprising of 41,793 individuals with European ancestry from 26 cohorts 

(CREAM-EUR) and 11,935 individuals with Asian ancestry from 8 studies (CREAM-ASN); 

and customers of the 23andMe genetic testing company who gave informed consent for 

inclusion in research studies consisting of 104,293 individuals (2 cohorts of individuals with 

European ancestry, N = 12,128 and N= 92,165, respectively). All participants included in 

this analysis from CREAM and 23andMe were aged 25 years or older. Participants with 

conditions that could alter refraction, such as cataract surgery, laser refractive procedures, 

retinal detachment surgery, keratoconus as well as ocular or systemic syndromes were 

excluded from the analyses. Recruitment and ascertainment strategies varied per study 

(Supplementary Table 1a,b, and Supplementary Note 4). Refractive error represented by 

measurements of refraction and analyzed as spherical equivalent (SphE =spherical refractive 

error + 1/2 cylinder refractive error) was the outcome variable for CREAM; myopic 

refractive error represented by self-reported age of diagnosis of myopia (AODM) for 

23andMe27.

Genotype calling and imputation

Samples were genotyped on different platforms and study specific quality control measures 

of the genotyped variants were implemented before association analysis (Supplementary 

Table 1b). Genotypes were imputed using the appropriate ancestry-matched reference panel 

for all cohorts from the 1000 Genomes Project (Phase I version 3, March 2012 release) with 

either minimac100 or IMPUTE101. The metrics for pre-imputation quality control varied 

amongst studies, but genotype call rate thresholds were set at high level (≥0.95 for both 
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CREAM and 23andMe). These metrics were similar to our previous GWAS analyses26,27; 

details per cohort can be found in Supplementary Table 1b.

GWAS per study

For each CREAM cohort, a single marker analysis for the SphE (in diopters) phenotype was 

carried out using linear regression adjusting for age, sex and up to the first five principal 

components. All non-family-based cohorts removed one of each pair of relatives (after 

detection using either GCTA or IBS/IBD analysis). In family-based cohorts, a score test-

based association was used to adjust for within-family relatedness102. For the 23andMe 

participants, Cox proportional hazards analysis testing AODM as the dependent variable 

were performed as previously described27, with P calculated using a likelihood ratio test for 

the single marker genotype term. We used an additive SNP allelic effect model for all 

analyses.

Centralized quality control per study

After individual GWAS, all studies underwent a second round of quality control (QC). 

Quantile-quantile, effect allele frequency, P – Z test, standard error – sample size, and 

genomic control inflation factor plots were generated for each individual cohort using 

EasyQC103 (Supplementary Figure 2.1 (Supplementary Figure 2.1.1 and 2.1.2), 2.2 

(Supplementary Figure 2.2.1 – 2.2.5), 2.3 (Supplementary Figure 2.3.1 and 2.3.2). All 

analytical issues discovered during this QC step were resolved per individual cohort.

GWAS meta-analyses

The GWAS meta-analyses were performed in three stages (Supplementary Figure 1). In 

Stage 1, European (CREAM-EUR, N=44,192) and Asian (CREAM-ASN, N=11,935) 

participants from the CREAM cohort were meta-analysed separately. Subsequently, all 

CREAM cohorts (CREAM-ALL) were meta-analysed. Variants with MAF < 1% or 

imputation quality score < 0.3 (info metric of IMPUTE) or Rsq < 0.3 (minimac) were 

excluded. A fixed effects inverse variance-weighted meta-analysis was performed using 

METAL104. 1,063 variants clustering in 24 loci (Supplementary Table 2) were genome-wide 

significant (P=5.0×10−8). All 37 loci that were previously found by CREAM and 23andMe 

using genotype data imputed to the HapMap II reference panel were replicated (pBonferroni 
1.85×10−3), and 36 of the 37 were genome-wide significant (Supplementary Table 2)26,27. In 

Stage 2, a meta-analysis of the two 23andMe cohorts (N23andMe_V2=12,128; 

N23andMe_V3=92,165) was performed, using similar filtering but a lower MAF threshold (< 

0.5%). A total of 5,205 genome-wide significant variants clustered in 112 loci 

(Supplementary Table 2).

In Stage 3, CREAM-ALL and 23andMe samples were combined using a fixed effects meta-

analysis based on P value and direction of effect. In all stages, each genetic variant had to be 

represented by at least half of the entire study population and at least represented by 13 

cohorts in CREAM and one cohort in 23andMe. For SNPs with high heterogeneity (at P < 

0.05), we also performed a random effects meta-analysis using METASOFT50. We chose a 

different weighting scheme due to the differences in effect size scaling; 23andMe used a less 

accurate phenotype variable (AODM); i.e. the effective sample size of the 23andMe was 
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approximately equivalent to the effective sample size of CREAM-ALL (Figure 2b), thus 

weighting by (1/√neffective) yielded a final weighting ratio of 1:1105. Genome-wide statistical 

significance was defined at P < 5.0 × 10−8 106.

All three meta-analysis stages were performed under genomic control. Study specific and 

meta-analysis lambda (λ) estimates are shown in Supplementary Figure 6; to check for 

confounding biases (e.g. cryptic relatedness and population stratification), LD score 

intercepts from LD score regressions per ancestry were constructed (Supplementary Figure 

7)30. To check the robustness of signals, we performed a conventional random effects 

models using METASOFT, fixed effects models weighted on sample size and on weights 

estimated from standard error per allele tested using METAL (Supplementary Table 2 and 

Supplementary Table 3).

Manhattan (modified version of package ‘qqman’), regional, box, and forest plots were 

made using R version 3.2.3 and LocusZoom107. An overview of the Hardy Weinberg P of all 

index variants per cohort can be found in Supplementary Table 4. The comparison between 

refractive error and age-of-onset was performed using the LDSC program30.

Population stratification and heritability calculations

Each study assessed the degree of genetic admixture and stratification in their study 

participants through the use of principal components. Homogeneity of participants was 

assured by removal of all individuals whose ancestry did not match the prevailing ancestral 

group. We used genomic inflation factors to control for admixture and stratification, and 

performed genomic-controlled meta-analysis to account for the effects of any residual 

heterogeneity. To further distinguish between inflation from a true polygenic signal and 

population stratification, we examined the relationship between test statistics and linkage 

disequilibrium (LD) with LDSC. CREAM-EUR, CREAM-ASN and 23andMe were 

evaluated separately; variants not present in HapMap3 and MAF < 1% were excluded. SNP 

heritability estimates were calculated using LDSC for the same set of genetic variants.

Locus definition and annotation

All study effect size estimates were oriented to the positive strand of the NCBI Build 37 

reference sequence of the human genome. The index variant of a locus was defined as the 

variant with the lowest P in a region spanning a 100 kb window of the most outer genome-

wide significant variant of that same region. We annotated all index variants using the web-

based version of ANNOVAR108 based on UCSC Known Gene Database35. For variants 

within the coding sequence or 5′ or 3′ untranslated regions of a gene, that gene was 

assigned to the index variant (note that this led to more than 1 gene being assigned to 

variants located within the transcription units of multiple, overlapping genes). For variants in 

intergenic regions, the nearest 5′ gene and the nearest 3′ gene were assigned to the variant. 

Index variants were annotated to functional RNA elements when described as such in the 

UCSC Known Gene Database. We used conservation (PhyloP109) and prediction tools 

(SIFT39, Mutation Taster110, align GVGD40,41, PolyPhen-236) to predict the pathogenicity 

of protein-altering exonic variants.
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Conditional signal analysis

We performed conditional analysis to identify additional independent signals nearby the 

index variant at each locus, using GCTA-COJO32. We transformed the Z-scores of the 

summary statistics to beta’s using the following formula: 

Standard Error = 1/2 ∗ N ∗ MAF 1 − MAF . We performed the GCTA-COJO analysis32, 

utilizing summary-level statistics from the meta-analysis on all cohorts. Linkage 

disequilibrium (LD) between variants was estimated from the Rotterdam Study I-III.

Replication in UK Biobank

The UK Biobank Eye & Vision (UKEV) Consortium performed a GWAS of refractive error 

in 95,505 participants of European ancestry aged 37-73 year with no history of eye 

disorders33. Refractive error was measured using an autorefractor; SphE was calculated per 

eye and averaged between the two eyes. To account for relatedness a mixed model analysis 

with BOLT-LMM was used111, including age, gender, genotyping array, and the first 10 

principal components as covariates. Analysis was restricted to markers present on the HRC 

reference panel112. We performed lookups for all independent genetic variants identified in 

our Stage 3 meta-analysis and conditional analysis. For 16 variants not present in UKEV, we 

performed lookups for a surrogate variant in high LD (r2 >0.8). When more than one 

potential surrogate variant was available, the variant in strongest LD with the index variant 

was selected. Six variants were not available for replication: one variant (rs188159083) was 

not present on the array nor was a surrogate available in UKEV and five variants showed 

evidence of departure from HWE (HWE exact test P<3.0×10−4).

Post-GWAS analyses

We performed two gene-based tests to identify additional significant genes not found in the 

single variant analysis. First, we applied the gene-based test implemented in fastBAT42 to 

the per-variant summary statistics of the meta-analysis of all European cohorts (23andMe 

and CREAM-EUR). We used the default parameters (all variants in or within 50kb of a 

gene) and focused on variants with a gene-based P <2 × 10−6 (Bonferroni correction based 

on 25,000 genes) and the per-variant P >5 × 10−8. Secondly, we applied another gene-based 

test in EUGENE43 which only includes variants which are eQTLs (GTex, blood113). 

EUGENE tests an hypothesis predicated on eQTLs as key drivers of the association signal. 

eQTLs within 50kb of a gene were included in the test. Genes with EUGENE P <2 × 10−6 

(and not found in the single variant analysis) were considered to be significant. Finally, we 

used functional annotation information from genome-wide significant loci to reweigh results 

using fgwas (version 0.3.6444). Fgwas incorporates functional annotation (e.g. DNase I-

hypersensitive sites in various tissues and 3′UTR regions) to reweight data from GWAS, and 

uses a Bayesian model to calculate a posterior probability of association. This approach is 

able to identify risk loci that otherwise might not reach the genome-wide significance 

threshold in standard GWAS. Details about this approach can be found in Supplementary 

Note 5.
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Refractive errors and myopia risk prediction

To assess the risk of the entire range of refractive errors, we computed polygenic risk scores 

(PGRS) for the population-based Rotterdam Studies (RS) I, RS-II and RS-III using the P and 

Z scores from a meta-analysis on CREAM-ALL and 23andMe, excluding the RS I-III 

cohorts. Only variants with high imputation quality (IMPUTE info score > 0.5 or minimac 

Rsq > 0.8) and MAF > 1% were considered. P-based clumping was performed with 

PLINK114, using an r2 threshold of 0.2 and a physical distance threshold of 500 kb, 

excluding the MHC region. This resulted in a total of 243,938 variants. For each individual 

in RS-I, RS-II and RS-III (N = 10,792), PGRS were calculated using the –score command in 

PLINK across strata of P thresholds: 5.0 × 10−8, 5.0 × 10−7, 5.0 × 10−6, 5.0 × 10−5, 5.0 × 

10−4, 0.005, 0.01, 0.05, 0.1, 0.5, 0.8 and 1.0. The proportion of variance explained by each 

PGRS model was calculated as the difference in the R2 between two regression models; one 

where SphE was regressed on age, sex, the first five principal components, and the other also 

including the PGRS as an additional covariate. Subsequently, AUCs were calculated for 

myopia (SphE ≤ -3 SD) versus hyperopia (SphE ≥ +3 SD).

Genetic correlation between ancestries

We used Popcorn48 to investigate ancestry-related differences in the genetic architecture of 

refractive error and myopia. Popcorn takes summary GWAS statistics from two populations 

and LD information from ancestry-matched reference panels, and computes genetic 

correlations by implementing a weighted likelihood function that accounts for the inflation 

of Z scores due to LD. Pairwise analyses were carried out using the GWAS summary 

statistics from 23andMe (N = 104,292), CREAM-EUR (N = 44,192) and CREAM-EAS (N 
= 9,826) meta-analyses. Only SNPs with MAF ≥ 5% were included, resulting in a final set 

of 3,625,602 SNPs for analyses involving 23andMe and 3,642,928 SNPs for the CREAM-

EUR versus CREAM-EAS analysis. Reference panels were constructed using genotype data 

from 503 European and 504 East Asian individuals sequenced as part of the 1000 Genomes 

Project (release 2013-05-02 downloaded from: ftp.1000genomes.ebi.ac.uk). The reference 

panel VCF files were filtered using PLINK114 to remove indels, strand-ambiguous variants, 

variants without an “rs” id prefix, and variants located in the MHC region on chromosome 6 

(chr6:25,000,000-33,500,000; Build 37).

Analysis between phenotypes

To evaluate consistency of genotypic effects across studies that employed different 

phenotype definitions, we compared effect sizes from GWAS studies of either SphE or 

AODM in Europeans, i.e. CREAM-EUR (N = 44,192) or 23andMe (N = 104,293) 

respectively. Marker-wise additive genetic effect sizes (in units diopters per copy of the risk 

allele) for SphE were compared against those (in units log(HR) per copy of the risk allele) 

for AODM. Data was visualised using R. Genetic correlation between the two phenotypes 

SphE and AODM was calculated using LD score regression. This analysis included all 

common SNPs (MAF > 0.01) present in HapMap3.
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Evidence for functional involvement

In order to rank genes according to biological plausibility, we scored annotated genes based 

on our own findings and published reports for a potential functional role in refractive error. 

Points were assigned for each gene on the basis of 10 categories (details on the methodology 

per category are provided in Supplementary Note 4): internal replication of index genetic 

variants in the individual cohort GWAS analyses through Bonferroni corrections (CREAM-

ASN, CREAM-EUR and 23andMe; pBonferroni 1.19 × 10−4), evidence for eQTL using the 

FUMA32 and extensive look-ups in GtEx, evidence of expression in the eye in 

developmental and adult ocular tissues, presence of an eye phenotype in knock-out mice 

(MGI and IMPC database), presence of an eye phenotype in humans (OMIM; see URLs, 

DisGeNET115), location in a functional region of a gene (wANNOVAR; see URLs), 

presence of the gene in a significant enriched functional pathway with false discovery rate < 

0.05 (DEPICT49), presence of the gene in the gene priority analysis of DEPICT with false 

discovery rate < 0.05 and the presence of the gene in the canonical pathway analysis of 

Ingenuity Pathway Analysis (IPA; See URLs). Furthermore, we performed a systematic 

search for each gene to assess its potential as a drug target (SuperTarget116, STITCH117, 

DrugBank118, PharmaGkb119). All information derived from this study and literature were 

used to annotate genes to retinal cell types.

Genetic pleiotropy

To investigate overlap of genes with other common traits, we performed a look-up in the 

GWAS catalog using FUMA. Multiple testing correction (i.e. Benjamini-Hochberg) was 

performed. Traits were significantly associated when adjusted P ≤ 0.05 and the number of 

genes that overlap with the GWAS catalog gene sets was ≥ 2.

Data availability statement—The summary statistics of the Stage 3 meta-analysis are 

included in Supplementary Data 3 of this published article. In order to protect the privacy of 

the participants in our cohorts, further summary statistics of Stage 1 (CREAM) and Stage 2 

(23andMe) will be available upon request. Please contact c.c.w.klaver@erasmusmc.nl 

(CREAM) and/or apply.research@23andMe.com (23andMe) for more information and to 

access the data.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. GWAS meta-analysis identifies 140 loci for refractive error (Stage 3)
(a) We conducted a meta-analysis of genome-wide single-variant analyses for >10 million 

variants in 160,420 participants of CREAM and 23andMe (Stage 3). Shown is the 

Manhattan plot depicting P for association, highlighting new (P < 5 × 10−8 for the first time; 

green) and known (dark grey) refractive error loci previously found using HapMap II 

imputations from Kiefer et al.27 and Verhoeven et al.26 (Table 1). The horizontal lines 

indicate suggestive significance (P=1×10−5) or genome-wide significance (P=5×10−8). (b) 
We compared the minor allele frequencies of the 140 discovered index variants based on 

1000G (blue: Europeans; red: Asians) to the minor allele frequencies of the previously found 

genetic variants based on HapMap II (green: Europeans; purple: Asians). Observed are an 

increase in genetic variants found across all minor allele frequency bins increase, including 

the lower minor allele frequency bins. (c) We annotated the 167 loci to genes using 

wANNOVAR. Shown are the distances between index variants from the nearest gene and its 

gene on the 5′ and/or 3′ site. The majority of index variants (84%) were at a distance of 

less than 50 kb up- or downstream from the annotated gene.
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Figure 2. Correlation of statistical significance and effect size of SNPs based on spherical 
equivalent (SphE) in diopters and age of diagnosis of myopia (AODM) in years
(a) P comparison of all genetic variants with P < 1.0 × 10−3 (n=7249) between CREAM 

meta-analysis (Stage 1) and 23andMe (Stage 2) meta-analysis. Shown is the overlap (red) 

and the difference (green) in P signals per cohort for genetic variants. Green genetic variants 

are only genome wide significant in either CREAM or 23andMe. Blue: genetic variants with 

P between 5.0 × 10−8 and 1.0 × 10−3 in both CREAM and 23andMe. (b) Comparison of 

effects (SphE and logHR of AODM in years; P < 1.0 × 10−3; n=7249) between CREAM and 

23andMe. Same color code was applied as in (a). The effects were concordant in their 

direction of effect on refractive error. We performed a simple linear regression between the 

effects of CREAM and 23andMe; the regression slope is -0.15 diopters per logHR of 

AODM in years.
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Figure 3. Risk of refractive error per decile of polygenic risk score (Rotterdam Study I-III, 
N=10,792)
Distribution of refractive error in subjects from Rotterdam Study I–III (N=10,792) as a 

function of the optimal polygenic risk score (including 7,303 variants at P ≤ 0.005 

explaining 7.8% of the variance of SphE; Supplementary Table 9). Mean OR of myopia 

(black line) was calculated per polygenic risk score category using the lowest category as a 

reference. High myopia (SphE ≤-6 D), moderate myopia (SphE >-6 D & ≤ −3 D), low 

myopia (SphE > −3 D & <-1.5 D), emmetropia (SphE ≥ −1.5 D and ≤ 1.5 D), low hyperopia 

(SphE > 1.5 D & < 3 D), moderate hyperopia (SphE ≥ 3 D & 6 D), high hyperopia (SphE ≥ 

6 D).
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Figure 4. Visualization of the DEPICT gene-set enrichment analysis based on loci associated with 
refractive error and the correlation between the (meta)gene sets
(a) Shown are the 66 significantly enriched reconstituted gene sets clustered into thirteen 

meta gene sets based on the gene set enrichment analysis of DEPICT (pairwise Pearson 

correlations; P < 0.05). All genetic variants with a P < 1 × 10−5 in the GWAS meta-analysis 

of stage 3 (n=21,073) and an FDR < 0.05 were considered. (b) Visualization of the 

interconnectivity between gene sets (n=13; pairwise Pearson correlations; P < 0.05) of the 

meta gene set ‘Detection of Light Stimulus’ (GO:0009583). (c) Visualization of the 

interconnectivity between gene sets (n=27; pairwise Pearson correlations; P < 0.05) of the 

largest meta gene set ‘Thin Retinal Outer Nuclear Layer’ (MP:0008515). In all panels, 

(meta)gene sets are represented by nodes colored according to statistical significance, and 

similarities between them are indicated by edges scaled according to their correlation; 

Pearson’s r ≥ 0.2 are shown in panel (a) and Pearson’s r ≥ 0.4 are shown in panel (b,c).
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Figure 5. Genes ranked according to biological and statistical evidence
Genes were ranked (orange) based on 10 equal categories which can be divided in four 

categories: internal replication of genetic variant in more than two cohorts (purple; CREAM-

EUR, CREAM-ASN and/or 23andMe), annotation (light blue; genetic variant harboring an 

exonic protein altering variant or non-protein altering variant, genetic variant residing in a 5′ 
or 3′ UTR region of a gene or transcribing an RNA structure), expression (yellow; eQTL, 

expression in adult human ocular tissue, expression in developing ocular tissue), biology 

(dark yellow; ocular phenotype in mice, ocular phenotype in humans), pathways (green; 

DEPICT gene-set enrichtment, DEPICT gene prioritization analysis and canonical pathway 

analysis of IPA). We assessed genes harboring drug targets (salmon red), but did not assign a 

scoring point to this category.

*Only one point can be assigned in the category ‘ANNOTATION’, even though it has four 

columns (i.e. a genetic variant is located in only 1 of these four categories).
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Figure 6. Schematic representation of the human eye, retinal cell types, and functional sites of 
associated genes
We assessed gene expression sites and/or functional target cells in the eye for all genes using 

our expression data and literature and data present in the public domain. The genes appear to 

be distributed across virtually all cell types in the neurosensory retina, in the RPE, vascular 

endothelium and extracellular matrix; i.e., the route of the myopic retina-to-sclera signalling 

cascade.
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