
Quantifying precision in cardiac diffusion tensor imaging with 
second-order motion-compensated convex optimized diffusion 
encoding

Eric Aliotta1,2, Kévin Moulin1, Patrick Magrath3, and Daniel B. Ennis1,2,3

1Department of Radiological Sciences, University of California, Los Angeles, California, USA

2Biomedical Physics Interdepartmental Program, University of California, Los Angeles, California, 
USA

3Department of Bioengineering, University of California, Los Angeles, California, USA

Abstract

Purpose—To quantify the precision of in vivo cardiac DTI (cDTI) acquired with a spin echo, 

first- and second-order motion-compensated (M1M2), convex optimized diffusion encoding 

(CODE) sequence.

Methods—Free-breathing CODE-M1M2 cDTI were acquired in healthy volunteers (N = 10) at 

midsystole and diastole with 10 repeated acquisitions per phase. 95% confidence intervals of 

uncertainty in reconstructed diffusion tensor eigenvectors (E⃗1, E⃗2, E⃗3), mean diffusivity (MD), 

fractional anisotropy (FA), and tensor Mode were measured using a bootstrapping approach. 

Trends in observed tensor metric uncertainty were evaluated as a function of scan duration, image 

SNR, cardiac phase, and bulk motion artifacts.

Results—For midsystolic scans including 5 signal averages (scan time: ~5min), the median 

myocardial 95% confidence intervals of uncertainties were: E⃗1: 15.5 ± 1.2°, E⃗2: 31.2 ± 3.5°, E⃗3: 

21.8 ± 3.1°, MD: 0.38 ± 0.02 × 10−3mm2/s, FA: 0.20 ± 0.01, and Mode: 1.10 ± 0.08. Uncertainty 

in all parameters increased for diastolic scans: E⃗1: 31.9 ± 7.1°, E⃗2: 59.6 ± 6.8°, E⃗3: 40.5 ± 6.4°, 

MD: 0.52 ± 0.09 × 10−3 mm2/s, FA: 0.23 ± 0.01, and Mode: 1.57 ± 0.11. Diastolic cDTI also 

reported higher MD (MDDIA = 1.91 ± 0.34 × 10−3 mm2/s vs. MDSYS = 1.58 ± 0.09 × 10−3 mm2/s, 

P = 8 × 10−3) and lower FA values (FADIA = 0.32 ± 0.06 vs. FASYS = 0.37 ± 0.03, P = 0.03).

Conclusion—cDTI precision improved with increasing nondiffusion-weighted (b = 0) image 

SNR, but gains were minimal for SNR ≥ 25 (~10 averages). cDTI precision was also sensitive to 

intershot bulk motion artifacts, which led to better precision for midsystolic imaging.
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1 | INTRODUCTION

Cardiac DTI (cDTI) is an emerging contrast-free technique for quantifying microstructure in 

healthy1,2 and diseased myocardium.3–5 cDTI provides quantitative maps of local 

cardiomyocyte orientation, the organization of myolaminar sheetlets, and microstructural 

anisotropy by probing the diffusion of water molecules contained in myocardial tissue. 

Increases in the mean diffusivity (MD) have been linked to the presence of fibrosis in 

myocardial infarction as well as changes in extracellular volume in hypertrophic 

cardiomyopathy. 6,7 Changes in myocardial sheetlet dynamics have also been demonstrated 

in hypertrophic and dilated cardiomyopathies using cDTI.3–5

As with any quantitative measure, several sources of error lead to uncertainty for in vivo 

cDTI measurements. These include, but are not limited to, noise, image distortions, and 

physiological variability. Noise can have a large impact on cDTI-derived parameters due to 

the low SNR of the acquired diffusion-weighted images that stems from the diffusion-

induced signal decay and the general reliance on single-shot EPI (SS-EPI) readouts. Image 

distortions can also be substantial in cDTI due to eddy currents and sharp magnetic 

susceptibility gradients at the heart–lung interface that are exacerbated by the SS-EPI 

readout.8 Physiological variability is also significant in cDTI due to the presence of bulk 

cardiac and respiratory motion as well as pulsatile blood flow. This variability can lead to 

both corrupted individual measurements (i.e., intrashot motion effects) and mismatches 

between measurements (i.e., intershot variability between encoding directions or 

repetitions).

The propagation of these errors from the acquired image data through diffusion tensor 

reconstruction and on to derived tensor metrics is a complex problem that is not easily 

modeled. As a result, a nonparametric bootstrapped approach has been proposed for 

quantifying uncertainty in diffusion tensor orientation9 and shape10,11 in neurological DTI. 

This approach provides insight into the uncertainty underlying neurological DTI 

experiments,12,13 but these results do not directly apply to in vivo cDTI for several reasons. 

Namely, cardiomyocytes are approximately 10 times thicker in diameter than neuronal 

fibers,14,15 which leads to diffusion tensors with substantially lower fractional anisotropy 

(FA) and consequently larger uncertainties in measures of fiber orientation. 9 Cardiac motion 

also necessitates the use of highly specialized pulse sequences, which employ either motion-

compensated diffusion encoding gradients16–19 or a STEAM with diffusion encoding spread 

across multiple heart beats.20,21 Furthermore, even when using motion-compensated 

diffusion encoding schemes, slight variations in heart rate and breathing patterns throughout 

an acquisition contribute a degree of uncertainty to the measured tensor metrics. The impact 

of bulk physiological motion also depends on the pulse sequence timing within the cardiac 

cycle17,19,22; thus, uncertainty is expected to depend on the cardiac phase selected for 

triggering, although this has not yet been characterized.

Currently, the many sources of variability and moderate SNR present in cDTI acquisitions 

result in the standard practice of acquiring multiple repetitions of the protocol and averaging 

the repeated data to increase SNR and thereby improve measurement precision. This, of 

course, increases the already long cDTI scan times that arise from the need for multiple 
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diffusion encoding directions and both cardiac and respiratory triggering (or multiple 

repeated breath holds). Therefore, it is useful to quantify the precision of cDTI-derived 

tensor metrics made within clinically viable scan durations.

The first objective of this study was to use bootstrapped uncertainty measurements to 

characterize the precision of in vivo spin echo EPI (SE-EPI) cDTI measurements made using 

first- and second-order motion-compensated (M1M2) convex optimized diffusion encoding 

(CODE)19 at 2 points in the cardiac cycle (midsystole and diastole). The second objective 

was to quantify the precision of diffusion tensor orientation (i.e., tensor eigenvectors) and 

shape (i.e., tensor invariants) for cDTI acquisitions with scan times between 1 and 5min per 

slice to identify practical guidelines for efficiently measuring high-quality microstructural 

information.

2 | THEORY

Diffusion tensor uncertainty can be measured for a cDTI acquisition using bootstrapped 

resampling to generate a distribution of tensors that reflects the uncertainty inherent in the 

measurement. This was previously described for calculating uncertainty in the tensor 

primary eigenvector, which was referred to as the “cone of uncertainty.”9 This technique is 

briefly described herein and extended to quantify other aspects of diffusion tensor 

uncertainty, including the secondary and tertiary eigenvectors as well as several tensor 

invariants.

This bootstrapping technique requires the cDTI acquisition to be repeated twice to generate 

2 independent but matched datasets. From these, a composite dataset can be generated by 

randomly selecting 1 image for each diffusion encoding direction from the 2 sets. This 

composite dataset, which includes 1 randomly chosen image for all diffusion encoding 

directions, can then be used to reconstruct a diffusion tensor at each voxel with a least 

squares linear regression. This process can then be repeated a large number of times 

(Nbootstrap samples) to generate a distribution of diffusion tensors at each voxel, which is much 

more efficient than actually acquiring Nboot repetitions. Eigensystem decomposition can 

then be performed on each diffusion tensor to determine their eigenvectors (E1, E2, and E3) 

and eigenvalues (λ1, λ2, λ3). Tensor invariant quantities such as MD, FA, and tensor 

Mode23 can also be extracted from each diffusion tensor.

The precision of each eigenvector, Ej, can then be measured by first calculating the dyadic 

mean, ψj of the Nboot Ej vectors, and then measuring the angle, θj between each vector Ej 

and ψj. Ej precision (dEj) can then characterized by the 1-sided 95% confidence interval 

(95CI) of the resultant θj distribution. A 1-sided 95CI is used because by definition θj ≥ 0. 

Note that dE1 as described here is exactly the cone of uncertainty as described by Jones.9

Analogous measures of tensor invariant precision can be determined by analyzing their 

distributions across the Nboot repetitions (as done for FA in Pajevic and Basser10). Unlike the 

θj distributions describing vector uncertainties, which by definition are bounded between 0° 

and 90°, the invariants form 2-sided distributions and can meaningfully exhibit negative 

deviations from the median value. As such, their uncertainty should be represented by a 2-
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sided 95CI, which need not be symmetric about the median. The width of this 95CI (i.e., the 

upper bound minus the lower bound) can then be used to represent the underlying 

uncertainty (dMD, dFA, dMode).

3 | METHODS

3.1 | cDTI acquisition

cDTI were acquired in healthy volunteers (N = 10) on a 3.0T scanner (Siemens Prisma, 

Siemens HealthCare, Erlangen, Germany) after obtaining informed consent under an 

institutional review board-approved study using a SE-EPI DWI pulse sequence with convex 

optimized diffusion encoding with first- and second-order moment compensation (CODE-

M1M2) to impart bulk motion compensation and reduce the TE, thereby increasing SNR.19 

The acquisition included a single midventricular slice, 1 b value (b = 350 s/mm2) along 12 

diffusion encoding directions plus 1 nondiffusion-weighted image (b = 0), and 2.0 × 2.0 × 

5.0mm spatial resolution with inner volume excitation to reduce the FOV in the phase 

encode direction24 (FOV = 200 × 160 mm, GRAPPA factor 2,25 full-Fourier, water-only 

excitation, 90° flip angle, TE = 65 ms). There was a small b-value increase (<1 s/mm2) due 

to the imaging gradients and to use of a previously described concomitant field correction,19 

but only the nominal b value was used for reconstruction. For each scan, 3 dummy scans 

were performed prior to acquiring images in order to reach a steady state. Local second-

order B0 shimming was performed in a focused shim box containing only the left ventricular 

(LV) myocardium to minimize susceptibility artifacts in the posterior wall. Imaging was 

timed to an end-expiratory respiratory phase using a liver-dome navigator trigger, which 

resulted in a TR of 1 respiratory cycle (average TR = 4.2 ± 1.4 s). Separate acquisitions were 

performed with ECG trigger delays timed to: 1) midsystole (fixed trigger delay = 100 ms); 

and 2) late diastole (subject-specific trigger delay determined by identifying diastasis from a 

balanced steady-state free precession cine image, which resulted in trigger delays of 705 

± 63 ms across all subjects). Ten signal repetitions were acquired in a single free-breathing 

scan at each cardiac phase to facilitate boot-strapped uncertainty measurement for datasets 

containing up to 5 averages (scan time: ~10 min per cardiac phase). Prior to reconstruction, 

all images were coregistered using a rigid transformation to correct for differences in cardiac 

position between scans.

3.2 | Image quality evaluation

Whereas SNR generally increases with additional signal averages ( SNR ∝ Navg), it can 

vary substantially in space and between subjects due to differences in subject geometry and 

coil positioning. It is thus useful to quantify voxel-wise image SNR to more completely 

observe the relationship between SNR and cDTI uncertainty. Because 10 repetitions of each 

image were acquired, it was possible to map SNR for each reference DWI (b = 0) 

acquisition. In order to estimate SNR from images that included several averaged repetitions, 

a bootstrapped approach similar to that described above was used. For example, for Navg = 5 

averages, 5 b = 0 images were randomly chosen (with replacement) from the acquired set of 

10 and magnitude averaged together (complex averaging was not performed because image 

intensities were sufficiently above the noise floor with respect to the moderate b value 

used26. This process was repeated to generate a set of 300 images that each included 5 
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averages. SNR was then calculated at each voxel by dividing the mean signal value across 

the 300 images by their SD (no SNR differences were observed when the image sample size 

was increased beyond 300). SNR maps were generated in this manner for Navg = 1–10.

Because all pulse sequence parameters and setup conditions were held constant between 

acquisitions at midsystole and diastole, we can assume that any differences observed 

between the acquisitions arise predominantly from physiological variability. Furthermore, if 

cardiac bulk motion effects are present in the images, it is expected that they will vary subtly 

from beat to beat27 and lead to voxel-wise signal fluctuation between repetitions. To 

quantify this effect, the coefficient of variation (CoV) (i.e., the SD normalized by the mean) 

of the voxel-wise signal intensity across all 10 repetitions of each direction (CoVDTI) was 

measured for both cardiac phases.

3.3 | cDTI precision measurement

Subsets of the set of 10 cDTI repetitions were first randomly selected and averaged together 

to reflect acquisitions with scan times ranging from approximately 1 to 5 min (Navg = 1 to 

Navg = 5). A second subset was then randomly generated for each case to facilitate 

bootstrapping. The uncertainty in tensor eigenvectors (dE1, dE2, dE3) and invariants (dMD, 

dFA, dMode) was then measured from the 2 subsets as described above. These calculations 

used Nboot = 1000 boot-strapped samples, which was determined to be sufficient to generate 

stable statistical measures of uncertainty (i.e., increasing Nboot did not alter the measured 

tensor uncertainties) and is in line with previous studies.2

Histograms of the uncertainty in each tensor quantity were generated for all LV voxels 

within each subject for Navg = 1 to Navg = 5 at both midsystole and diastole. Median and 

maximum likelihood values were then extracted from each histogram. Global LV histograms 

of each quantity’s uncertainty were also generated from data pooled across all subjects at 

each cardiac phase.

Uncertainty was then characterized as a function of b = 0 image SNR on a voxel-wise basis. 

This was done by first binning all voxels by SNR (bin size: 2) and then generating 

histograms of uncertainty across all voxels contained in each SNR bin. The median 

uncertainty was then measured within each bin, and the 95CI of the median was measured 

using bootstrapping. Significant differences between midsystole and diastolic median 

uncertainties were identified by nonoverlapping 95CIs.

In order to examine the impact of variation in bulk motion-induced signal attenuation on 

precision, the same process was then carried out to measure the median uncertainty of each 

parameter as a function of CoVDTI (bin size: 2%). The impact of tensor size and shape on 

precision was also evaluated by measuring the median uncertainties as functions of MD and 

FA (as reconstructed with 5 averages, MD bin size: 8 × 10−5mm2/s, FA bin size: 0.02).

3.4 | Tensor evolution with varying signal averages

The dependence of eigenvector and tensor invariant parameters was also evaluated as a 

function of Navg. To do so, diffusion tensors were reconstructed from cDTI image subsets, 

including the full range of acquired signal averages (Navg = 1–10; note that all 10 averages 

Aliotta et al. Page 5

Magn Reson Med. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



could be used for this analysis, which did not require bootstrapped resampling). Maps of E⃗1, 

E⃗2, E⃗3, MD, FA, and tensor Mode were then generated for each subset.

Helix angle (HA) maps were also generated by measuring the elevation angle of the 

projection of E⃗1 relative to the local circumferential tangent vector, C⃗.1 C⃗ was defined by a 

b-spline vector fit to the endocardial and epicardial surfaces, as defined by 10 manually 

defined seed points on each endocardial and epicardial surface.1 The average HA slope 

across the wall, HApitch, was calculated using a linear regression between HA and percent 

wall depth for each subject. Percent wall depth values were calculated at each LV voxel by 

linearly interpolating between the endo- and epicardial splines (where percent wall depth = 

0% at the epicardial surface and 100% at the endocardial surface). Myocardial sheet angles 

(SA), SA2 and SA3 were then defined by the angles between the circumferential-long axis 

plane and E⃗2 and E⃗3, respectively.1 Median myocardial HA, |SA2|, and |SA3|were then 

calculated for each subject for Navg = 1–10. The median (m) SD (σ) of myocardial MD, FA, 

and Mode were also calculated for each subject for Navg = 1–10 using the region between 

the endo- and epicardial splines described above to form the LV mask. Statistical differences 

between each median and SD across all subjects as a function of Navg were identified using 

1-way analysis of variation. If analysis of variation yielded significant differences, medians 

and SDs from Navg = 1 were compared with Navg ≥ 2 using paired t tests at a P = 0.05 

significance level.

3.5 | Cardiac phase dependence of tensor parameters

Median myocardial HA, HApitch, |SA2|, |SA3|, MD, FA, and tensor Mode were also 

compared between midsystole and diastole with Navg = 10 using paired t tests.

4 | RESULTS

4.1 | Image quality evaluation

cDTIs from all imaging experiments were included in analysis (no data was discarded). The 

average heart beat duration (R-R interval) was 1006 ± 101 ms, and the ECG trigger delays 

(TD) used for systolic (SYS) and diastolic imaging (DIA) were TDSYS = 100 ± 0 ms, which 

corresponded with 35.4% ± 2.6% of peak systolic contraction and TDDIA = 705 ± 63 ms. 

The average scan time was 9.1 ± 3.1 min per cardiac phase (54.7 ± 18.5 s per cDTI average).

The mean nondiffusion-weighted (b = 0) image SNR in the LV increased from 8.0 ± 1.9 

with Navg = 1 to 22.3 ± 6.1 with Navg = 10. No significant differences in SNR were observed 

between midsystolic and diastolic b = 0 images (8.2 ± 1.1 vs. 7.9 ± 2.6, P = NS). However, 

median myocardial CoVDTI was significantly lower in midsystole than in diastole (16.7% 

± 2.2% vs. 25.8% ± 9.1%, P = 0.006), which indicates higher signal variability during 

diastole.

4.2 | cDTI precision measurement

Primary, secondary, and tertiary eigenvector (E⃗1, E⃗2, and E⃗3) maps, along with eigenvector 

uncertainty maps (dE1, dE2, and dE3) and myocardial uncertainty histograms, are shown for 

a midsystolic acquisition with 5 averages from a single subject in Figure 1. Diastolic maps 
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for the same subject are shown in Figure 2. Qualitatively, regions with increased uncertainty 

corresponded with regions with less coherent eigenvectors, and uncertainty was generally 

higher in the diastolic phase. cDTI images, along with reconstructed maps of MD, FA, and 

tensor Mode, as well as maps of each parameter’s uncertainty and histograms of myocardial 

uncertainty, are shown for the same subject (also with 5 averages) in the midsystolic cardiac 

phase in Figure 3. Analogous maps are shown for a different subject in the diastolic phase in 

Supporting Information Figure S1.

Histograms of tensor eigenvector uncertainty are shown in Figure 4 for midsystolic and 

diastolic cDTI, with Navg = 1–5 pooled across all subjects at systole (Figures 4A–4C) and 

diastole (Figures 4D–4F). Uncertainty decreased with increasing signal averages; however, 

differences were minimal for Navg ≥ 4 in systole (small differences between Navg = 4 and 5 

were observed in diastole). Uncertainty was generally larger for cDTI tensor metrics 

acquired in diastole than in midsystole. Analogous histograms of tensor invariant uncertainty 

(MD, FA, and Mode) are shown in Figure 5. Invariant uncertainty also decreased with 

increasing Navg, however, with minimal differences for Navg ≥ 4 in systole (small differences 

were again observed between Navg = 4 and 5 in diastole). Differences in tensor invariant 

uncertainty histograms between midsystolic and diastolic cDTI were minimal.

The median and maximum likelihood values from the uncertainty histograms generated for 

each subject are shown for Navg = 5 in Table 1. Median and maximum likelihood 

uncertainties were lower in midsystole than in diastole for all parameters.

Median eigenvector and invariant uncertainties are plotted as functions of b = 0 image SNR 

in Figure 6. Uncertainty in all measured tensor metrics dropped consistently with increasing 

SNR. Uncertainty dropped faster with respect to SNR for midsystolic data, particularly in 

dE1, dE2, dE3, and dMode, for which significant differences were observed between phases 

for intermediate SNRs as highlighted in Figure 6. Whereas the maximum observed SNR 

across all subjects and voxels was 95, histograms were only generated for SNR ≤ 50 due to a 

lack of sufficient data for meaningful statistics— as seen in the histograms of b = 0 SNR 

pooled across all subjects and cardiac phases, which are plotted for Navg = 1–5 in Supporting 

Information Figure S2.

Median uncertainty values were plotted as functions of CoVDTI, MD, and FA in Figure 7. 

There were clear increases in uncertainty for all parameters with increasing CoVDTI (Figures 

7A, 7B). Figure 7C shows global histograms of CoVDTI, which demonstrates the increased 

CoVDTI in the diastolic phase. Uncertainty in all parameters decreased with increasing MD 

up to approximately 1.5 × 10−3mm2/s and then increased at larger MDs for all parameters 

other than FA, which leveled off (Figures 7D, 7E). With increasing FA, uncertainty in all 3 

tensor eigenvectors, MD, and Mode generally decreased, whereas FA uncertainty increased 

(Figures 7G, 7H). Histograms of myocardial MD and FA did not vary substantially between 

cardiac phases, although a larger population of MD values >2.5 × 10−3mm2/s were observed 

in diastole (Figures 7F, 7I).
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4.3 | Tensor evolution with varying signal averages

Measures of HA, HApitch, |SA2|, or |SA3| as a function of signal averages at either 

midsystole or diastole were not significantly different. Median myocardial values are 

tabulated for each parameter in Table 2.

Median (m) and SD (σ) of MD, FA, and Mode across the LV myocardium are plotted for all 

subjects as functions of Navg in Figure 8. No significant changes in mMD were observed 

between any number of averages at either midsystole or diastole. Compared with Navg = 1, 

σMD decreased significantly with Navg ≥ 2 in midsystole (σMD,1avg = 0.95 ± 0.2 × 10−3 

mm2/s vs. σMD,2avg = 0.67 ± 0.2 × 10−3 mm2/s, P = 8 × 10−4) and with Navg ≥ 6 in diastole 

(σMD,1avg = 1.39 ± 1.1 × 10−3 mm2/s vs. σMD,6avg = 0.63 ± 0.2 × 10−3 mm2/s, P = 0.05).

Compared with Navg = 1, mFA decreased significantly with Navg ≥ 3 at both midsystole 

(mFA,1avg = 0.46 ± 0.05 vs. mFA,3avg = 0.41 ± 0.04, P = 0.01) and diastole (mFA,1avg = 0.48 

± 0.08 vs. mFA,3avg = 0.38 ± 0.06, P = 4 × 10−3). Compared with Navg = 1, σFA decreased 

significantly with Navg ≥ 2 in midsystole (σFA,1avg = 0.24 ± 0.03 vs. σFA,2avg = 0.21 ± 0.03, 

P = 0.03) and with Navg ≥ 3 in diastole (σFA,1avg = 0.22 ± 0.03 vs. σFA,3avg = 0.18 ± 0.04, P 
= 0.01).

A significant increase in mMode was observed in midsystole with Navg ≥ 4 compared with 

Navg = 1 (mMode,1avg = 0.22 ± 0.6 vs. mMode,4avg = 0.31 ± 0.9, P = 0.02). Compared with 

Navg = 1, σMode decreased significantly with Navg ≥ 3 in midsystole (σMode,1avg = 0.57 

± 0.02 vs. σMode,1avg = 0.56 ± 0.01, P = 0.03). No corresponding significant differences 

were observed in diastole.

4.4 | Cardiac phase dependence of tensor parameters

With Navg = 10, median myocardial MD was significantly lower in midsystole than in 

diastole (MDSYS = 1.58 ± 0.09 × 10−3 mm2/s vs. MDDIA = 1.91 ± 0.34 × 0−3mm2/s, P = 8 × 

10−3), whereas FA was significantly higher in midsystole (FASYS = 0.37 ± 0.03 vs. FADIA = 

0.32 ± 0.06, P = 0.03). No significant differences were observed between cardiac phases for 

any of the other parameters examined.

5 | DISCUSSION

The observed increase in bulk motion artifacts (higher CoV-DTI) in diastolic cDTI compared 

with midsystolic cDTI is consistent with previous reports of the second-order motion-

compensated diffusion encoding scheme.19 M1M2 nulled diffusion encoding relies on an 

assumption that cardiac motion can be well described by a second-order polynomial (i.e., 

only velocity and acceleration terms). Physiologic deviations from this assumption lead to 

bulk motion artifacts that appear as localized myocardial signal loss. If these artifacts are not 

reproducible from beat to beat, this leads to intershot signal fluctuations across cDTI images 

and consequently to elevated CoVDTI measurements. The lower CoVDTI values observed 

during systole thus indicate that systolic motion is more reproducible from beat to beat than 

diastolic motion. It is important to note, however, that CoVDTI is not sensitive to systematic 

bias caused by higher order motion that is consistent from beat to beat. This means that the 

low CoVDTI observed in systole does not necessarily imply complete motion compensation. 
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However, the low level of intersubject variability in median midsystolic myocardial MD 

(Figure 8A) suggests that systolic motion is well characterized by second-order motion and 

thus is largely compensated by the CODE M1M2 nulled gradient waveform.

Diastolic motion, although smaller in magnitude than contractile motion, accords with a 

larger CoVDTI than systolic motion. This indicates that diastolic motion does not meet the 

intrashot second-order assumption as closely (i.e., it is not fully compensated by the M1M2 

nulling) and is more dependent on intershot (beat to beat) variations and changes in heart 

rate. These effects combine to cause deviations in the cDTI signal during an acquisition that 

result in elevated CoVDTI. This is also reflected in an increase in intersubject variability in 

median myocardial MD in the diastolic phase (Figure 8B).

The strong positive correlation between CoVDTI and median uncertainty (Figures 7A, 7B) 

indicates that bulk motion artifacts are a major driver of diffusion tensor uncertainty and 

explains the greater degree of uncertainty observed in diastolic cDTI.

The negative correlation between eigenvector uncertainty and MD for MD up to 

approximately 1.5 × 10−3 mm2/s (Figures 7D, 7E) indicates that sufficient diffusion 

weighting should be achieved to minimize uncertainty, echoing previous reports.13,23,28 On 

the other hand, the increasing uncertainty with increasing MD beyond 1.5 × 10−3 mm2/s is 

likely caused by bulk motion effects. The negative correlation between eigenvector 

uncertainty and FA (Figures 7G, 7H) indicates that the achievable precision will likely vary 

in patients with conditions that reduce microscopic anisotropy such as diffuse fibrosis.29

The uncertainty in diastolic diffusion tensor metrics could have been reduced by employing 

specialized image postprocessing algorithms to remove bulk-motion image artifacts such as 

constrained reconstruction30 or maximum intensity projection.27,31 These correction 

strategies would likely reduce the effects of physiological variability but limit the SNR gains 

from acquiring repeated acquisitions by omitting some of the acquired data. It is worth 

noting that this effect can be mitigated through postprocessing denoising techniques such as 

principal component analysis,31 which will have an unknown impact on tensor accuracy, 

precision, and optimal scan efficiency. It is also possible that a TR correction to account for 

heart rate variability, which was not implemented in this work, could reduce uncertainty.

Uncertainty varied substantially between tensor parameters and the 95CIs were the smallest 

for E⃗1, MD, and FA; and they were the largest for E⃗2, E⃗3, and Mode. This indicates that SNR 

and scan time requirements vary depending on the parameters of interest in a given study. To 

contextualize these uncertainties, it is useful to consider examples of expected physiological 

variability. For example, the global HApitch value of 1.2% ± 0.2°/% observed in this work 

(which is in line with other in vivo studies5,32 indicates an inherent range of myofiber 

orientations present in each imaging voxel. Assuming an LV wall thickness of 10mm and 

2.0mm in-plane spatial resolution, each voxel will occupy approximately 20% of wall depth. 

Consequently, each voxel should contain a range of myofiber orientations, which vary by as 

much as 20° to 25°, thus placing a reasonable upper bound on the expected precision of E ⃗1. 

For a 5-min acquisition (5 averages, SNR~18), the maximum likelihood and median E⃗1 
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precision were both well within this bound for midsystolic cDTI: dE1 = 9.7 ± 1.0° and dE1 = 

15.4 ± 1.2°, respectively (Table 1).

In comparison to our observed eigenvector uncertainties, an ex vivo study of cDTI in rat 

hearts reported mean dE1, dE2, and dE3 values of 3.7° ± 0.2°, 10.9° ± 0.4°, and 10.6° ± 0.5°, 

respectively.2 However, this study was performed at high field (9.4T), employed gradients 

capable of amplitudes >10 × of standard clinical hardware (1T/m), and did not contend with 

physiological motion. Furthermore, the 0.1mm spatial resolution protocol resulted in 

substantially lower range of intravoxel myofiber orientations and thus less physiological 

variability within each voxel.

Our observed midsystolic uncertainties are consistent with Stoeck et al., who reported 

comparable E1 uncertainties and lower E2 uncertainties from 2 repeated measurements, with 

a similar M1M2 compensated SE-cDTI method in in vivo swine but with longer scans (14 

signal averages).33

Another example of expected physiological diffusion tensor variability is the 0.9 × 10−3 

mm2/s MD increase observed in myocardial infarcts compared with healthy tissue observed 

by Nguyen et al.16 For the purpose of identifying infarcts, MD precision should thus be 

sufficiently small to detect this difference. The median MD uncertainty was within this 

difference for even just 1 average in midsystole (median dMD = 0.73 ± 0.04 × 10−3 mm2/s). 

However, the uncertainty histogram for 1 average (Figure 5) shows that nearly 40% of 

voxels exhibited MD uncertainties ≥ 0.9 × 10−3 mm2/s, a number that reduced to 11% with 5 

averages (median dMD = 0.38 ± 0.02 × 10−3 mm2/s).

Our results indicate that little benefit in precision is achieved by increasing SNR beyond 

approximately 25 (Figure 6), which in this study corresponded to an approximately 10 min 

acquisition (i.e., 10 averages). Note that this study was conducted on a 3.0T clinical system 

with high-performance gradient hardware (Maximum gradient amplitude (Gmax) = 76 

mT/m), which reduces the minimum TE (65 ms) for the cDTI protocol compared with more 

commonly available gradient hardware sets (Gmax = 40 mT/m and TEMin = 85 ms). The 

baseline SNR on these systems will consequently be lower than those reported here—and 

will thus require longer scans to achieve the same degree of uncertainty. Further scan time 

increases will also be required for imaging at 1.5T or for nonoptimized M1M2-compensated 

diffusion encoding schemes with longer TEs.

Conversely, no significant changes in median myocardial tensor parameters or their SDs 

were achieved by increasing scan time beyond approximately 4 min, which corresponded 

with b = 0 image SNR = 16.0 ± 3.8 (i.e., 4 averages) (Figure 8). With low SNR (Navg<4), we 

observed an upward bias in FA and a downward bias in Mode, which are both consistent 

with published reports based on numerical simulations.23 Notably, no significant differences 

in median MD were observed between any number of signal averages. This indicates that 

MD measurement accuracy is very robust to variability and does not require long scan times. 

Whereas all reconstructions were performed using linear least squares, it has been shown 

that this can introduce bias in the presence of noise, and that this bias can be mitigated by 
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using nonlinear least squares.34 It is thus possible that nonlinear fitting could reduce the scan 

time requirements for accurate reconstruction.

The only significant differences observed between cardiac phases were an increase in MD 

and a decrease FA in diastole relative to midsystole. It is likely that the increase in MD in 

diastole stems from both the increased sensitivity to bulk motion in this phase19 and the 

increased variability of diastolic motion from beat to beat. The FA decrease may be due to 

an increase in myocardial blood volume in diastole, which contributes an isotropic diffusive 

compartment. This comes in contrast to the increase in FA in diastole observed with 

STEAM cDTI.35 However, this increase was observed in comparison to peak systolic 

measurements as opposed to the midsystolic phase examined in this work.

The steepening of the secondary sheet angle in diastole compared with peak systole 

previously observed was not observed in this study. This may arise, in part, because the 

midsystolic phase imaged (TDSYS = 100 ms corresponded with 35% of peak systole) does 

not correspond with a fully contracted myocardium, which limits the observable differences 

in sheetlet mobility. Furthermore, the relatively large E⃗2 uncertainties indicate that the 

CODE-M1M2 method may not be as sensitive to sheetlet mobility, possibly because of the 

short diffusion times of the CODE-M1M2 sequence. This may also lead to sorting errors that 

can flip the order of eigenvectors, which could explain the secondary peaks in E⃗1, E⃗2, and E⃗3 

uncertainty observed at 90°.

This study only examines the precision in SE-EPI cDTI. Substantial differences may be 

observed in STEAM cDTI, which generally reports higher FA (FASTEAM~0.5–0.635,36 vs. 

FASE~0.3–0.4 reported here and elsewhere36 values than spin echo data, possibly due to the 

longer diffusion “mixing times” that allow diffusing molecules to probe larger length scales 

during diffusion encoding. The higher effective FA will likely reduce the inherent 

uncertainty in E1. This may also reduce uncertainty in tensor Mode measurements, which 

can distinguish planar and linear diffusion anisotropy and have shown sensitivity to 

microstructural changes in pacing-induced heart failure37 but were relatively imprecise in 

this study. However, STEAM cDTI has half the baseline SNR of SE-EPI cDTI and also 

double the scan time due to the need for 2 heartbeats per diffusion encode, which results in 

lower SNR efficiency.36 Currently, however, it is unclear how the tradeoffs between FA and 

SNR efficiency affect the relative tensor uncertainty for the STEAM approach.

The number of unique diffusion encoding gradient orientations sampled in a DTI acquisition 

also impacts measurement precision.12 Although studies in neurological and skeletal muscle 

tissue provide guidance in this regard (the 12-direction sampling scheme was used based on 

such guidance12,38, it remains an open question whether additional signal averages or 

diffusion encoding directions more efficiently improve the precision of in vivo cDTI. 

Furthermore, it is unclear how to best employ EPI acceleration techniques such as parallel 

imaging and partial Fourier, which have complex relationships with image SNR in that they 

reduce SNR efficiency but often permit shorter TEs. Partial Fourier also has the added effect 

of increasing bulk motion sensitivity.39 The b value of 350 s/mm2 used in this study is lower 

than the optimal values proposed by Jones13 based on noise propagation (~700 s/mm2 for 

the cardiac diffusivities observed in this study) or by Scott et al.28 for STEAM cDTI (750 
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s/mm2). The b value of 350 s/mm2 was chosen for this spin echo cDTI protocol to 

empirically balance bulk motion sensitivity, diffusion-weighted contrast, and SNR. However, 

the optimal b value and its effect on optimal scan efficiency for spin echo cDTI precision 

have yet to be determined and should be the focus of future study.

Although it would be interesting to observe the progression of tensor precision with Navg>5, 

the bootstrapped technique used in this work requires a repeated acquisition and thus can 

only quantify uncertainties for datasets containing half of the acquired 10 averages. Model-

based techniques such as the wild bootstrap,40 however, can quantify precision without a 

repeated acquisition but require assumptions of the underlying uncertainties. It is unclear 

whether these approaches can be successfully applied to in vivo cDTI, and they have not 

been examined in this work.

6 | CONCLUSION

Acceptable levels of precision in E⃗1, MD, and FA were achieved in a 5-min (per slice) free-

breathing scan when using the CODE-M1M2 SE-EPI cDTI approach in vivo. Precision 

improved with increasing b = 0 image SNR, but gains were minimal for SNR ≥ 25, which 

corresponded with a ~10-min scan with this protocol. Lower uncertainty was observed in 

midsystolic compared to diastolic acquisitions, indicating that bulk cardiac motion effects 

are more consistently compensated by the M1M2 approach during midsystole.
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FIGURE 1. 
Maps of eigenvector orientations (A) for 1 subject with 5 averages from a midsystolic 

cardiac phase with corresponding eigenvector orientation 95CI uncertainty maps (B) and b = 

0 image SNR maps (C). Qualitatively, regions with increased uncertainty correspond with 

regions of eigenvector incoherence. Overall, uncertainty in E2 was greater than uncertainty 

in E1 and E3, a trend that was observed in all subjects.

95CI, 95% confidence interval; E, eigenvector.
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FIGURE 2. 
Maps of eigenvector orientations (A) for the same subject shown in Figure 1 with 5 averages 

from a diastolic cardiac phase with corresponding eigenvector orientation 95CI uncertainty 

maps (B) and b = 0 image SNR maps (C). Overall, greater uncertainty was observed in 

diastole than in systole.
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FIGURE 3. 
Example systolic images with b = 0 and 350 s/mm2 with 5 averages and a histogram of LV b 
= 0 SNR(A). Maps of tensor MD(B), FA (C), and Mode (D), with corresponding 

uncertainties and LV histograms. dMD was in general low compared with myocardial MD 

values, whereas dFA was somewhat closer to myocardial FA. Mode was not well separated 

from dMode.

FA, fractional anisotropy; LV, left ventricular; MD, mean diffusivity.
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FIGURE 4. 
Histograms of uncertainty in tensor eigenvectors pooled from all LV voxels from all subjects 

at midsystole (A, B, C) and diastole (D, E, F) from acquisitions with Navg = 1–5. 

Uncertainty decreased with additional signal averages, but differences were minimal for 

Navg ≥ 4. Uncertainty was generally larger for diastolic cDTI.
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FIGURE 5. 
Histograms of uncertainty in tensor invariants pooled from all LV voxels from all subjects at 

midsystole (A, B, C) and diastole (D, E, F) from acquisitions with Navg = 1–5. Differences 

between midsystolic and diastolic cDTI were minimal.
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FIGURE 6. 
Plots of median uncertainty in tensor eigenvalues (A) and invariants (B) as a function of b = 

0 image SNR at midsystole (solid lines) and diastole (dotted lines). Median uncertainties and 

95CI of the medians (not shown) were calculated from uncertainty distributions across all 

voxels and subjects with a particular b = 0 SNR (binned in SNR increments of 2) across 

images with Navg = 1–5. Significant differences between midsystole and diastole were 

identified by nonoverlapping 95CI and are indicated by shaded regions between the plots. 

dE1, dE2, dE3, and dMode were significantly lower at midsystole for moderate SNRs. 

Although differences in dMD or dFA were observed between phases, these differences did 

not reach statistical significance for any SNR bin.avg, average.
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FIGURE 7. 
Plots of median uncertainty in tensor eigenvalues (left column) and invariants (center 

column) as functions of CoVDTI (top row), MD (middle row), and FA (bottom row), with 

Navg = 5 and pooled across all subjects and cardiac phases. Histograms of CoVDTI, MD, and 

FA are also shown (right column) for midsystole and diastole. Median values were 

calculated from uncertainty distributions across all voxels and subjects with a particular 

CoVDTI, MD, or FA. Uncertainty in all parameters increased with increasing CoVDTI, 

indicating a strong sensitivity to bulk-motion– induced signal variations. This likely explains 

the increased uncertainty observed in diastolic cDTI, which had significantly higher 

CoVDTI. Uncertainty in all parameters decreased with increasing MD up to approximately 

1.5 × 10−3 mm2/s and then increased (aside from FA, which leveled off). With increasing 

FA, uncertainty in all 3 tensor eigenvectors, MD, and Mode generally decreased, whereas 

FA uncertainty increased. CoV, coefficient of variation; cDTI, cardiac DTI.
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FIGURE 8. 
LV medians (m) and SDs (σ) of MD (A), FA (B), and Mode (C) from midsystolic (left) and 

diastolic (right) cDTI with Navg = 1–10. Lines and error bars represent the population means 

and SDs across all subjects, and dots represent individual subject values. LVSDs decreased 

with increasing Navg for all parameters but with diminishing changes with Navg ≥ 4. Median 

FA values decreased with increasing Navg, whereas median Mode values increased. Median 

MD values did not change with increasing Navg.
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