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Multiple resident cell types contribute to maintaining the

structure and physiological function of the heart over the life

course. Cardiomyocyte proliferation supports scar free

regeneration in the neonatal heart following injury, but a lower

rate of proliferation in the adult necessitates replacement by a

collagen scar to maintain ventricular integrity. In this short

review we discuss recent studies that have identified novel

roles for non-myocyte resident cells and the extracellular matrix

in supporting repair, as well as cardiomyocyte and vascular

regeneration, following myocardial infarction.
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Given the role of the heart as a muscular pump, cardiac

muscle cells, or cardiomyocytes, are clearly key among

resident cells. However, the majority of myocardial cells

are non-myocytes, including endothelial cells in the cor-

onary vasculature, lymphatics and endocardium, fibro-

blasts, pericytes, neurons, stem cells and immune cells

[1�], that each have homeostatic functions to maintain the

structure and function of the heart. Cardiac injury follow-

ing myocardial infarction (MI), is accompanied by necro-

sis, as well as programmed cell death by apoptosis and

necroptosis [2], that reduces cardiac contractile capacity.

Adult cardiomyocytes have very limited potential for

proliferation, and while this can increase to some extent

following injury, the rate is too slow (approx. 0.5–2% per

year) to replace the large number of cardiomyocytes lost

after MI [3��]. Therefore, following cardiomyocyte loss

the remaining tissue resident cells variably proliferate,

alter their phenotype, transdifferentiate, secrete enzymes,

chemical mediators and other intracellular material, for
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example exosomes [4], to reorganize the matrix and recruit

cells necessary for repair. This ensures the formation of

collagen scar to maintain the integrity of the heart and its

pump function. In this short review we shall focus on

recent discoveries with regard to cardiac resident cells,

their actions and interactions following injury.

Cardiomyocytes
Cardiomyocytes account for 20–35% of cells in mouse [5]

and human hearts [6], and despite rapid intervention to

restore blood supply following MI, significant numbers

are lost due to ischemia and to reperfusion injury. Far

from being an innocuous event, cardiomyocyte death

itself provides the first stimulus for repair by releasing

damage associated molecular patterns (DAMPS, or alar-

mins). These signals activate pattern recognition recep-

tors on neighboring cells, including fibroblasts [6,7], to

initiate recruitment of inflammatory cells. The engulf-

ment of apoptotic cardiomyocytes by macrophages, dur-

ing efferocytosis [8], and also by resident fibroblast

derived myofibroblasts [9��], additionally regulates infarct

repair by enhancing acquisition of a phenotype that

promotes inflammation of resolution.

Various progenitor cell populations can be identified in the

heart, although they are relatively rare, and the extent to

which they contribute to new cardiomyocyte generation

seems to be low [3��]. Although still an area of some

controversy, the current consensus is that any limited

generation of new cardiomyocytes that does occur is pre-

dominantly by cell cycle re-entry of existing adult cardi-

omyocytes [3��,10]. The challenge is now to understand

why the proliferation rate in the adult fails to achieve that

which supports full regeneration of the neonatal heart

following MI. Interestingly, the extracellular matrix is

emerging as an endogenous regulator of cardiac regenera-

tion. In a recent study Basset et al. [11�] provided evidence

for promotion of cardiomyocyte proliferation by extracel-

lular matrix derived agrin, through Yap and ERK mediated

signaling, enabling cardiac regeneration in neonatal mice

following MI. One of the potential roadblocks to cardiac

regeneration is the relatively high pressure within the adult

mammalian heart [10]. In this regard it is intriguing that

mechanical unloading in humans, following implantation

of a left-ventricular assist device, resulted in enhancement

of cardiomyocyte proliferation [12]. It is feasible to specu-

late that the associated changes in mechanical strain might

link extracellular matrix signaling to this outcome. Hypoxia

also enhances adult cardiomyocyte proliferation, through

alteration of redox signaling and mitochondrial mass, and
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this mechanism was accessed in vivo in the adult mouse by

exposure to hypoxic environment, resulting in improved

outcomes post-MI [13].

Endothelial cells
Endothelial cells (ECs) make up the largest proportion

(60%) of non-myocytes in the adult heart, at least in the

mouse [1�]. They have a number of essential roles in heart

development, in vascular homeostasis, in promoting car-

diomyocyte organization and survival, as well as in heal-

ing and regeneration post-ischemic injury. Following MI,

neovascularization increases the density of peri-infarct

vessels thus enhancing perfusion and limiting further loss

of cardiomyocytes around the infarct zone. Genetic-line-

age tracing has revealed that angiogenesis post-MI occurs

preferentially from pre-existing adult ECs, rather than

through transdifferentiation from other cell lineages [14].

These new data also suggest that recruited bone marrow

derived endothelial progenitor cells might be less impor-

tant for post-MI angiogenesis than previously proposed.

Effective neovascularization following MI requires mat-

uration of nascent vessels through acquisition of a mural

coat. Chen et al. have now shown that endocardial ECs

undergo endothelial to mesenchymal transition (EndMT)

to give rise to PDGFRb+ mural cells (pericytes and vas-

cular smooth muscle cells) during embryonic development

[15�]. As developmental programmes are frequently re-

initiated during remodeling in response to MI or pressure

overload, it will be of interest in future to investigate

whether neovascularization invokes this pathway, to com-

plement recruitment of resident pericytes during vessel

maturation [16]. Investigation of mechanisms for endoge-

nous promotion of angiogenesis continues to identify new

pathways that might be exploited to therapeutically

enhance angiogenesis in the post-MI setting by acting

directly on ECs, for example, CXCR7 [17], micro RNAs

[18] and long noncoding RNAs [19], or indirectly via

actions in other resident cells, for example, locally regen-

erated glucocorticoids [20]. The endothelium of lymphatic

vessels serves as a barrier to control fluid balance and

immune cell trafficking in maintenance of tissue homeo-

stasis. Lymphangiogenesis, the formation of new lym-

phatic vessels from pre-existing vessels, is also increased

post-MI [21]. While in other settings this can have detri-

mental effects, enhancement in the heart following admin-

istration of vascular endothelial growth factor (VEGF)-C

was reported to improve structural and functional remo-

deling post-MI [21]. Promotion of lymphatic vessel matu-

ration by apelin may offer further benefit [22�].

Vascular ECs are also a key site for regulation of inflamma-

tory cell recruitment following MI. Senescent ECs have

impaired capacity for inflammatory regulation [23], and this

may contribute to altered responses to myocardial injury in

aging. In addition to generation of mural cells, EndMT,

under the influence of TGFb and loss of signals maintaining

the EC phenotype, allows EC to contribute to the fibroblast
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population in the heart [24]. However, the importance of

these cells, relative to resident fibroblasts, in contributing

to scar formation remains the subject of debate [25].

Fibroblasts
Resident fibroblasts are among the most represented cell

populations of the heart, although a recent elegant study

has shown that the proportion may be <20% in the mouse

heart, significantly less than previously suggested [1�].
Nevertheless they have a key homeostatic role in synthesis

of the cardiac extracellular matrix, and undergo phenotype

conversion to proliferative myofibroblasts following MI to

augment matrix production, ensuring scar formation [7].

The recent availability of new mouse strains that allow

tracking of fibroblast and myofibroblast behavior following

myocardial injury has helped to reveal a surprising diversity

in their roles [26�]. This includes the novel observation that

myofibroblasts phagocytose apoptotic cells in the heart

following MI [9��]. Knockout of the milk fat globule-

epidermal growth factor 8, that is secreted by myofibro-

blasts to enable phagocytosis, resulted in impaired clear-

ance of apoptotic cells, and increased mortality [9��]. (Myo)

fibroblasts are an important source of inflammatory med-

iators in the heart, including those responsible for neutro-

phil recruitment [7,27]. The fibroblast phenotype is deter-

mined by inputs from other cells in the microenvironment

within the heart, for example DAMPS, and interleukin

(IL)-1 that promote inflammation, and apoptotic cells that

are anti-inflammatory. Crosstalk with ECs and with macro-

phages ensures promotion of angiogenesis and matrix

synthesis. There is much still to learn about cardiac

(myo) fibroblasts [28], and the ability to target genetic

modification to fibroblasts or specifically to myofibroblasts

[29], will undoubtedly lead to greater understanding of

their roles and interactions during wound repair. Trans-

differentation of fibroblasts to ECs can occur during mes-

enchymal to EC transition (MEndT) in vitro, but whether

this contribute significantly to EC generation in vivo is less

clear [14]. In situ reprogramming of cardiac fibroblasts to

cardiomyocytes by administration of transcription factors

or microRNAs has generated excitement in the regenera-

tive medicine field, and the search for small molecule

alternatives to allow pharmacological intervention holds

much promise for translation of this approach [30].

Pericytes
Pericytes are smooth muscle like cells of mesenchymal

origin that surround capillary ECs of the heart, and also have

multipotent progenitor potential [31]. Cell–cell contact

between pericytes and EC maintains them in a quiescent

state, and initiation of angiogenesis requires the detach-

ment of pericytes to enable EC migration (Figure 1). Vice

versa, pericyte recruitment stabilizes and matures nascent

vessels. In a new study, Teichert et al. [16] have revealed an

essential role for angiopoietin/Tie 2 signaling in regulating

these interactions via the Tie 2 receptor expressed on

pericytes, in addition to ECs. In other tissues, pericytes
Current Opinion in Physiology 2018, 1:46–51
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Figure 1
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New blood vessel formation and maturation requires communication between endothelial cells (ECs) and pericytes (PCs) through paracrine

factors. (a) A quiescent capillary: cell–cell contact between ECs (in white) and PCs (in yellow) maintains capillaries in a quiescent state, in part

through the actions of pericyte derived angiopoetin 1 (Ang 1) on EC Tie 2 receptors. (b) Cardiac injury (MI) triggers neovascularisation (from pre-

existing adult ECs — in pink) and ECs release Ang 2 that prevents access of Ang 1 to EC Tie 2 receptors and allows EC sprouting and pericyte

detachment. Sprouting ECs also release MMPs that promote pericyte detachment and EC migration. (c) PDGFB is released by ECs during the

elongation process. Pericytes expressing the PDGFRb are recruited to stabilize and mature the new vessels (d). Maturation is also promoted by

the binding of Ang 1 to pericyte Tie 2 receptors.
are important regulators of immune cell recruitment

[32,33�,34,35], and they are also likely to have this role

in the heart following MI. Pericytes are progenitors of

multiple cell types in vitro, and when administered to

the mouse heart in vivo following MI can contribute to

development of new cardiomyocytes, albeit in limited

manner [31]. Pericytes can also assume a collagen synthe-

sizing phenotype and contribute to tissue fibrosis [36]. The

extent to which pericytes behave as mesenchymal cells in
vivo is the subject of some controversy [37], and further

lineage tracking studies are required to investigate the roles

of these cells during repair and regeneration in the heart.

Immune cells
Immune cells, including monocytes and neutrophils, are

rapidly recruited in large numbers to the heart following

injury [38], but there is also a significant resident repre-

sentation before injury, including macrophages and small

populations of B and T cells, in the mouse heart [1�].

Mast cells, long established as resident cardiac immune

cells, function as key effectors of the innate immune

response and their strategic perivascular location allows

preformed stores of inflammatory mediators to be released

into the blood when they rapidly degranulate following MI

[38]. Recent studies have shown that mast cell derived
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renin activates the local renin-angiotensin system [39], and

mast cell derived chymase can degrade insulin-like growth

factor-1 [40], increasing ischemic cardiac injury and detri-

mental remodeling following MI.

Although a resident macrophage population (Figure 2)

has only relatively recently been described in the heart

[41,42], it is the subject of intense current scrutiny with

regard to roles in physiology and pathophysiology [43].

Originating from the fetal yolk sac and liver, with an

increasing contribution from bone marrow derived cells in

the adult [44] (Figure 1), the resident cardiac macrophage

population is relatively sparse in healthy hearts, and

phagocytically active, consistent with a janitorial homeo-

static role [42,45]. Identification of increased macrophage

density in the atrio-ventricular conducting system has

recently led to discovery of an unexpected role in facili-

tation of electrical conduction in the heart [46��]. Follow-

ing MI, resident macrophages [47], alongside fibroblasts

[27], release chemoattractant molecules that guide neu-

trophil recruitment to clear necrotic cardiomyocytes.

Given these key roles for resident macrophages it will

be interesting to know whether phenotypic changes in

response to age, obesity or systemic inflammation influ-

ence the likelihood of arrhythmia or the early inflamma-

tory response following MI. In the neonatal mouse heart,
www.sciencedirect.com
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Roles of resident macrophages in physiology and in pathophysiology following MI. Yolk-sac and fetal liver (YS/FL) derived macrophages that

predominate in the neonatal mouse heart are gradually replaced over the lifetime by bone-marrow (BM) derived macrophages that may provoke a

greater inflammatory response to injury. Macrophages have a phagocytic role in the healthy mouse heart and in the atrio-ventricular conducting

system are required for electrical signaling. Following MI, macrophages are required for angiogenesis in neonatal and adult mice, and may have a

role in regulating cardiomyocyte proliferation under hypoxic conditions, at least in neonates. Macrophages are important for scar removal in

neonatal mice to ensure scar free regeneration, but influence fibroblast activation in the adult to ensure formation of a replacement scar in the

absence of efficient regeneration.
macrophages are required for cardiac regeneration, where

their role is to support vascularization and scar resolution

[48], although it has been suggested that they also pro-

mote cardiomyocyte proliferation under conditions of

hypoxia [49]. Resident cardiac macrophages do not pro-

liferate in situ in response to a Th2 immune stimulus [45],

unlike resident populations in some other tissues, and are

rapidly outnumbered by macrophages derived from

recruited monocytes soon after MI [41]. An important

area for future investigation will be the status of the

resident macrophage population after inflammation reso-

lution and how this influences longer term cardiac remo-

deling and the response to subsequent cardiovascular

insult, be it ischemia or pressure overload.

Future directions
As our understanding of the molecular mechanisms

involved in myocardial injury, repair and regeneration

increases what emerges is a picture of integrated signaling

among the multiple resident cell types of the myocar-

dium, and between these cells and those recruited to the

heart. The extracellular matrix is coming to the fore [50]

with its ability to communicate changes in biomechanical

strain and to secrete molecules that influence the cells

that it surrounds. The microenvironment in the infarct,

peri-infarct and remote myocardium varies during injury
www.sciencedirect.com 
and repair and determines the phenotype and activation

status of cells including fibroblasts, endothelial cells and

macrophages, ensuring progression from removal of dead

cells to their replacement by scar in the adult, or by new

myocardial tissue in the neonate. Aging and co-morbid-

ities such as obesity and diabetes will undoubtedly influ-

ence these cellular interactions. As we move closer to

effective enhancement of cardiomyocyte proliferation in

the adult heart, the challenge will be to bring these

elements together so that we can better understand

how to promote myocardial regeneration and scar

removal, while maintaining the integrity and pump func-

tion of the heart. Advances in molecular imaging [51],

single cell sequencing and in silico modeling of biological

processes [52] may best provide the means to achieve this

end.
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