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3D Printed porous polyamide 
macrocapsule combined with 
alginate microcapsules for safer 
cell-based therapies
Laura Saenz del Burgo1,3, Jesús Ciriza   1,3, Albert Espona-Noguera1,3, Xavi Illa2,3, Enric Cabruja2, 
Gorka Orive1,3, Rosa María Hernández1,3, Rosa Villa2,3, Jose Luis Pedraz1,3 & Mar Alvarez   2

Cell microencapsulation is an attractive strategy for cell-based therapies that allows the implantation 
of genetically engineered cells and the continuous delivery of de novo produced therapeutic products. 
However, the establishment of a way to retrieve the implanted encapsulated cells in case the 
treatment needs to be halted or when cells need to be renewed is still a big challenge. The combination 
of micro and macroencapsulation approaches could provide the requirements to achieve a proper 
immunoisolation, while maintaining the cells localized into the body. We present the development and 
characterization of a porous implantable macrocapsule device for the loading of microencapsulated 
cells. The device was fabricated in polyamide by selective laser sintering (SLS), with controlled porosity 
defined by the design and the sintering conditions. Two types of microencapsulated cells were tested 
in order to evaluate the suitability of this device; erythropoietin (EPO) producing C2C12 myoblasts and 
Vascular Endothelial Growth Factor (VEGF) producing BHK fibroblasts. Results showed that, even if 
the metabolic activity of these cells decreased over time, the levels of therapeutic protein that were 
produced and, importantly, released to the media were stable.

Bioactive cell encapsulation has emerged as a promising tool for the treatment of patients with various chronic 
disorders including diabetes mellitus, central nervous system diseases, and cardiovascular diseases1–4. In fact, cell 
encapsulation is one of the current leading methodologies aimed at the immobilization of allogeneic or xeno-
geneic cells in a semipermeable but immunoprotective membrane to deliver biological products to patients. Thus, 
the implantation of primary cells, stem cells or ex vivo genetically modified microencapsulated cells provides a 
possible alternative for the continuous delivery of recombinant proteins. At the same time, this approach pro-
vides a physical barrier to mask the implant from the host´s immune surveillance following in vivo implantation 
without the need for systemic immunosuppression, as it prevents direct cell-to-cell contact and thus, avoids the 
activation of cytotoxic CD8+ T cells5–7. One of the main drawbacks of microcapsules implantation is their dis-
semination through the surroundings of the implanted area of the body, complicating the microcapsules removal 
if required, either when cells need to be renewed, the therapy provokes severe side effects in the patient, or once 
the therapy reaches its goal. Therefore, it is critical to devise systems to maintain long-term cell survival and 
consistent production of the therapeutic factor, but, at the same time, allow the retrieval of the implanted cells.

Macroencapsulation devices are a promising approach to solve this limitation as they can maintain the encap-
sulated cells in a known location and, importantly, they can improve even more the immunoisolation of the 
cells8,9. The materials used for the development of macro-devices are mechanically more stable than the ones 
used for microencapsulation, and therefore, they are more secure. However, these devices for clinical applications 
have to meet essential requirements. In fact, the overall device geometry would determine the cell content and, 
therefore, the amount of therapeutic molecule that would be secreted10,11. Also, encapsulated cells need to be alive 
in the long-term and this, importantly, relies on the supply of oxygen and nutrients12. Because oxygen diffusion 
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is slower than oxygen consumption, this is the limiting factor in cell survival. The progress in macroencapsu-
lation has been limited due to, on the one hand, the inefficient mass transport of oxygen and nutrients under 
extravascular setting, and, on the other hand, problematic blood coagulation and thrombosis under intravascular 
environments because the device is implanted into the vessels of the host by vascular anastomoses13–15. In addi-
tion, healing in the presence of synthetic medical devices is known to dramatically differ from normal wound 
healing, particularly due to the occurrence of chronic inflammation. Thus, in order to design a system that can be 
translated into the clinic, it is essential to use materials that comply with the specifications imposed by regulatory 
agencies for medical devices.

Currently, a small number of encapsulation systems have been applied clinically, and most of them have been 
aimed to recover endocrine pancreatic function (Encaptra, βAir, Sernova cell pouch). However, this technol-
ogy has opened a broad range of potential applications, reaching the clinical trial on the eye disease treatment 
(Neurotech) or the central nervous system (NTCELL® for Parkinson’s disease). Both, Neurotech and NTCELL, 
are based on an immunoisolating hollow-fiber membrane (NT device) with an internal scaffold and hold a phase 
II clinical study. The Encaptra device for subcutaneous implantation, commercialized by ViaCite, is as well based 
on a single immunoprotective membrane with a small pore size, and is currently under phase I/II clinical trials 
in combination with stem-cell technology. The main drawback of this approach based on small pore size mem-
branes is the poor oxygen and nutrients exchange that may affect the cell viability. At the same time, strategies 
for subcutaneous transplantation, which provides ready access to the graft, often fail because of the foreign-body 
inflammatory reaction and the formation of a fibrotic tissue around the graft16. The engineering of biomateri-
als could further improve neovascularization while minimizing fibrotic capsule formation17. The use of growth 
factors has as well demonstrated to increase the cell viability by achieving a faster revascularization18,19. Other 
approaches relay on the pre-vascularization of larger pore size (∼5 µm) polymeric implanted devices20,21, or 
cavities22,23, before cells allocation, combined with the use of systemic immunosuppression to prevent the host 
immune system from attacking the transplanted cells. With this approach, Theracyte device and the Sernova Cell 
Pouch, have reached clinical trials to restore pancreatic function8,24. More recently, 3D printing techniques have 
become a promising, cheap, and simple tool for scaffold and devices fabrication by using biocompatible materials 
with on-demand design and porosity25,26.

In contrast with the retrievable macroscale encapsulation devices mentioned before, in this work we pro-
pose the use of a double encapsulation barrier by combining the cell microencapsulation technology with 
the use of an external macro-device with an optimum larger pore size to enclose the microcapsules. The 
alginate-poly-L-lysine-alginate (APA) microcapsules would assure a correct immunoisolation when used  
in vivo. The molecular weight cut-off of this semi-permeable membrane lies in approximately 60–70 KDa, and, 
therefore, the entrance of IgG and IgM antibodies of the humoral immunity as well as the cells involved in the 
cellular immunity response are blocked. However, lower molecules necessary for cell survival such as glucose 
(180 Da) and carbon dioxide (44 Da) and secretary proteins from cells such as growth factors (6–50 KDa) can 
easily pass27,28. On the other hand, the external macro-device would maintain the total volume of the loaded 
microcapsules in the implantation site (Fig. 1A). The large size of the alginate microencapsulated cells (∼400 µm) 
respect to the non-encapsulated cells allows the fabrication of an external macro-device with a larger pore size, 
promoting the oxygen and nutrients exchange and probably the vascularization process. Avoiding the require-
ment of small pore size on the macrocapsule device opens the window to the use of 3D printing techniques with 
the ability to rapidly prototype different device designs and covering a new range of biocompatible materials. We 
fabricated polymeric implantable 3D devices, with controlled pore size, by using selective laser sintering (SLS), 
to allocate previously manufactured alginate-poly-L-lysine microcapsules containing either erythropoietin pro-
ducing C2C12 myoblasts (C2C12-EPO) or VEGF producing BHK fibroblasts (BHK-VEGF). Polyamide was chosen 
for the macro-device fabrication because it’s demonstrated biocompatibility and excellent mechanical properties 
(high mechanical strength and high flexibility). We evaluated the oxygen and nutrients exchange through the 
device membranes and the biocompatibility of the devices according to the international standards. Then, we 
deeply analyzed by different means the biological behavior of encapsulated cells and the production and release 
of the therapeutic proteins produced by the cells.

Results and Discussion
Macrocapsule design, fabrication and characterization.  One of the bottlenecks in macro-encapsula-
tion strategies is the large diffusion distance from neighboring blood vessels to the encapsulated cells (decreasing 
the oxygen and nutrients supply) and consequent reduction of long-term cell survival and functioning. To sur-
pass this problem, we chose a hollow thin disc design, looking to increase the device surface area and, therefore, 
increase the number of microcapsules in contact with the macrocapsule walls, avoiding the formation of several 
layers of microcapsules deep inside the macrocapsule where the oxygen and nutrients diffusion would be worse. 
Larger surface area would means larger vascularization area and, then, larger transport of oxygen and nutrient 
inside the device. The thickness of the macrocapsule walls (membrane) corresponds to a single sintered layer, of 
about 170 μm. This thickness is in the order of commercially available PTFE membrane thickness (100–250 μm) 
used in other kind of devices, and much smaller than other porous proposed macrocapsules with 600 μm wall 
thickness21.

The devices were designed with a disc shape of 22 mm external diameter, 20 mm internal diameter and interior 
cavity of 1.5 mm height, as shown in Fig. 1B. The interior cavity height would allow enclosing no more of three 
close-packed layers of microencapsulated cells (∼400 μm size), assuring that all the microcapsules are close to 
the device membranes, where the oxygen diffusion would be larger. A central pillar was included to avoid the 
membranes deformation by external pressure, which could break the microcapsules.
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Synthetic polymers are especially interesting for implant development, compared to natural polymers, given 
the lower stimulation of the immune system response, which would help avoiding the implant rejection by the 
host’s immune system and the low batch to batch variability29–31. However, synthetic polymers might show cyto-
toxicity problems, creating an important foreign body response when using them in implantable devices in direct 
contact with cellular environments. The devices were fabricated in polyamide because it has demonstrated high 
biocompatibility, flexibility and excellent mechanical properties. Polyamides are macromolecules with repeating 
units linked by amide bonds. Polyamide is commonly used in scaffolds and implants31 especially for bone recon-
struction32,33, and is already approved by the U.S. Food and Drug Administration (FDA). Beside the long-lasting 
tensile strength and high elasticity, polyamide is compatible with the standard sterilization processes (autoclave), 
cause minimal tissue reactivity and is able to prevent bacterial transmission31. It presents as well a very good 
chemical resistance, which ensures that possible drugs do not promote the material’s degradation. Using pol-
yamide allow the fabrication of flexible and durable thin membranes, which tolerate increasing the membrane 
porosity without compromising the macrocapsule mechanical stability. Polyamide can be easily manufactured by 
different technologies, including 3D printing.

Among various rapid prototyping technologies and 3D printers, selective laser sintering (SLS) has been found 
to be advantageous for devices fabrication due to its ability to process a wide range of biocompatible and bio-
degradable materials34, including polyamide. Besides being a rapid prototyping technique, SLS tolerates a large 
production in comparison with other rapid prototyping techniques with worse scalability. Usually, low cost rapid 
prototyping techniques are limited by the maximum resolution at both perpendicular and lateral dimensions. 

Figure 1.  (A) Sckeme of the double encapsulation approach (not at scale). (B) CAD design image of the device 
showing a hole and cross-sectioned device. (B) SLS fabricated test pattern (half-device) and 3D macrocapsule 
devices fabricated with different pore sizewith their corresponding optical images of the macrocapsule wall.  
(D) Pore length histograms.
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To circumvent this issue, porosity patterns with dimensions below or in the order of the laser spot size and the 
instrumentation lateral resolution were chosen, looking to achieve final pores with irregular shapes and dimen-
sions below the system resolution. Before the device fabrication, different porosities patters were designed to 
test the optimum pore distance and size to avoid the complete pore blocking during the fabrication process, or 
the fabrication of large pores that would lead to cells microcapsules leaking. Figure 1C shows the test pattern 
performed, where it can be clearly seen the different final results depending on the selected pore size and pitch.

Three different groups of devices, with different pore sizes and pitch, were fabricated and tested (as shown in 
Fig. 1C): D1, based on the fabrication of continuous sintered layer with no pattern, with a porosity related to the 
defects produced during the sintering process of a single layer; D2, based on a design pattern of square pores of 
300 × 300 μm, with a pitch of 300 μm; and D3, based in a pattern of square pores of 300 × 300 μm, with a pitch 
of 400 μm. The final porosity achieved in each device was checked by optical microscopy (Fig. 1C) and scanning 
electron microscopy (SEM) (Fig. 2). The devices were cut in half to analyze the porosity of a single membrane. The 
optical images in Fig. 1C show an evident increase in the pore size and pore density from D1 to D3. Increasing 
the pitch produces porous patterns closer to the initial design (still with a mean pore size smaller than the given 
value).

The pore size histograms were obtained by optical image analysis (Image J software). The histograms show a 
pore mean length of 31 ± 15 µm for D1 devices (maximum length of 74 µm), 40 ± 26 µm for D2 (maximum length 
of 101 µm) and 81 ± 5 µm for D3 (maximum length of 191 µm). The morphological study performed by SEM 
shows the induced-fusion of the polymeric particles, and the imperfections (pores) left after the sintering process 
of a single layer. Figure 2 shows a cross-section of the membrane. A clear difference is observed between the inner 
and the outer side of the membrane. In the outer side, the polyamide microparticles are completely fused forming 
a continuous porous layer along the cross-section, while in the inner side, the microparticles are only partially 
fused, keeping their round shape.

The diffusion of nutrients thought the macrocapsule membranes would be driven by the concentration gradi-
ent. Diffusion measurements were performed to determine the solute exchange through the macrocapsule device. 
We measured the diffusion of concentrated PBS solution, loaded into the macrocapsules, by measuring the con-
ductivity change produced on an external bath. During the measurements, the syringe used to fill the devices was 
maintained connected. The conductivity results in Fig. 3 show no difference on the ionic diffusion between D2 
and D3 porous devices. In contrast, slower diffusion occurs in the case of device D1. These results suggest that 
device D1 would have the worst performance in terms of nutrients diffusion and, therefore, in cell viability.

Biological evaluation of medical devices.  In general, for tissue engineering applications, a successful 
scaffold should possess an adequate porous microstructure and the correct mechanical integrity together with 
good biocompatibility35. The ISO 10993 series of standards is recognized in both the European Union and United 
States. According to the described international standard ISO 10993-5, we performed three different kinds of 
assays. On the one hand, we studied the direct contact cytotoxicity of the devices on the L929 cell line. As it is 
shown in Fig. 4a, the percentage of live cells after contacting these devices (direct contact test) was very high 
in all cases (above 80%), although statistically significant differences were observed among the three different 
devices. When the macrocapsule had a continuous membrane (D1), the number of dead cells was around 15% 
while the other two devices with a higher pore showed lower values, in the order of 5%. On the other hand, we 
also studied the cytotoxicity provoked by the contact of the leachate (medium that had been in contact with 
each of the devices, indirect test) on the cells (Fig. 4b). In this case, no significant differences were observed 
among the devices and we could measure a near to 100% viability. In accordance with the ISO assessment of the 
results, a reduction on cell viability by more than 30% is considered as a cytotoxic effect or a cytotoxic potential. 
Therefore, we can conclude that our tested macrocapsules, independently of the pores of their membrane, do not 
present a remarkable cytotoxicity. Finally, we also performed an adhesion evaluation based on the MTT assay 
with the same kind of cells. As represented in Fig. 4c, 100% of the cells adhered to the material and no statistically 

Figure 2.  SEM image of a cross-sectioned macro-device wall (membrane), and the corresponding SEM images 
(top view) of the inner and outer side of the membrane.
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Figure 3.  Normalized conductivity obtained during the diffusion measurements for the three groups of devices.

Figure 4.  Biological evaluation of the three medical devices according to the ISO standards on mouse L929 
fibroblasts assessed by the MTT toxicology assay. (a) Direct contact assay. (b) Indirect assay using conditioned 
media. (c) Adhesion assay. ***p < 0.001 compared with device 2 and 3.
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significant differences were detected among the devices. This attachment of cells to the surface of the scaffolds 
represents the evidence of its biocompatibility36.

Cell microencapsulation within alginate 3D matrices and macrocapsule entrapment.  When 
cells encapsulated in 3D microcapsules are implanted in a patient, there is a little chance for individual cells to 
escape from the system as far as it has been covered with a semipermeable membrane as in alginate-PLL-alginate 
(APA) microcapsules37. However, there are some types of cells that, because of the way they grow inside the 
microcapsules, tend to form cell clusters that might compromise the viability of the cells38,39.

This fact might compromise the therapeutic purpose of the implant or, even more significantly, it could jeop-
ardize the biosecurity of the therapy as, in the long term, the microcapsules could explode. Therefore, we devel-
oped a double biosecurity system that, in the event of cells forming agglomerates that are able to get out of the 
microcapsules, will reduce the possibility of cell clusters escaping from the macro-device. The first barrier would 
correspond to the microcapsule itself that has been covered by a double membrane (PLL and diluted alginate). 
The second barrier would be offered by the macrocapsule device in where the microcapsules are inserted. Also, 
these macrocapsule devices would allow the extraction and renewal of the encapsulated cells without the need of 
going through a major surgery. Undoubtedly, the viability of cells inside the APA microcapsules should be pre-
served to promote the implant functionality. Also, such double encapsulation system must enable both intimate 
communication between the entrapped cells, and the movement of exterior nutritional products that support the 
stable survival of the cells entrapped in the microcapsules.

We produced APA microcapsules containing either C2C12-EPO myoblasts or BHK-VEGF fibroblasts. These 
cell lines have successfully been used in preclinical models using different encapsulation systems for the secretion 
of recombinant proteins40–43. Also, in our experience, these two types of cells grow without problems inside algi-
nate scaffolds and can be used either for in vitro or in vivo experiments without losing their functionality44. Once 
the cells were encapsulated in APA microcapsules, they were inserted into the three different macrocapsules and 
maintained in culture media in order to test the effect of membrane porosity on the outcome of C2C12-EPO and 
BHK-VEGF cells. As mentioned, the physical characteristics of the porous membrane might be a critical param-
eter for the survival of encapsulated cells. In fact, the rate of passive molecule diffusion across the membrane 
(inward diffusion of oxygen and nutrients and outward release of therapeutic factors) will be related to its poros-
ity. At different time points over a month, devices were opened and the microcapsules were retrieved in order to 
perform an accurate assessment of the viability of encapsulated cells as this is essential for predicting the potential 
long-term secretion profiles of their therapeutic products.

First, we quantified by flow cytometry the percentage of apoptotic cells in the three devices every week. As 
seen in Fig. 5a, the percentage of apoptotic C2C12-EPO myoblasts was very low in D1 and D2 and surprisingly 
3 times higher in D3. After the first week, this percentage increased dramatically in D1 and D2. However, cells 
micro and macroencapsulated in D3 showed a stable number of apoptotic cells very similar all over the whole 
monitorization process. In any case, the final amount of apoptotic myoblasts was around 55% in the three mac-
rocapsules. This result is in accordance with previous published studies in which similar levels of apoptotic cells 
were detected in encapsulated C2C12-EPO myoblasts without using the external macro-devices 3 weeks after 
encapsulation. Therefore, it seems that, except for D3, which showed higher levels of apoptotic cells at day 1, the 
use of this double-encapsulation system does not affect the results on this flow cytometry assay45.

In parallel, we also quantified the percentage of dead cells at the same time points (Fig. 5b). This percentage 
was also low after encapsulation; it was reduced noticeably by the end of the first (D3) or second (D1 and D2) 
week and keep on falling, on the three devices, until the end of the study, where the final percentage of dead cells 
was less than 1%.

Accordingly, although this is a qualitative assay, the DNA integrity was also microscopically analyzed. 
Fluorescence microscopy images of calcein/ethidium staining confirmed the results quantified by flow cytometry 
showing a higher number of live cells (intracellular endogenous esterases hydrolyzed calcein-AM and turn it to 
fluorescent green) than dead cells (apoptotic and necrotic cells, where the ethidium bromide stained the frag-
mented DNA, in fluorescent red) and a reduction on the number of dead cells from day 1 to the end of the study 
(Fig. 5c). The higher apoptosis of cells during the first days might be as well related to the stress produced on the 
cells during the macroencapsulation process, due to the pressure applied to inject the microcapsules inside the 
devices.

In order to analyze if encapsulated cells remained metabolically active inside the devices, the CCK8 assay was 
carried out. Results showed that the metabolic activity of encapsulated C2C12-EPO cells was reduced importantly 
on D1 and D2 (Fig. 6a). However, in D3, after a first 45% reduction step on the first week, the metabolic activity of 
the cells remained higher than in the other two devices. Nevertheless, by the end of the study, the activity of cells 
on the three macrocapsules was very similar and much lower than the day after encapsulation. Comparing these 
metabolic activity levels with the same cells encapsulated only in APA microcapsules, it can be appreciated that 
they are between 2 and 3 times higher, depending on thee macro-device, 24 hours after encapsulation45. Probably, 
the longer and more complicated process that must be performed for assembling this double-encapsulation struc-
ture accounts for higher levels of stress and, therefore, also higher levels of metabolic activity in the present study, 
mainly during the first week after encapsulation.

However, once the stress from the double-encapsulation procedure disappears, the metabolic activity levels 
are very low in all the devices. It is important to mention that this assay can also reflect the viable cell number in 
proliferation. Therefore, it would mean that the rate of proliferation inside this double system is even lower than 
inside APA microcapsules. Previously, it has been proved that the different content on guluronic and mannu-
ronic acid of the alginate hydrogels has an important effect on cell proliferation and metabolism. For instance, 
experiments with murine insulinoma bTC3 cells found that alginates with high guluronic content, as the one 
that we have used in this project, inhibited cell growth, leading to decreased metabolic activity46–48. In addition 
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Figure 5.  Effect of macro-devices’ porosity on the viability of encapsulated C2C12-EPO myoblasts within 
APA microcapsules. (a) Early apoptosis analysis by annexin/PI staining and (b) live/dead analysis by calcein/
ethidium staining assessed by flow cytometry. (c) Fluorescence microscopy images of calcein/ethidium staining 
from microcapsules containing C2C12-EPO myoblasts embedded in the three studied devices. Scale bar 200 μm. 
*p < 0.05, ** < 0.01 and ***p < 0.001 compared with device 1 at the same time point.

Figure 6.  Effect of macro-devices’ porosity on the viability of encapsulated C2C12-EPO myoblasts within APA 
microcapsules. (a) Metabolic activity measured by the CCK8 assay. (b) Erythropoietin (EPO) secretion into the 
media. *p < 0.05 and ***p < 0.001 compared with device 1 at the same time point.
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to encapsulating the cells in alginate microcapsules, we have introduced them into supplementary macro-devices 
that have shown to reduce even more the metabolic activity of the cells. This could mean that cells are not com-
fortable enough inside our double security system because of a problem of oxygen and/or nutrients diffusion 
to the inner core of the microcapsules. This might be due to an excess of entrapped microcapsules inside the 
device, in a highly packed configuration, complicating the diffusion of oxygen and nutrients through the voids 
let between them. It could also reflect that cells need a period of time to acclimatize to the new environment 
and when achieved, they remain in a quiescent state with a low metabolic demand and mitotic activity49,50. It is 
likely that the hypoxia inside the devices affect myoblasts proliferation. In fact, hypoxia-inducible factors, such 
as hypoxia-inducible factor 1-alpha (HIF-1α), inhibit cell-cycle progression and act as master regulators of genes 
that allow adaptation to hypoxic conditions. Target genes include VEGF, erythropoietin, glucose transporters, and 
other factors critical to vascularization, metabolic regulation, cell multiplication and survival51,52. Undoubtedly, 
the metabolic activity reduction could compromise the therapeutic use of these devices in the clinic. However, the 
most critical aspect on the encapsulation therapy is the production of the required therapeutic protein and, more 
significantly, if these proteins are released both from the micro and macrocapsule to the culture media because 
the hypoxia-induced cell-cycle arrest is temporary and cell proliferation will restart when normoxia is restored53. 
In fact, a reduction on the proliferation rate, as far as the synthesis of the therapeutic product is enough for the 
therapy, is an advantage as there will be a lower risk of exploding the microcapsule and, in some cases where cells 
can grow forming cell-clusters, escaping from the whole macro-device.

As shown in Fig. 6b, the amount of EPO released from the three devices was very similar the day after encap-
sulation (around 3000 mIU/ml). At the end of the study, the concentration of protein detected on the culture 
media was higher on D1 and D2 than on D3. Importantly, it seems that the notorious reduction on cell metabolic 
activity has not a parallel impact on the amount of protein that is synthesized by these genetically modified myo-
blasts. Previous studies of alginate encapsulated C2C12-EPO myoblasts, without the external device, have shown 
lower production levels under the same sampling conditions. Therefore, the double-encapsulating system does 
not seem to imply a problem for the diffusion of therapeutic products. In fact, even from day 1 after encapsula-
tion, levels of EPO in this study are 3 times higher than the previously published results45. It could be plausible 
that the paracrine stimulus that cells receive inside this system is higher as a consequence of capsules being more 
compactly packed. Similarly, other authors have reported a relative constant release of VEGF from NIH 3T3 
fibroblasts encapsulated in 2% low viscosity alginate over a period of study of 21 days54. Likewise, neuronal stem 
cells encapsulated in alginate with high guluronic content have enhanced their secretion of neurotrophic factors55. 
This demonstrates the high capacity of the C2C12 myoblasts to adapt to difficult conditions of oxygen restriction 
inside macro-encapsulation devices, while they are able to maintain the production of high levels of therapeutic 
protein. Also, human mesenchymal stem cells (hMSCs) have shown to respond positively to hypoxia and nutrient 
deprivation56,57.

The same study was done for the VEGF producing BHK cells, to test both the suitability of the macrocapsule 
devices and the capability of the different cells lines to adapt to the experimental conditions given inside the mac-
rocapsules. The VEGF-producing cells are especially interesting because VEGF has demonstrated to promote the 
scaffolds and implants vascularization19. They could be used in combination with some other type of cells or, in a 
first step of the therapy (pre-vascularization of the system prior to microencapsulated therapeutic cell insertion58, 
in order to induce an enhancement of the vascularization and perfusion around the devices. This strategy would 
help overcoming the low oxygen availability and reaching the therapeutic protein to the circulatory torrent in an 
easier and faster way41,59.

For the BHK-VEGF cells, the cytometric analysis showed a number of apoptotic cells very similar in all the 
devices (around 15%) the day after encapsulation. This number of apoptotic cells increased along the days, espe-
cially in device D2, being the macrocapsule D3 which showed the lowest percentage of apoptotic cells with sim-
ilar apoptosis percentage all over the study (Fig. 7a). Comparing these results with the ones obtained with the 
C2C12-EPO myoblasts, the percentage of apoptotic cells is lower for the BHK-VEGF cells. Looking to both results, 
we can conclude that the device D3 showed more stable results over the 4 weeks of study. The number of dead 
BHK-VEGF cells is represented in Fig. 7b, showing low percentages of dead cells in every device (less than 6% 
at day 1). The profile of these results is similar to the one obtained with the myoblasts, showing a first significant 
reduction on cell dead after the first week and a more stable and lower percentages until the end of the study, with 
final levels below 1%.

Similarly, fluorescence microscopy images confirmed a progressive reduction on the number of apoptotic or 
necrotic red-stained cells along the time (Fig. 7c).

Concerning the metabolic activity of the encapsulated BHK-VEGF fibroblasts, the activity is reduced drasti-
cally after the first week in D1 and D2, and later on, in D3, similarly to the results showed for C2C12-EPO myo-
blasts. The final activity in the three devices is significantly lower that at the beginning of the study, and equal in 
all the macrocapsules (Fig. 8a).

Fortunately, our results are not the anticipation to a bad therapeutic protein release profile. In fact, we 
observed that the VEGF protein was produced and released all over the study in a quite stable manner as shown 
in Fig. 8b. Interestingly, other authors have explained an increased VEGF secretion by the relative hypoxic envi-
ronment inside the microcapsules60.

Once the release of VEGF from the encapsulated cells was confirmed, it was also important to determine 
whether the released VEGF remained bioactive, which was accomplished by testing its effect on HUVEC cells 
(Fig. 8c). All the samples of this protein released from any of the devices proved to be active all over the four 
weeks of the study at similar levels and above the positive control, which consisted on complete media supple-
mented with recombinant VEGF.
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Conclusions
We have combined the microencapsulation technology with the use of an external macro-device fabricated by 
SLS, as an approach to maintain the microcapsules at the implantation site, and improve the biosecurity of this 
technology. The use of macro-devices made with synthetic polymers in combination with naturally derived poly-
mers used in the cell microencapsulation technology might have several advantages when translated into the clin-
ical practice, as the former polymers have more dimensional stability, mechanical integrity and can be produced 
with well-defined microporosity. Large pores (>50 µm) polyamide macrocapsules with three different porosities, 
and different diffusion flow rates, were fabricated and tested. The macro-devices showed a very low cytotoxicity 
profile which makes them useful for clinical applications.

When combined with microencapsulated cells (manufactured alginate-poly-L-lysine microcapsules contain-
ing either erythropoietin producing C2C12 myoblasts or VEGF producing BHK fibroblasts), the macro-devices 
have shown to allow the diffusion of enough oxygen and nutrients in order to keep cells synthesizing therapeutic 
proteins, in spite of a metabolic activity reduction. Thus, the three tested macro-devices have proved to be suitable 
microencapsulated cells carriers, which provided a good cell viability, DNA integrity and therapeutic product 
production. Among them, device D3 showed the best performance in terms of cell viability, but no differences 
were observed on the metabolic or therapeutic protein release profile.

Therefore, the blending of these two macro and micro scaffolds that we have generated represents an innova-
tive cell encapsulation approach that can provide a structural support to microcapsules so they can be maintained 
in an exact location in the body, and, at the same time, act as a double security system that allows the replacement 
or retrieval of the implanted encapsulated cells in an ease and minimum invasive way without removing the 

Figure 7.  Effect of macro-devices’ porosity on the viability of encapsulated BHK-VEGF fibroblasts within 
APA microcapsules. (a) Early apoptosis analysis by annexin/PI staining and (b) live/dead analysis by calcein/
ethidium staining assessed by flow cytometry. (c) Fluorescence microscopy images of calcein/ethidium staining 
from microcapsules containing BHK-VEGF fibroblasts embedded in the three studied devices. Scale bar 
200 μm. *p < 0.05, ** < 0.01 and ***p < 0.001 compared with device 1 at the same time point.



www.nature.com/scientificreports/

1 0SCIeNtIfIC Reports |  (2018) 8:8512  | DOI:10.1038/s41598-018-26869-5

device. Thus, this system could be an advance towards the clinical application of the cell encapsulation technology 
thanks to its high immunoisolation capability and biosecurity characteristics.

Methods
Macrocapsule fabrication.  The devices were initially designed with a computer aided-drafting (CAD) 
program (Autodesk Inventor), and fabricated by SLS (Fig. 1a,b). In the SLS process, 3D computer images are 
sectioned into thin 2D layers and the 3D objects are built layer-by-layer to the required size, shape and internal 
structure by laser-induced fusion of small particles of ceramic, metal or thermoplastic powders. The used laser 
sintering instrumentation (Formiga P 100 from EOS GmbH) was equipped with a CO2 laser (10.6 μm wave-
length, <0.5 mm spot size, and 440 mm focus distance) with a maximum power of 30 W and maximum scanning 
speed up to 5 m/s. The minimum layer thickness is 100 µm on z and about 600 μm on x and y. In this case, poly-
amide PA2200 (EOS GmbH) was used for the devices fabrication.

PA 2200 is in compliance with the EU Plastics Directive 2002/72/EC for the use with food at contact con-
ditions up to 24 hours at 20 °C, and parts made of PA 2200 are biocompatible according to ISO 10993-1. The 
processing parameters applied for the polyamide sintering were 25 W of laser power and 5 m/s of scan speed. The 
devices were sterilized by autoclave before their used.

Electrolytes diffusion through macrocapsule membranes.  The diffusion of electrolytes through the 
macrocapsule device was tested by measuring the conductivity change (CRISON GLP31) of a water bath (25 ml) 
where the devices, filled with 500 µl of phosphate-buffered saline (PBS) 100 mM, were immersed. The hydropho-
bic macrocapsules were able to retain the PBS solution during a short period, before being introduced into the 
water bath. Water and PBS conductivity were 0.8 µS/cm and 15.39 mS/cm, respectively. A final conductivity in the 
water bath of 380 µS/cm is expected (25 ml of water with 500 µl of PBS) after reaching the steady-state. This value 
was used to normalize the measured conductivity for each device.

Cell culture conditions for cell encapsulation.  Murine C2C12 myoblasts genetically engineered to 
secrete EPO (C2C12-EPO) and Baby hamster kidney (BHK) fibroblasts modified to secrete VEGF (BHK-VEGF) 
were grown in T-flasks with Dulbecco’s modified Eagles’s medium (Gibco) supplemented with 10% FBS, 2 mM 
L-glutamine (Gibco) and 1% antibiotic/antimycotic solution (Gibco) at 37 °C in humidified 5% CO2/95% air 
atmosphere. Cells were passaged every 2–3 days.

Figure 8.  Effect of macro-devices’ porosity on the viability of encapsulated BHK-VEGF fibroblasts within 
APA microcapsules and VEGF’s bioactivity. (a) Metabolic activity measured by the CCK8 assay. (b) Vascular 
endothelial growth factor (VEGF) secretion into the media. (c) Assessment of VEGF bioactivity on HUVEC 
cells. *p < 0.05, ** < 0.01 and ***p < 0.001 compared with device 1 at the same time point.
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Biological evaluation of medical devices.  Three different assays were conducted to evaluate the cellular 
toxicity of the studied devices following the international standards covered in ISO 10993-5: direct and indirect 
cytotoxicity, and adhesion assays. Mouse L929 fibroblasts were used to perform all experiments. Cells were cul-
tured in EMEM media (ATCC) supplemented with 10% Fetal Calf Serum (Sigma), 1% penicillin/streptomycin 
(Invitrogen) and 4 mM glutamine (Sigma) at 37 °C in humidified 5% CO2 atmosphere. In all the experiments, 
cells were seeded at a density of 3.123·104 cells/cm2. In the direct and indirect cytotoxicity assays cells were seeded 
and maintained in culture for 24 h (less than 1 doubling period) in order to form a semi-confluent monolayer. 
Then, they were exposed directly to the devices placing them onto the cell monolayer, or indirectly by adding 
conditioned media (media that has been in contact with the device for 24 h) on the cell monolayer. On the other 
hand, in the adhesion assay cells were seeded at the same cell density onto the devices. After 4 and 24 h, cell via-
bility was measured in the adhesion assay and in the direct and indirect assays respectively using the 3-(4,5-dim
ethylthiazol-2-yl)−2,5-diphenyltetrazoliumbromid (MTT) in vitro toxicology assay kit (Sigma) following man-
ufacturer’s recommendations. In the adhesion assay, cells seeded directly onto the culture plate were used as the 
absolute value of optical density in the untreated blank. Instead, in the direct and indirect tests, cells with no 
device exposure were used as controls. The absorbance was recorded using the Infinite M200 microplate reader 
(TECAN Trading AG) at 570 nm with reference wavelength set at 650 nm. Cell viability was calculated using 
the following equation: Cell viability = (testing sample OD570/untreated blank OD570) × 100. Four independent 
experiments were conducted with three replicates each.

Cell encapsulation in 3D alginate microcapsules.  Sterile 1.5% (w/v) ultra-pure low-viscosity and high 
guluronic (LVG) sodium alginate solution (FMC Biopolymer, Norway) was prepared by dissolving it in a 1% 
(w/v) mannitol solution and filtered through a 0.20 µm syringe filter (Millipore, MA, USA). Either C2C12-EPO or 
BHK-VEGF cells at a density of 5·106 cells/ml were harvested and resuspended into the aforementioned sterile 
1.5% alginate solution. Microcapsules were prepared using an electrostatic droplet generator (Nisco Engineering 
AG, Zurich, Switzerland). Briefly, the cell suspension was extruded through a sterile 0.17 mm inner diameter nee-
dle using a 10 ml sterile syringe with a peristaltic pump into a calcium chloride solution (55 mM). The resulting 
alginate beads were maintained in agitation for 10 minutes for complete ionic gelation. Then, microcapsules were 
successively chemically cross-linked with 0.05% (w/v) poly-L-lysine for 5 minutes (PLL; MW 15.000–30.000 Da; 
Sigma Aldrich, St. Louis, MO, USA) and then coated with 0.1% (w/v) LVG-alginate solution for 5 minutes. All 
alginate-poly-L-lysine-alginate (APA) microcapsules were prepared at room temperature, under aseptic con-
ditions. The diameters (380 ± 20 µm) and overall morphology of microcapsules were characterized using an 
inverted optical microscopy (Nikon TSM).

Loading of cell-containing APA microcapsules in the macrocapsules.  After the microencapsulation 
process, 500 µl of microcapsules (2·106 cells) suspended in 1 ml of culture media were loaded into the polyamide 
macrocapsule by slow injection through the macrocapsule inlet. The macrocapsule permeability allows the injec-
tion of the microcapsules in media, leaking the solution out of the device and retaining the microcapsules inside.

The devices containing APA microcapsules were maintained in culture media and, at different time points 
over a month, microcapsules were retrieved from the macrocapsules to assess the viability and metabolic activ-
ity. Also, protein secretion studies were performed on the conditioned media (supernatants) obtained from 
microcapsules-containing devices.

Flow cytometry assays: early apoptosis and cell viability quantification.  Early apoptosis of both 
types of cells (C2C12-EPO and BHK-VEGF) microencapsulated within APA microcapsules was quantified with 
the Annexin-V-FITC apoptosis Detection Kit (Sigma-Aldrich) once a week for a month post-encapsulation. 
250 µl of microcapsules (106 cells) retrieved from the macro-devices were incubated with alginate lyase 
(Sigma-Aldrich) for 30 minutes at 37 °C to release the embedded cells. Next, cells were rinsed twice with DPBS, 
resuspended in 10 mM HEPES/NaOH containing 0.14 M NaCl and 2.5 mM CaCl2 (binding buffer, pH 7.5) and 
stained with annexin V-FITC and propidium iodide for exactly 10 minutes at room temperature protected from 
light. Fluorescence was determined immediately with a BD FACS CaliburTM flow cytometer (BD Biosciences). 
Unstained samples or samples stained only with annexin V-FITC or propidium iodide were used to establish the 
appropriate acquisition parameters for the analyzed samples.

For cell viability studies, the same samples and controls were quantified with the LIVE/DEAD® Viability/
Cytotoxicity Kit (Invitrogen™) at the same time points. After cells were released from the microcapsules, they 
were stained with 100 nM calcein AM and 8 µM ethidium homodimer-1 solution for 20 minutes at room temper-
ature, protected from light. Fluorescence was determined immediately with a BD FACS Calibur flow cytometerTM. 
Unstained samples or samples stained only with 100 nM calcein AM or 8 µM ethidium homodimer-1 were ran as 
controls to establish the appropriate acquisition parameters for the analyzed samples.

Cell viability qualitative determination by fluoresce microscopy.  For cell viability determination 
under the microscope, samples were stained with the LIVE/DEAD® Viability/Cytotoxicity Kit. First, microcap-
sules retrieved from the devices were washed four times in a test tube with DPBS and allowed to sediment. Then, 
they were stained with 0.5 µM calcein AM and 0.5 µM ethidium homodimer-1 in DPBS on 96-well plates at room 
temperature for 40 minutes in the dark. Next, samples were observed under a Nikon TMS microscope with the 
excitation/emission settings for calcein AM (495/515 nm) and ethidium homodimer (495/635 nm). At least three 
independent experiments were analyzed for each condition.

Cell metabolic activity determination.  The metabolic activity of encapsulated cells was determined 
weekly post-encapsulation. With this purpose, 5 µl of retrieved microcapsules per well were placed in 100 µl of 
medium on 96-well plates. Afterwards, 10 µl of Cell Counting Kit-8 (CCK-8) solution (Sigma Aldrich) were 
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added to each well. Plates were incubated inside a humidified chamber for 4 hours at 37 °C and absorbance was 
read on an Infinite M200 (TECAN Trading AG, Switzerland) microplate reader at 450 nm with reference wave-
length set at 650 nm. Wells containing culture media were used as negative controls. At least five wells were placed 
for each condition.

EPO and VEGF secretion determination.  For protein secretion determination, 6-well plates were plated 
with microcapsules-containing devices in 5 ml of media and supernatants were collected after 24 hours at dif-
ferent time points and frozen at −80 °C until they were analyzed. The amount of released EPO was assayed with 
the Quantikine IVD EPO Elisa kit (R&D Systems) and the VEGF release was quantified with the VEGF Elisa 
Development Kit (Peprotech). All samples and standards were measured at least in duplicate. Also, three inde-
pendent experiments were analyzed for each experiment.

Determination of VEFG activity.  The biological activity of the VEGF released from the microcapsules 
was tested in the HUVEC (human umbilical vein endothelial cells) (PromoCell GmbH, Germany) cells because 
VEGF induces high proliferation in these cells61. HUVEC cells were maintained in endothelial cell growth 
medium (PromoCell GmbH, Germany) supplemented with a supplement kit and were cultured in special cell 
culture flasks (Corning CellBIND Surface) at 37 °C in humidified air with 5% CO2. After 2 or 3 passages, cells 
were seeded into 96-well poly-L-lysine-coated culture plates at a density of 5·103 cells/well. After 24 h, the culture 
medium was removed and fresh media (without the supplement kit) was added and supplemented with one of 
these options: 0.8 ng/ml of VEGF released from BHK-VEGF containing microcapsules, 1 ng/ml of VEGF com-
mercial solution as a positive control, or the released medium from empty microcapsules as a negative control. 
Cells were incubated for 72 h and cell proliferation was measured by the Cell Counting Kit-8 (CCK-8 assay) as 
explained previously.

Statistical analysis.  An analysis of variance (ANOVA) and post hoc analysis were performed to assess the 
statistical significance of the data collected. P < 0.05 was indicative of a statistically significant difference. All the 
data were analyzed with SPSS 13.0 software (Statistical Package for the Social Sciences, Chicago, IL, USA) or 
GraphPad Prism 5.01 (GraphPad Inc., San Diego, CA) and are presented as the means ± SD.

Data availability.  The datasets generated during and/or analysed during the current study are available from 
the corresponding author on reasonable request.
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