Table 9.
Algorithms and related accuracy.
| Scenario I | Scenario II | Scenario III | Scenario IV | Scenario V | ||||||
|---|---|---|---|---|---|---|---|---|---|---|
| Input Variables: | Input Variables: | Input Variables: | Input Variables: | Input Variables: | ||||||
| Tskin, EDA, HR, To and RH | Tskin, EDA, HR and To | Tskin, EDA, HR and RH | Tskin, EDA and HR | Tskin, EDA, To and RH | ||||||
| Algorithms | Avg. | St. dev. | Avg. | St. dev. | Avg. | St. dev. | Avg. | St. dev. | Avg. | St. dev. |
| Logistic Regression | 0.81409 | 0.01097 | 0.66468 | 0.020608 | 0.658721 | 0.013551 | 0.50145 | 0.01582 | 0.821118 | 0.015817 |
| Linear Discriminant Analysis | 0.834002 | 0.014409 | 0.679365 | 0.014593 | 0.712757 | 0.014929 | 0.508934 | 0.016283 | 0.837188 | 0.016283 |
| K-Nearest Neighbors | 0.939725 | 0.009485 | 0.807953 | 0.016847 | 0.874745 | 0.014654 | 0.628515 | 0.003083 | 0.991965 | 0.003083 |
| Classification and Regression Trees | 0.991964 | 0.003655 | 0.96564 | 0.006938 | 0.966609 | 0.006322 | 0.809057 | 0.002703 | 0.993211 | 0.00266 |
| Gaussian Naive Bayes | 0.829985 | 0.012559 | 0.707909 | 0.02119 | 0.789527 | 0.011923 | 0.537479 | 0.011854 | 0.809613 | 0.011854 |
| Support Vector Machines | 0.953167 | 0.009965 | 0.803516 | 0.025457 | 0.879319 | 0.019446 | 0.62186 | 0.005874 | 0.980602 | 0.005874 |