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Abstract
This study developed potential blood-based biomarker tests 
for diagnosing and differentiating schizophrenia (SZ), bipo-
lar disorder type I (BD), and normal control (NC) subjects us-
ing mRNA gene expression signatures. A total of 90 subjects 
(n = 30 each for the three groups of subjects) provided blood 
samples at two visits. The Affymetrix exon microarray was 
used to profile the expression of over 1.4 million probesets. 
We selected potential biomarker panels using the temporal 
stability of the probesets and also back-tested them at two 
different visits for each subject. The 18-gene biomarker pan-
els, using logistic regression modeling, correctly differenti-
ated the three groups of subjects with high accuracy across 
the two different clinical visits (83–88% accuracy). The re-
sults are also consistent with the actual data and the “leave-
one-out” analyses, indicating that the models should be pre-
dictive when applied to independent data cohorts. Many of 
the SZ and BD subjects were taking antipsychotic and mood 
stabilizer medications at the time of blood draw, raising the 
possibility that these drugs could have affected some of the 

differential transcription signatures. Using an independent 
Illumina data set of gene expression data from antipsychotic 
medication-free SZ subjects, the 18-gene biomarker panels 
produced a receiver operating characteristic curve accuracy 
greater than 0.866 in patients that were less than 30 years of 
age and medication free. We confirmed select transcripts by 
quantitative PCR and the nCounter® System. The episodic 
nature of psychiatric disorders might lead to highly variable 
results depending on when blood is collected in relation to 
the severity of the disease/symptoms. We have found stable 
trait gene panel markers for lifelong psychiatric disorders 
that may have diagnostic utility in younger undiagnosed 
subjects where there is a critical unmet need. The study re-
quires replication in subjects for ultimate proof of the utility 
of the differential diagnosis. © 2018 S. Karger AG, Basel

Introduction

Schizophrenia (SZ) and bipolar disorder (BD) are 
chronic, severe, and disabling brain disorders that affect 
about 1 and 2%, respectively, of the US population aged 
18 years and older. Despite moderately effective treat-
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ments such as antipsychotic medications and psycho-
social interventions, people with SZ and BD often do not 
receive timely treatment because the disorder is not cor-
rectly recognized. As a result, patients experience multi-
ple hospitalizations and incur socioeconomic disadvan-
tages that can last for decades.

Ideally, successful diagnostic tests could address the 
significant clinical problem of early identification and 
differential diagnosis and permit more timely initiation 
of treatments. Currently, there are no approved clinical 
diagnostic tests for psychiatric disorders, with diagnosis 
and treatment being based on the patient’s report of 
symptoms along with clinical observations. Consequent-
ly, clinicians frequently fail to recognize initial presenta-
tions of SZ and BD.

These failures may lead to devastating consequences. 
Following an initial episode of psychosis among individu-
als aged 16–30 years, there is a 24-fold increase in the risk 
of death in the following year [1]. This study points to-
wards a lack of treatment (61% did not receive any anti-
psychotic medication) after initial presentation with psy-
chosis and even higher rates in those dying within 12 
months of an initial episode of psychosis [1]. A panel of 
biomarkers would meet an unmet clinical need to help es-
tablish rapid and informative patient decisions. A clinical 
utility that might be derived from this work is establishing 
a biomarker panel for determining the psychosis risk state 
and which subjects may convert to SZ or BD [2]. An index 
of psychosis based upon a biomarker panel could be useful 
in evaluating a long-term response to treatments [3].

Conceivably, a panel of RNA biomarkers could ad-
dress that need. A growing body of work has demonstrat-
ed the potential utility of RNA diagnostic tools with pe-
ripheral samples such as whole blood, peripheral blood 
mononuclear cells (PBMCs), and lymphoblastic cell lines 
in multiple studies of SZ and BD [4–12]. There have also 
been large studies that have used whole genome RNA ex-
pression to compare healthy controls and patients with 
disorders such as Alzheimer disease [13], autism [14], 
Down syndrome [15], epilepsy [16], Tourette syndrome 
[16], Huntington disease [17], Klinefelter syndrome [18], 
multiple sclerosis [19], smoking and major depression 
[20], panic disorder [21], posttraumatic stress disorder 
[22], and subjective social isolation (loneliness) [23]. The 
success in these studies suggests the possibility that simi-
lar approaches could be used to identify RNA profiles for 
the diagnosis of SZ and BD. Dysregulation of mRNA 
could potentially help to define sets of genes relevant to 
the diseases’ pathophysiology and treatment or second-
ary to their causes.

We hypothesized that for SZ and BD there are unique 
and global sets of chronic, differentially expressed genes 
in blood for each disorder. Our hypothesis is based on the 
concept that circulating blood reflects the changing health 
of the body, i.e., the “sentinel principle” [24]. As blood 
circulates through the brain, communication occurs be-
tween cells in the blood and the brain [25]. Following a 
brain injury, neutrophils, macrophages, lymphocytes, 
and dendritic cells can extravasate into the brain from the 
blood [26]. These extravasated cells can induce changes 
in gene expression and proteins as reported in neuroim-
munological studies [27, 28]. In prior work using blood-
brain samples from the same subjects, about 20% of the 
transcriptome was expressed at comparable levels and 
significantly correlated in both tissues from the same sub-
jects [29]. This correlation supports the idea that impor-
tant biomarkers of either SZ or BD could be expressed 
peripherally, and these would also have a connection to 
the central modulation of neuroimmune responses. The 
advantages of a peripheral transcriptomic study are the 
ease of access to whole blood and the fact that immune 
genes are highly expressed. For example, multiple HLA 
region genes with genome-wide significance are ex-
pressed in peripheral blood samples, such as C4 [30] and 
HLA-DPA1 [31].

Although investigations of biomarkers for SZ and BD 
have been ongoing for at least a decade [7, 8, 32], there are 
no widely replicated studies using peripheral blood gene 
expression [11, 33–42]. A recent mega-analysis of blood 
samples comparing SZ cases and controls was conducted 
on a total of 578 subjects in 9 studies. The mega-analysis 
of the blood transcriptome showed that 220 genes reached 
a Bonferroni-corrected level of significance [35], indicat-
ing the utility of analysis of the blood transcriptome for 
finding differentially expressed genes. The stability of this 
potential dysregulation has not been tested across differ-
ent time points.

The objective of the present study was to test subjects 
at multiple time points by enrolling SZ (n = 30), BD (n = 
30), and normal control (NC; n = 30) subjects character-
ized at one clinical site to eliminate potential sources of 
variation. The expression levels of panels of genes were 
used to define with which disorder the patient was diag-
nosed with the highest likelihood. We have previously 
validated Tempus Blood RNA tubes and Affymetrix exon 
arrays in a study that measured the sources of variation 
for 8 healthy controls at 9 sequential blood draws every  
6 h [29] for 54 h. The resulting data showed that about 
20% of the transcripts measured on the Affymetrix exon 
array did not significantly change over the 9 blood draws 
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using Bonferroni correction during the 54-h period. The 
remaining 80% of the transcripts had changed signifi-
cantly during this 54-h experiment [29]. Taken together, 
it is expected that at least 20% of transcripts will be stable 
over longer periods of time and do not significantly fluc-
tuate by the time of day of the blood draw.

These data reinforce the purpose of the present study 
to test whether stable expression of genes occurs over 
months instead of days, so that they can be used as bio-
markers for SZ and BD for a differential diagnosis from 
controls and each other. In this study, RNA expression 
was measured by the Affymetrix exon array 1.0 ST for 
biomarker screening. Exon arrays have been widely used 
for the study of genetic variation in coding regions [43–
53]. Exon array findings correlate positively with RNA-
Seq across most levels of transcript expression [54], and 
in some cases have less false-positive detection than RNA-
Seq [55–57]. The analytical techniques for the exon arrays 
have been well established [56, 58–64].

Methods

Subject Enrollment
Subject enrollment occurred at a single clinical site at the Uni-

versity of Iowa. The University of Iowa and the Institutional Re-
view Board approved the procedures in the study. The chronic SZ 
and BD type I outpatients aged 18–45 years provided consent for 

the study. All subjects (SZ, n = 30; BD, n = 30; and NC, n = 30) met 
the DSM-IV-R criteria and completed the study. Clinical assess-
ments included the Scale for the Assessment of Positive Symptoms 
and Scale for the Assessment of Negative Symptoms (SAPS, 
SANS), medications, and drugs for the SZ and BD subjects, as well 
as the Young Mania Rating Scale (YMRS) and Hamilton Rating 
Scale for Depression (HAM-D or HRSD) for the BD subjects. 
These neuropsychiatric assessment data were analyzed and are re-
ported separately for state-biomarker relationships. The mental 
state examination for the NC subjects consisted of the Mini-Men-
tal State Examination. The outline of the study is shown in Figure 
1. The demographics of the SZ, BD, and NC subjects are shown in 
online supplementary Table 1 (for all online suppl. material, see 
www.karger.com/doi/10.1159/000485800) for the subjects’ age, 
sex, duration of illness, and ethnicity.

Whole blood samples were collected in Tempus Blood RNA 
tubes (Thermo Fisher Scientific) from the SZ, BD, and NC subjects 
at 3 visits spanning 3 months. For this report, the Tempus tubes 
from visits 2 and 4 were extracted and RNA gene expression was 
measured using Affymetrix exon arrays for both visits on all 90 
subjects. High-quality RNA was extracted from the Tempus tubes 
using the manufacturer’s protocol, and quality was assessed on an 
Agilent Bioanalyzer using the RNA integrity number.

Human Exon Array for Biomarker Profiling
There are advantages to using the Affymetrix exon arrays [65] 

compared to whole transcriptome shotgun sequencing (RNA-Seq). 
At the time of sample collection, the cost factor was favorable for 
future clinical biomarker trials that would require hundreds of ar-
rays compared to the cost of RNA-Seq for the entire validation. The 
processing time and data storage requirements as well are more fa-
vorable for a study this size using exon arrays. Although we and oth-

Clinical study design

Data

Exon array

Visit 1
1st day

Subject screening
Informed consent
Medical record
Current best estimate
diagnosis using
DSM IV-R criteria

Medical history
Physical exam
Psychiatric ratings
Medications and drugs
Safety labs
RNA blood sample

Hematology labs
Psychiatric ratings
Medications and drugs
RNA blood sample

Hematology labs
Psychiatric ratings
Medications and drugs
RNA blood sample

Exon array

RNA gene biomarker panels

30 schizophrenia cases, 30 bipolar disorder cases,
30 normal/healthy controls (enrolled at same site)

Visit 2
1 to 30 days
(from visit 1)

Visit 3
30 ± 3 days
(from visit 2)

Visit 4
60 ± 3 days
(from visit 2)

Fig. 1. Flowchart of the study: subject enrollment and RNA biomarker panel.
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ers have previously found that SNPs can affect probe hybridization 
and consequently alter expression [44, 51, 52, 66], those probesets 
with common SNPs were eliminated from the final data set. The 
exon arrays were run at the Functional Genomics Laboratory, Uni-
versity of California, using the manufacturer’s protocol (Affymetrix, 
Santa Clara, CA, USA). The Functional Genomics Laboratory has 
run over 1,000 Affymetrix arrays with high-quality call rates.

Data Analysis
The Affymetrix exon array CEL files were imported into Partek 

Genomics using batch effect removal. The batch effect was based 
upon exon array scan dates, as usually 12 arrays were scanned in a 
single day. The mean intensity of probes was summarized at the 
probeset level. Probesets containing common SNPs were excluded 
from the import and downstream analysis. The resulting probesets 
were then median centered within each exon array sample indi-
vidually (n = 180). A two-factor ANOVA was run for each probe-
set, using diagnosis, visit, and diagnosis × visit interaction. Visit 
was a repeated measure and was used to filter out genes that change 
significantly between visits. A false discovery rate (FDR) of 6 × 
10–8 was established for diagnosis effect based upon 835,000 probe-
sets. Three filters were used to select probesets from the ANOVA 
results that passed the FDR for diagnosis: (1) the most significant 
p values for BD compared to NC; (2) the most significant p values 
for BD compared to SZ; and (3) the most significant p values for 
SZ compared to NC. This resulted in a list of top probesets that was 
then reduced to probesets that mapped to known RefSeq genes. 
The top 100 RefSeq probesets for each of the three filters above 
were combined, and the resulting top 300 probesets were evalu-
ated for biomarker signature.

Biomarker Signature
The modeling proceeded in four steps to select the most predic-

tive panel of probesets out of the top 300 in each step for discrim-
inating between groups:
• Step 1: NC versus BD + SZ
• Step 2: NC versus SZ
• Step 3: NC versus BD
• Step 4: SZ versus BD

Multivariate logistic regression modeling with forward step-
wise selection (SAS PROC LOGISTIC) was used on the combined 
visit 2 and 4 data from the groups included in the step to select the 
probesets that were discriminating most strongly between the 
groups. We used forward stepwise regression to select probesets 
that differentiated two groups at a time (BD vs. SZ, BD vs. NC, and 
SZ vs. NC). A probeset was added to the model if the estimate was 
the most significant with p < 0.001 and the resulting ROC AUC 
also retained statistical significance. Forward selection stopped 
when potential probesets were no longer statistically significant or 
did not improve the ROC AUC by more than 1%. Processing for 
each step resulted in a subset of the 300 probesets where each 
probeset contributed to the model significantly and the panel rep-
resented the smallest number of probesets that had a very high 
diagnostic utility based on the ROC AUC.

Modeling for the diagnostic for each step was applied to the 
visit 2 data using the identified probesets. The optimal cut-point 
for discriminating between the groups based on the logistic model 
prediction was obtained by maximizing the Youden index J [67], 
where:

J = True positive rate – FPR.

The visit 2 prediction model was then applied to the visit 4 data 
to assess utility for the second set of data, which included stability 
over time.

Further evaluation for each of the four panels included “leave-
one-out” cross-validation where one subject was sequentially left 
out of the logistic model fit using the remaining subjects and then 
the predictability of the model for the excluded subject was as-
sessed. This tested whether there were outliers in the data set that 
were driving the model.

Quantitative PCR
Transcripts were selected for quantitative PCR (qPCR) valida-

tion based upon significant differences using the ANOVA filter. 
We selected transcripts that represented a combination of the most 

Table 1. Probesets that were found to reliably discriminate BD, SZ, 
and NC were assigned to known RefSeq transcripts

Biomarker panel 
(comparisons)

Affymetrix exon 
microarray transcript ID

Gene

BD-NC 2661992 OXTR

BD-NC 3195034 PTGDS

BD-NC 3333247 FADS2

BD-NC 4048241 HLA-DRB5

BD-SZ 2661992 OXTR

BD-SZ 3333247 FADS2

BD-SZ 3554818 CRIP2

BD-SZ-NC 2418570 SLC44A5

BD-SZ-NC 2545092 HADHA

BD-SZ-NC 2647109 CPA3

BD-SZ-NC 2661992 OXTR

BD-SZ-NC 2739160 CCDC109B

BD-SZ-NC 2906720 TREML4

BD-SZ-NC 3063536 TRIM4

BD-SZ-NC 3195034 PTGDS

BD-SZ-NC 3667890 HPR

BD-SZ-NC 3846538 EEF2

BD-SZ-NC 3908149 ZMYND8

SZ-NC 2401347 TCEA3

SZ-NC 2418570 SLC44A5

SZ-NC 2660617 IL5RA

SZ-NC 3329099 GYLTL1B

SZ-NC 3766893 DDX5

BD, bipolar disorder; SZ, schizophrenia; NC, normal control.
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significant ANOVA p values for SZ compared to NC and repre-
sented fold changes greater than 1.25. We initially selected qPCR 
to validate the exon array findings and later, after completing the 
entire biomarker panel analysis, used NanoString (see below) for 
validation. Standard SYBR Green qPCR methods previously de-
scribed by the Functional Genomics Laboratory (University of 
California, Irvine) were used to confirm gene expression values 
derived from the exon array data set [31]. Briefly, in developing 
SYBR Green assays we use exon junction-crossing primers to elim-
inate any genomic DNA from amplification. We assess primers for 
amplification consistency by single dissociation peaks to represent 
a single region of cDNA amplification, and minimal primer-dimer 
formation that could interfere with the amplification signal. We 
require the primers to amplify genes in our samples at fewer than 
35 cycles to be usable. We also run samples in triplicate, and use 
two housekeeping genes (SDHA and HPRT1) that have Ct within 
similar ranges to those of the genes being assayed.

NanoString Gene Expression Platform
A non-PCR-based approach to measuring RNA as a technical 

validation of the findings was used based upon NanoString tech-
nology, i.e., the nCounter® System (NanoString, Seattle, WA, 
USA) [68]. The NanoString platform requires a small quantity of 
RNA and provides digital counts of hybridization of mRNA to tar-
gets. The NanoString multiplex assay uses 100 ng of total RNA, and 
all of the RNA samples were processed at the UCI Genomics High-
Throughput Facility. We selected a total of 44 custom NanoString 
probes designed to match the closest probeset on the Affymetrix 
exon array that was in the biomarker panel, and 6 NanoString 
probes for housekeeping genes (online suppl. Table 2). The result-
ing NanoString data were processed according to the manufac-
turer’s suggested protocol as outlined (NanoString Technologies, 
2008–2012 #127). Each data point was preprocessed by the 6 posi-
tive controls (PC), the 8 negative controls (NC), and the 5 house-
keeping (HK) genes as follows:

Table 2. Prediction model trained on combined visit 2 and 4 data and tested on each visit individually

Actual Step 1 Step 2 Step 3 Step 4 Final call

NC SZ + BD NC SZ NC BD SZ BD NC SZ BD

Training visit 2
30 NC 30 0 24 6 26 4 21 5 4
30 SZ 3 27 1 29 29 1 3 26 1
30 BD 1 29 1 29 1 29 1 1 28

Testing visit 4
30 NC 28 2 23 7 28 2 22 6 2
30 SZ 1 29 0 30 29 1 1 28 1
30 BD 1 29 0 30 0 30 1 0 29

The confusion matrices show the numbers of subjects correctly and incorrectly classified for each iteration of 
the classification. Step 1: 11 genes diagnostically differentiating BD + SZ from NC. Step 2: 5 genes diagnostically 
differentiating SZ from NC. Step 3: 4 genes diagnostically differentiating BD from NC. Step 4: 3 genes diagnostically 
differentiating SZ from BD. Final call: summary of the step 1, 2, 3, and 4 classifications. BD, bipolar disorder; SZ, 
schizophrenia; NC, normal control.

Table 3. The overall results show a stable clinical biomarker signature of mRNA expression across a 90-day test-
retesting period with an accuracy of 88% on the retesting data

Predicted Visit 2 actual Visit 4 actual Both actual

BD SZ NC BD SZ NC BD SZ NC

BD 28 1 4 29 1 2 57 2 6
SZ 1 26 5 0 28 6 1 54 11
NC 1 3 21 1 1 22 2 4 43

Accuracy 83% 88% 86%
Sensitivity (SZ) 87% 93% 90%
Sensitivity (BP) 93% 97% 95%
Specificity (NC) 70% 73% 72%

BD, bipolar disorder; SZ, schizophrenia; NC, normal control.
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Calculate for each subject/visit, the ∑6
1 PC (sum of the positive 

controls), the X
–

NC (mean of the negative controls), and the ∑5
1 HK 

(sum of the housekeeping genes).
Calculate across all subjects/visits, the X–PC = Sample n1,180(∑6

1 
PC)/180 (mean of the positive control sums), and the X–HK = Sam-
ple n1,180(∑5

1 HK)/180 (mean of the housekeeping gene sums).
To normalize the gene expression data point (GEDP) for each 

subject/visit, 
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that is, multiply GEDP by (sum of positive controls/mean of posi-
tive control sums), subtract the mean of the negative controls, and 
divide by (sum of housekeeping genes/mean of housekeeping gene 
sums). If the normalized GEDP was negative, it was set to 0. The 
normalized GEDPs for the NanoString data were then analyzed for 
diagnostic accuracy using a model fitting approach. A potential 
gene probeset was selected by including all probesets that had p < 
0.1 in a univariate logistic regression fit of the probeset on at least 
one of the diagnosis comparisons (NC vs. [SZ + BD], NC vs. SZ, 
NC vs. BD, SZ vs. BD) for the visit 2 data. The nominal p value se-
lected was based upon prior significance in the exon array.

Results

The top 300 probesets from the Affymetrix exon mi-
croarray based upon ANOVA significance (online suppl. 
Table 3) were evaluated for biomarker signature (as de-
scribed in Methods) for differentiating BD, SZ, and NC 
subjects. The resulting biomarker signature was com-

posed of 23 probesets that condensed into 18 known Ref-
Seq genes (biomarker panel; Table 1). The diagnostic lo-
gistic model was built in four steps, using the visit 2 tran-
scripts shown in Table 1.

The resulting logistic predictive model based on visit 2 
was then applied to the visit 4 data. The summary of in-
dividual steps in the construction of the biomarker gene 
panels is shown in Table 2. The diagnostic algorithm uses 
a four-step decision model: step 1, BD and SZ versus NC; 
step 2, SZ versus NC; step 3, BD versus NC; and step 4, SZ 
versus BD.

The 18-gene biomarker panels, using logistic regres-
sion modeling, correctly differentiated the three groups 
of subjects (SZ, BD type I, and NC) with high accuracy at 
visit 2 and visit 4. The visit 2 cut-point probabilities for 
the SZ-NC comparison were significantly correlated with 
the visit 4 cut-point probabilities (p < 0.0001) with r = 0.74 
(95% CI 0.59–0.83) showing temporal stability (Table 3).

The initial model was developed for selecting stable 
probesets across visits and incorporated all subjects and 
visits to select the most informative probesets. To test that 
no single subject was overly influential in determining the 
model, the initial probesets were evaluated by a “leave-
one-out” method, whereby a new model is fit to the re-
maining subjects, and the left-out subject is identified. 
“Leave-one-out” cross-validation is a model validation 
technique for assessing how the results of a statistical 
analysis will generalize to an independent data set. It is 
mainly used in settings where the goal is prediction to es-
timate how accurately a predictive model will perform in 
practice. This cross-validation was applied to the visit 2 
data from each of the four probeset panels (Table 4). The 
results are very consistent with the actual data, and the 
“leave-one-out” analyses indicate that the models should 
be predictive when applied to independent data cohorts.

The AUC for each step was greater than 0.95, which is 
an indication of the high combined sensitivity and speci-
ficity of the classification into three groups (Table 5). 
When analyzing the same 18-gene biomarker panel and 

Table 4. The overall results fitting a “leave-one-out” validation 
model to the remaining subjects show a stable clinical biomarker 
signature of mRNA expression across a 90-day test-retesting pe-
riod with an accuracy greater than 87% for the retesting data at 
each of the model classification steps

BD + SZ 
vs. NC 
(11-gene 
panel)

SZ vs. 
NC
(5-gene 
panel)

BD vs. 
NC
(4-gene 
panel)

SZ vs. 
BD
(3-gene 
panel)

Actual visit 2 data
Sensitivity (SZ) 93% 97% – 97%
Sensitivity (BP) – 97% 97%
Specificity (NC) 100% 80% 87% –
Accuracy 96% 88% 92% 97%

“Leave-one-out” cross-validation
Sensitivity (SZ) 90% 93% – 90%
Sensitivity (BP) – 93% 93%
Specificity (NC) 83% 80% 80% –
Accuracy 88% 87% 87% 92%

BD, bipolar disorder; SZ, schizophrenia; NC, normal control.

Table 5. The diagnostic algorithm uses four individual steps, 
shown in each column

BD + SZ vs. NC
(11-gene panel)

SZ vs. NC
(5-gene panel)

BD vs. NC
(4-gene panel)

SZ vs. BD
(3-gene panel)

AUC = 0.994 AUC = 0.954 AUC = 0.974 AUC = 0.998
(p < 0.0001) (p < 0.0001) (p < 0.0001) (p < 0.0001)

BD, bipolar disorder; SZ, schizophrenia; NC, normal control.
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including the white blood cell counts as a covariate, the 
analysis slightly improved the diagnostic predictability  
of SZ versus NC, and of BP and SZ versus NC (data not 
shown). The data were not normalized to blood counts 
(CBC measurements) for our main data analysis reported 
in this paper, but this model confirmed that potential dif-
ferences in white blood cell counts did not change our 
results as reported.

To account for potential medication effects (since 
many of the SZ and BD subjects were on stable dosages 
of antipsychotic or mood stabilizer medications at the 
time of blood draw), we analyzed the possibility that 
these medications could drive some of the differential 
transcription signatures. A subset of unmedicated BD  
(n = 3) and SZ (n = 1) cases were analyzed using the 18-
gene diagnostics, which produced 100% accuracy in these 
4 cases.

In addition, to test this possible explanation for the 
gene signature, we reanalyzed an even larger cohort of 
antipsychotic-free SZ patients using the Illumina gene ex-
pression microarray data sets [6]. The genome-wide RNA 
expression profiling was obtained with the Illumina  
HumanRef-8 V3 arrays for batch 1 and HumanRef-12 V3 
arrays for batch 2 using Illumina’s standard protocol  
at the Illumina facility of the University of California,  
Los Angeles. The raw microarray data were available at 
gene expression omnibus (GEO) under accession No. 
GSE38485. Data set 1 includes antipsychotic-free SZ pa-
tients (n = 15) and healthy controls (n = 22). The 18-gene 
signature was extracted from the Illumina data set and 
analyzed by the same logistic regression equations as de-
rived from the fit to our original data. Using this indepen-
dent Illumina data set of gene expression data from the 
antipsychotic-free SZ subjects, the 18-gene diagnostics 
produced a ROC accuracy of 0.866 in medication-free pa-
tients below 30 years of age (Table 6). These results were 
achieved with different gene expression technologies, dif-
ferent blood collection tubes, and different mRNA ex-

traction techniques. The details on the methods and anal-
ysis of the antipsychotic-free patients are in the online 
supplementary Appendix. The duration of illness might 
allow us to test for more trait effects than state effects in 
the data set instead of using an arbitrary age cutoff for 
young subjects of below 30 years. Duration of illness is 
not entirely accurate, due to retrospective subject recall, 
which is why we chose age as our cut-point. Age and du-
ration of illness are significantly collinear for BD subjects 
(r = 0.65; p < 0.001) and for SZ subjects (r = 0.62; p < 
0.001). Further, we did not have access to the Illumina 
duration of illness data for comparison.

qPCR Validation of the Exon Array
The transcripts were validated for SZ and NC using the 

qPCR methods described by Morgan et al. [31]. The tran-
scripts for qPCR were selected based upon the differential 
expression results from the SZ-NC comparisons and 
upon visual inspection of exon expression differences 
across probesets that map to RefSeq transcripts. The 
qPCR results showed concordance (r = 0.86) between 

Table 6. The 18-gene signature was extracted from an independent data set of gene expression data and analyzed 
by the same logistic regression equations as derived from the fit to our original data

Subjects NC, n SZ, n ROC AUC Sensitivity Specificity

Antipsychotic free (all subjects) 22 15 0.642 80.00% 59.10%
Antipsychotic free (subjects aged <30 years) 14 8 0.866 100.00% 71.40%

Using this data set from antipsychotic-free SZ subjects, the 18-gene diagnostics produced a ROC accuracy of 
0.866 in medication-free patients below 30 years of age. The classification of antipsychotic-free patients with SZ 
was made using data from the Illumina HT-8 array [6]. SZ, schizophrenia; NC, normal control.

Table 7. qPCR results for candidate gene expression differences 
between SZ and NC

Exon array
(gene 
symbol)

p value 
(SZ vs. 
NC)

Ratio 
(SZ vs. 
NC)

qPCR p value 
(SZ vs. 
NC)

Ratio 
(SZ vs. 
NC)

EDIL3 1.04E–13 0.446 EDIL3 0.01418 0.425
NRCAM 1.37E–02 0.525 NRCAM 0.06127 0.663
PTGDS 1.41E–14 0.722 PTGDS 0.04731 0.695
DSC2 6.86E–04 1.592 DSC2 0.00005 2.021
NRG1 1.14E–02 2.062 NRG1 0.01021 1.979
ITGA2B 3.71E–02 2.088 ITGA2B 0.00007 2.269
ITGB3 2.65E–02 2.601 ITGB3 0.00005 2.065

qPCR, quantitative PCR; SZ, schizophrenia; NC, normal con-
trol.
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exon array expression differences and qPCR (Table 7; 
Fig. 2). We used NanoString to test the complete panel of 
18 biomarker genes.

NanoString Platform Accuracy for Diagnostic 
Classification
The NanoString platform was chosen to validate the 

biomarker panel using the entire panel as well as probe-
sets mapping close to the original exon array probesets. 
With the NanoString data, the best multivariate logistic 
regression model for diagnosis at visit 2 was obtained by 
stepwise backward elimination from the full 23-probeset 
multivariate model to a reduced model with all included 
probesets significant at p < 0.05 or p < 0.1 to maintain an 
AUC above 0.9 (Table 8).

A cut-point for each reduced diagnostic model was 
found which optimized both sensitivity and specificity 
based on the visit 2 data, which reduced the useful probe-
set number to 12 (Table 9). The diagnostic model and 

cut-point were then applied to the visit 4 data to estimate 
the visit 4 sensitivity and specificity as well as the agree-
ment between the visit 2 and the visit 4 diagnostic predic-
tions.

Comparison of Affymetrix Exon Array with 
NanoString Results
The prediction accuracies for diagnosis were com-

pared between the Affymetrix exon array and the 
NanoString platform. In general, for the exon array, the 
model performed equally well for visit 2 and visit 4 data 
due to the data driving the selection algorithm from the 
original platform. The visit 2/visit 4 agreement for the Af-

Table 8. The NanoString data set was analyzed by ANOVA, and the following 23 probesets representing 11 genes passed the initial 
ANOVA filter (p < 0.1)

2537112_SH3YL1 (30) 3554838_CRIP2 (39) 2661997_OXTR (43) 2723770_TBC1D1 (55)
2537128_SH3YL1 (61) 3554839_CRIP2 (58) 2906726_TREML4 (45) 4048243_HLA-DRB5 (57)
2647127_CPA3 (35) 3554833_CRIP2 (68) 2906736_TREML4 (50) 3195045_PTGDS (59)
2647122_CPA3 (47) 2418615_SLC44A5 (40) 2906735_TREML4 (53) 2401364_TCEA3 (64)
2647124_CPA3 (65) 2418581_SLC44A5 (46) 2906733_TREML4 (62) 2401362_TCEA3 (70)
2647119_CPA3 (69) 2418590_SLC44A5 (51) 3063538_TRIM4 (52)

The format is: “Affymetrix Exon Array Probeset ID_Gene Symbol (variable number entered into regression).”

y = 0.9755x
R2 = 0.8666

0

0.500

1.000

1.500

2.000

2.500

3.000

0 0.500 1.000 1.500 2.000 2.500 3.000

Fig. 2. The fold change ratio (SZ compared to NC) for the exon 
microarray results was compared to the fold change ratio (SZ com-
pared to NC) of quantitative PCR. The fold changes were highly 
correlated. SZ, schizophrenia; NC, normal control.

Table 9. Summary of NanoString cut-point diagnostic accuracy

Significant probesets1 NC vs. 
SZ/BD

NC vs.
SZ

NC vs.
BD

SZ vs. 
BD

2537112_SH3YL1 (30) x x x x
2537128_SH3YL1 (61) x x x
2647124_CPA3 (65) x x x x
2647119_CPA3 (69) x x x x
3554833_CRIP2 (68) x x
2418590_SLC44A5 (51) x x
2661997_OXTR (43) x x
2906733_TREML4 (62) x
3063538_TRIM4 (52) x x x
2723770_TBC1D1 (55) x
3195045_PTGDS (59) x x x x
2401362_TCEA3 (70) x

AUC 0.913 0.990 0.953 0.905
Visit 2 sensitivity 98.3% 96.6% 89.3% 86.2%
Visit 2 specificity 75.0% 96.4% 92.9% 82.1%
Visit 4 sensitivity 87.5% 75.0% 75.0% 57.1%
Visit 4 specificity 60.0% 80.0% 76.0% 85.7%
Visit 2/4 agreement 77.6% 76.0% 75.5% 64.2%

BD, bipolar disorder; SZ, schizophrenia; NC, normal control. 
1 Format as explained in Table 8.
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Table 10. Comparison of Affymetrix and NanoString results showing that the Affymetrix exon array had higher sensitivity and specific-
ity for prediction

NanoString probeset ID Genes included in each predictive model

NC vs. SZ/BD NC vs. SZ NC vs. BD SZ vs. BD

Affymetrix 
ID

Nano-
String

Affymetrix 
ID

Nano-
String

Affymetrix 
ID

Nano-
String

Affymetrix 
ID

Nano-
String

2537112_SH3YL1 (30) x x x x

2537128_SH3YL1 (61) x x x

2647124_CPA3 (65) x x x x

2647119_CPA3 (69) 2647109 x x x x

3554833_CRIP2 (68) x x 3554818

2418590_SLC44A5 (51) 2418570 x 2418570 x

2661997_OXTR (43) 2661992 2661992 x 2661992 x

2906733_TREML4 (62) 2906720 x

3063538_TRIM4 (52) 3063536 x x x

2723770_TBC1D1 (55) x

3195045_PTGDS (59) 3195034 x x 3195034 x x

2401362_TCEA3 (70) 2401347 x

3667896,97_HPR 3667890

3908171_ZMYND8 3908149

2545100_HADHA 2545092

2739191_CCDC109B 2739160

3846545_EEF2 3846538

3333251,56,58,62,69,70,74_FADS2 3333247 3333247

4048243,52_HLA-DRB5 4048241

3329128_GYLTL1B 3329099

2660633,41_IL5RA 2660617

3766938_DDX5 3766893

AUC1 0.994 0.913 0.954 0.990 0.974 0.953 0.998 0.905

Visit 2 sensitivity 93.3% 98.3% 96.7% 96.6% 96.7% 89.3% 96.7% 86.2%

Visit 2 specificity 100% 75.0% 83.3% 96.4% 86.7% 92.9% 100% 82.1%

Visit 4 sensitivity 96.7% 87.5% 100% 75.0% 93.3% 75.0% 96.7% 57.1%

Visit 4 specificity 93.3% 60.0% 80% 80.0% 100.0% 76.0% 100% 85.7%

Visit 2/4 agreement 93.3% 77.6% 86.7% 76.0% 88.3% 75.5% 100% 64.2%

BD, bipolar disorder; SZ, schizophrenia; NC, normal control. 1 The AUC was for combined visit 2 and 4 modeling, and each visit 
was evaluated for predictions individually.
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fymetrix exon array was significantly higher than for the 
NanoString reproducibility diagnosis classification (two-
tailed paired t test, p = 0.046). These results show that the 
test-retest reproducibility of the algorithm using the same 
subjects was best when using the original platform (Table 
10), although there was general agreement across plat-
forms.

In comparing the qPCR, exon array, and NanoString 
results, 5 of 7 genes tested by qPCR passed with signifi-
cant p values, while all genes were concordant with fold 
changes between the exon array and qPCR results. The 
biomarker panel was developed more than 2 years after 
the initial qPCR approach to validate the findings on the 
exon array. Therefore, only 7 genes were selected by qPCR 
for confirmation of the exon array findings. Instead of 
qPCR, the panel of NanoString markers was used for val-
idation of the panel of biomarkers. The NanoString data 
set confirmed that the best prediction was based upon 10 
NanoString genes of the original 18 exon array genes.

Bioinformatic Analysis of the Biomarker Panel
A recent mega-analysis of differentially expressed 

genes in SZ across 9 studies was conducted in blood-
based transcriptomics [35]. There were 1,624 genes that 
survived the FDR that were compared to the top 122 
genes identified by ANOVA in the present study. The for-
mula for the expected number of genes was calculated as:

( )1 2

1 2

24 000
1 2

.
24 000 24 000

Expected gene number overlaps p p ,
observed genes in list observed genes in list

where p is and p is
, ,

é ù´ë û

=

This formula yields an expected number of 8.2 genes, 
while the actually observed number was 9 genes; we con-
clude that the overlap was not exceeding chance level.  
Interestingly, 2 mitochondrial genes were found among 
these top 9, and they agreed in fold change direction 
across the two studies (Table 11): (1) mitochondrial ribo-
somal protein L42 (MRPL42) and (2) transcription factor 
B1, mitochondrial (TFB1M).

Regarding genes implicated in BD or SZ from a data-
base of genome-wide association study (GWAS)-curated 
genes (GWASdb v2 [69]) there were 2,189 unique genes 
meeting this criterion (p < 0.001). In our list of 122 dif-
ferentially expressed genes for BD and SZ that were tem-
porally stable, there was an overlap of 22 genes with the 
GWASdb genes (Table 12), resulting in a 2-fold enrich-
ment, as only 11 genes were expected (p = 0.029, one-
tailed Pearson).

An IPA (Ingenuity Pathway Analysis) of the top 122 
genes for the BD and SZ biomarker panel showed some 
overlap in a network related to 2 different proto-onco-
genes: (1) REL and (2) MKL2. The REL gene (REL proto-
oncogene, NF-κB subunit) encodes a protein that belongs 
to the Rel homology domain/immunoglobulin-like fold, 
plexin, transcription factor (RHD/IPT) family. This proto-
oncogene plays a role in the survival and proliferation of B 
lymphocytes. SNPs in this gene are associated with suscep-
tibility to ulcerative colitis and rheumatoid arthritis. The 
direct REL gene targets were differentially expressed in BD 
and SZ (Fig. 3). Opposite fold change genes related to REL 
were seen in BD and SZ; for instance, ATP11A was up-
regulated in SZ (1.68) and downregulated in BD (–1.63), 

Table 11. Overlap between a mega-analysis of dysregulated genes in blood [35] and the current study

Gene 
symbol

Gene product Mean 
difference

FDR 
q value

Gene 
symbol

p value 
(SZ vs. NC)

Ratio 
(SZ vs. NC)

FAM118A family with sequence similarity 118, member A –0.37 5.90E–04 FAM118A 4.17E–13 0.58
MRPL42 mitochondrial ribosomal protein L42 0.27 1.90E–02 MRPL42 0.000535 1.24
PHF14 PHD finger protein 14 0.26 2.50E–02 PHF14 3.09E–14 0.49
PHIP pleckstrin homology domain 

interacting protein
0.29 9.10E–03 PHIP 4.66E–29 0.59

PLB1 phospholipase B1 0.26 3.40E–02 PLB1 2.70E–13 1.52
SLC22A4 solute carrier family 22 (organic cation/

zwitterion transporter), member 4
0.34 3.30E–03 SLC22A4 0.039619 1.14

STX2 syntaxin 2 0.28 1.30E–02 STX2 1.49E–05 0.81
TFB1M transcription factor B1, mitochondrial –0.5 3.60E–02 TFB1M 1.11E–05 0.79
TNFRSF21 tumor necrosis factor receptor 

superfamily, member 21
–0.31 3.70E–03 TNFRSF21 1.96E–13 0.53

FDR, false discovery rate; SZ, schizophrenia; NC, normal control.
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while an opposite relationship was seen for PHF14 (down-
regulated in SZ [–2.01] and upregulated in BD [2.95]).

MKL2 is a proto-oncogene which is widely distribut-
ed, highly expressed in brain regions such as the dentate 
gyrus (Allen Institute Brain Science [70]), and associated 
with microcephaly [71]. The MKL2 gene consists of mul-
tiple exons many of which are downregulated in SZ and 
not significantly changed in BD. The exon levels in blood 
for MKL2 were differentially expressed in SZ, although 
not in the top 300 genes (Fig. 4). The downstream effects 
on MKL2-regulated genes in the top biomarker classifica-
tion genes were in the expected directions, e.g., there were 
decreased fold changes seen in genes regulated by MKL2 
in SZ (ACTA2, FADS2, and CPA3), while the same set 
was upregulated in BD.

Two additional genes in the biomarker panels, i.e.,  
PTGDS (prostaglandin D2 [PGD2] synthase) and FADS2 
(fatty acid desaturase 2), were also found to be candidate 
genes in the literature. PTGDS expression was reduced in 
BD PBMCs [72], also in the present study (p = 0.000271; 
fold change –1.23), and it was down in SZ as well (p = 
9.04E–12; fold change –1.52). In BD and SZ there appears 
to be a downregulation of PTGDS, which also was ranked 

Table 12. Overlap between GWASdb v2 [69] and the current study 
of differentially expressed genes in BD and SZ

Overlap BD and GWASdb v2 Overlap SZ and GWASdb v2

CNTNAP2 CDC42BPB
TBC1D1 KANK1
EDIL3 PRICKLE1
LRRC16A SLC44A5
TCEA3 FCER2
NRCAM AK5
PAX5 DSP
EXO1 DNAH6
JUP CNTNAP2

C22orf34
NPAS2
SUMF1
PAX5
LAPTM4B
EXO1
LRRC16A
ADARB2

GWASdb contains lists of genes that have been associated with 
either or both disorders by GWAS. There was an enrichment of the 
overlap of genes found to be differentially expressed and associated 
with disorder. GWAS, genome-wide association study; BD, bipolar 
disorder; SZ, schizophrenia.
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Fig. 3. The REL transcription factor is a central hub for genes in 
the top 122 differentially expressed list. The top panel shows the 
relationship for BD compared to NC, the bottom panel shows the 
relationship for SZ compared to NC. Many of the genes are oppo-
sitely regulated across BD and SZ. BD, bipolar disorder; SZ, schizo-
phrenia; NC, normal control.
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high in the convergent functional genomics paradigm for 
anxiety [73]. FADS2 expression was decreased in SZ in 
this study (p = 9.20E–09; fold change –1.80) and increased 
in BD (p = 2.79E–06; fold change 1.6).

The FADS2 and PTGDS genes work in the biosynthe-
sis of the fatty acid pathway and converge on key mole-
cules in BD such as arachidonic acid. HADHA was sig-
nificantly increased in BD (p = 4.74E–08; fold change 
1.67) and was not changed in SZ. HADHA is closely re-
lated to FADS2 and HADHA in the fatty acid pathway 
(Fig. 5) and along with PTGDS participates in the biosyn-
thesis and degradation of unsaturated fatty acids, an im-
portant pathway implicated in BD and SZ.

Discussion

To determine stable temporal biomarkers, this study 
evaluated whole blood gene expression at two different 
time points using the same subjects (SZ, BD, and NC) 
for differential diagnosis. The diagnostic algorithm 
used logistic regression modeling and a total of 18 
uniquely expressed exons within known mRNA tran-
scripts. The model discriminated SZ and BD from each 
other, as well as both from healthy controls in four steps. 
The upper limit of accuracy achieved in this biomarker 
study was 88%, using an independent visit of the same 
patients. When using the “leave-one-out” evaluation  
algorithm, the results were very consistent with the ac-
tual data; thus, the “leave-one-out” analyses indicated 
that the models were not driven by outliers and that they 
should be predictive when applied to independent data 
cohorts.

It is expected that the application of these panels to 
first-episode or prodromal subjects may improve predic-
tion for those subjects that ultimately convert to either 
illness, as well as for the millions of patients worldwide 
that have not received any clear diagnosis of their on-
going disorder. This will require an additional validation 
study of the biomarker signatures with a larger cohort in 
a follow-on project.

The differences in expression of 3 genes (PTGDS, 
FADS2, and HADHA) related to polyunsaturated fatty 
acid (PUFA) and prostaglandin biosynthesis were used 
for the final biomarker panels to differentiate between SZ, 
BD, and NC. Previously, these genes have been associated 
with psychiatric disorders such as BD, major affective dis-
order, SZ, and anxiety. PTGDS is involved in the synthe-
sis of PGD2 from PGH2, the cyclooxygenase-mediated 
product of arachidonic acid which is a PUFA [4]. PTGDS 
is a top anxiety gene modulated by changes in PUFA 
(omega-3 fatty acid docosahexaenoic acid) [73] on the 
convergent functional genomics scale. Increased expres-
sion of FADS2 has been found in SZ and BD brains post 
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Fig. 4. The MKL2 proto-oncogene is a central hub for genes in the 
top 122 differentially expressed list. The top panel shows the rela-
tionship for BD compared to NC, the bottom panel shows the re-
lationship for SZ compared to NC. Many of the genes are oppo-
sitely regulated across BD and SZ. BD, bipolar disorder; SZ, schizo-
phrenia; NC, normal control.
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mortem [74, 75]. FADS2 activity is increased in BD and 
is associated with suicidal behavior [76].

In the present study, we found an increased expression 
of FADS2 in BD, in agreement with the FADS2 findings 
reported. The increased activity of FADS2 could reduce 
PUFA levels of both arachidonic acid and eicosapenta-
enoic acid by promoting conversion to longer-chain fatty 
acids, shown in both the n–3 and the n–6 pathway (Fig. 5). 
Thus, PUFA supplementation with n–3 fatty acids in 
mood disorder was effective in reducing mood symptoms 
in 4 out of 7 well-controlled studies [76]. The expression 
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Fig. 5. Modified KEGG (Kyoto Encyclope-
dia of Genes and Genomes) pathway labels 
for FADS2 and HADHA participate in the 
conversion of polyunsaturated fatty acids 
and fatty acid β-oxidation.

data for FADS2, while interesting, could be subject to di-
etary influence, such as amounts and types of daily dietary 
intake of fatty acids, the timing of intake, and also medi-
cation effects on these genes. Further, genetics plays a sig-
nificant role, especially in modulating levels of fatty acids 
and FADS2 expression. Another limitation to the assess-
ment of these genes as representing actual pathophysio-
logical markers is that, potentially, stress could modulate 
the biomarker panel genes. Many patients with BD and 
SZ experience higher levels of stress than controls, which 
might explain differences in immune cell activation and 
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prostaglandin synthesis. We examined our biomarker 
panel of 18 genes in our unpublished stress data set (M. 
Martin and M.P.V.) using the same exon array approach 
and Tempus tube approach on healthy volunteers who 
underwent sleep deprivation and 9 repeated blood draws 
over 54 h, i.e., every 6 h. We checked our results for the 
healthy controls and found that 4 transcripts that passed 
Bonferroni corrections were affected by time of day  
and, potentially, stress induction as well (DDX5, EEF2,  
HADHA, and CCDC109B). However, these 4 genes did 
not vary in the present study, even though in the stress 
data set these genes varied by time of day. Taken together, 
although these 4 genes were dysregulated as a conse-
quence of time of day and sleep deprivation, these genes 
in the present study were stable across 8 weeks of time,  
and would have been expected to show some fluctuation 
with stress levels or time of day.

Several design points could be potential limitations as 
well. First, the study was not designed to test for treatment 
effects or treatment response. Although we have some psy-
chiatric ratings available for the subjects, a feasible ap-
proach would be to identify treatment responders versus 
nonresponders using a within-subject design, comparing 
the severity of psychotic symptoms before and after 8 
weeks of treatment, and correlating stably expressed bio-
markers with response to treatment. This alternative ap-
proach would yield useful information, and is planned for 
a follow-on analysis of the data to explore biomarkers of 
treatment response. An inspection of the “treatment re-
sponders” in the study showed that the majority of patients 
did not change their medications, were clinically stable, 
and maintained similar psychiatric ratings across the 8 
weeks. Further, for differentiating diseased from nondis-
eased groups, we adopted an outpatient case-control anal-
ysis. Another approach that could yield potential data in a 
future test of the biomarker panel is whether unaffected 
siblings of psychiatric patients could be reliably differenti-
ated by the panel. This approach could be utilized as well 
in future studies. The current biomarker panel could also 
be used on subjects with major depressive disorder to ex-
amine if there is some coherence to a subclassification into 
more psychotic (in the SZ group) or more affective disor-
dered (in the BD group) for aiding in potential treatments 
for these patients. These directions will go far in providing 
useful information to clinicians, researchers, and patients 
to guide our understanding of these illnesses.

A tremendous effort has been expended into GWAS of 
SZ [77] and BD [78], and it is recognized that there is a 
large number of common variants contributing to the 
polygenic susceptibility for these disorders. Estimates 

from several hundred genes of small effect size, as pub-
lished in the largest international genetic study of SZ [79], 
to the possibility that thousands of genes are involved in 
the pathogenesis of SZ were made [80]. We have high-
lighted several genes that contribute towards this suscep-
tibility using transcription analysis (Table 12), finding 
some overlap between GWAS variants and differential 
gene expression. Our present biomarker results overlap 
with a genetic database of genes implicated in either BD 
or SZ or both from a database of GWAS-curated genes 
(GWASdb v2 [69]). We found a significant overlap with 
our list of 122 differentially expressed genes for BD and 
SZ that were temporally stable (Table 12). The overlap of 
22 genes suggests that peripheral biomarkers of either SZ 
or BD may have some genetic component that could drive 
differential expression. This leaves open the possibility 
that a number of serum proteins [81–85] and transcripts 
will advance as biomarkers.

Additionally, 2 upstream transcription factors merit 
further investigation, i.e., REL and MKL2, which appear 
to oppositely regulate genes in BD and SZ. The down-
stream targets of the genes were used to differentially di-
agnose subjects with BD and SZ. These proto-oncogenes 
have not previously been associated with psychiatric dis-
orders. The expression of these 2 transcription factors 
(REL and MKL2) was studied in the cerebral cortex and 
shown to be expressed in microglia and endothelial cell 
types at higher levels than in neurons and astrocytes [86]. 
This raises the possibility that blood transcriptomics is 
mirroring some of the microglial/endothelial cell activity 
in the brain. It is known that peripheral cells can interact 
with brain microglia and endothelial cells.

There are prior reports supporting the directions of 
gene expression changes found in this biomarker study. 
For example, there was a consistent increase in expression 
of IL5RA (interleukin 5 receptor, alpha) in lithium-treat-
ed subjects with BD in PBMCs that passed a strict FDR 
[87]. In the final biomarker panel, we also found a trend 
for an increase in IL5RA expression in BD (p value for  
BD = 0.056; fold change 1.16); however, IL5RA expres-
sion in SZ was significantly decreased and passing the 
FDR (p value for SZ vs. NC = 2.65E–08; fold change 
–1.59). Regarding PLB1 (phospholipase B1) in PBMCs, 
lithium decreased its expression (–1.17 fold change), 
passing the FDR [87] in PBMCs, while in the present 
study, PLB1 was significantly decreased in BD by –1.19 
and was not significantly increased in SZ (p = 0.06; fold 
change 1.16). It is unlikely that some expression in the 
biomarker panel might be due to lithium treatment, since 
only 2 BD subjects were lithium treated in this study. An-
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other ramification of using biomarkers is to provide a 
method for monitoring drug efficacy and other appropri-
ate early psychosocial interventions for mental disorders. 
In a planned separate analysis, we will further correlate 
the phenotypic neuropsychiatric rating data obtained 
from each patient along with the gene expression data.

Over 100,000 adolescent Americans suffer from symp-
toms of psychosis each year, as well as millions of patients 
worldwide that have not received any clear differential 
diagnosis of their ongoing disorder; yet, currently, there 
are no biomarker tests that are FDA approved to classify 
SZ or BD. There is a serious need for “objective” clinical 
laboratory tests for an early diagnosis of these mental dis-
orders, since today these disorders may typically take 
months or even years to reach a diagnosis and for patients 
to receive effective treatment. The lag in treatment is as-
sociated with an increase in suicide rates and recurrent 
episodes of psychosis and mood dysregulation. There is a 
large increase in deaths reported among first-episode 
psychotic subjects due to lack of treatment after the first 
year of illness [1]. Thus, it is important to have objective 
biomarkers to help implement treatment at an early stage. 
One estimate of the direct and indirect annual costs in the 
USA for SZ is USD 174 billion [88], with an additional 
cost of USD 151 billion for BD [89]. Biomarker signatures 
could lead to faster and more accurate diagnoses, reduc-
ing the duration of untreated psychosis, suicidality, and 

cognitive decline and adding to an understanding of the 
shared and unique pathophysiologies of each disorder. 
The blood test results that are described in this paper, if 
further validated in a larger number of subjects, will offer 
molecular diagnostic support for psychiatrists’ clinical 
evaluation with rapid clinical laboratory test results.
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