
Thermodynamics of the interplay between magnetism
and high-temperature superconductivity
Steven A. Kivelson†‡, G. Aeppli§, and Victor J. Emery¶

‡Department of Physics and Astronomy, University of California, Los Angeles, CA 90095-1547; §NEC Research Institute, 4 Independence Way,
Princeton, NJ 08540; and ¶Brookhaven National Laboratory, Upton, NY 11973

Communicated by Zachary Fisk, National High Magnetic Field Laboratory, Tallahassee, FL, July 16, 2001 (received for review April 30, 2001)

Copper– oxide-based high-temperature superconductors have
complex phase diagrams with multiple ordered phases. It even
appears that the highest superconducting transition tempera-
tures for certain cuprates are found in samples that display
simultaneous onset of magnetism and superconductivity. We
show here how the thermodynamics of fluid mixtures—a touch-
stone for chemistry as well as hard and soft condensed matter
physics—accounts for this startling observation, as well as many
other properties of the cuprates in the vicinity of the instability
toward ‘‘striped’’ magnetism.

The phase diagrams of conventional superconductors are
usually simple, with no ordered phases competing with the

superconducting state. By contrast, high-temperature super-
conductors have a number of competing phases that appear
as the temperature is lowered. One of the most astonishing
manifestations of this competition occurs in the LaCuO
family of materials, where coexisting magnetism and high-
temperature superconductivity (1–15) have been reported. In
La1.62xNd0.4SrxCuO4, long-period magnetic (‘‘stripe’’) order (as
detected by neutron diffraction) sets in at a higher temperature
than the superconducting Tc [and indeed, charge ‘‘stripe’’ order
appears at a still higher temperature (1, 4)]. In La2CuO4.12 and
La1.88Sr0.12CuO4, superconductivity and long-period magnetism
appear to have the same onset temperature in the same bulk
crystal! However, although muon spin relaxation data tell a
grossly similar story (5–8), in La1.62xNd0.4SrxCuO4, the corre-
sponding data (12) for La2CuO4.12 show that the magnetism is
peculiar in that it resides in only a fraction of the sample, and its
temperature evolution is due to the growth of the magnetic
fraction rather than an increase in the order within the magnetic
fraction. We show how these observations can be understood
from the classical thermodynamics of two-phase mixtures, which
is applicable because of the well-documented tendency of anti-
ferromagnets to expel holes (16–22). Related thermodynamic
signatures of competing orders are observed in other transition
metal oxides (see ref. 23).

Phase Diagrams with Competing Orders. The interplay between
‘‘stripe’’ magnetism and superconductivity can be understood
most simply by treating the liquids of mobile charge carriers in
high-temperature superconductors as fluids with a variety of
ground states. As for other complex fluids, such as liquid
crystals, the coupling between the order parameters for the
various ground states can lead to phases with mesoscopic density
modulations as well as diverse combinations of the order pa-
rameters themselves. To make this phenomenon explicit, we
follow a standard paradigm of statistical physics and consider
(24–29) the simplest Landau free energy, F, for two coupled
order parameters, SW and D, which represent the long period
antiferromagnet and the superconducting order parameters,
respectively. Spin rotation invariance and gauge invariance (D is
a complex number whose phase cannot influence the free
energy) imply that F is a function of uSW .SW u and uDu2:

F 5 F0~m, T! 1 a~m, T!uSW zSW u 1 b~m, T!uSW zSW u2

1 a~m, T!uDu2 1 b~m, T!uDu4 1 g~m, T!uDu2uSW zSW u. . . , [1]

where T is the temperature, m is the chemical potential for doped
holes, . . . represents higher-order terms in powers of the order-
ing fields, and the various coefficients embody the effects of all
of short-distance physics. The phase diagram is then determined
(at mean-field level) by minimizing F with respect to SW and D.
Although such a mean-field description ignores important fluc-
tuations, especially given the fact that high-temperature super-
conductors are quasi-two-dimensional, it provides a valid zeroth
order way to examine the global structure of the phase diagram.

From the macroscopic viewpoint adopted in the present
paper, the parameters that enter the Landau free energy in Eq.
1 are purely phenomenological. However, some insight concern-
ing the microscopic physics can be inferred from the behavior of
these parameters. In particular, if g . 0, superconductivity and
long-period magnetism compete, whereas if g , 0, they enhance
each other. Indeed, Ichikawa et al. (4) have concluded that static
magnetism and superconductivity compete, and this is certainly
intuitively sensible. Recent experiments on the behavior of
vortex cores (30) and on superconductivity-induced changes in
the magnetic susceptibility (31) of optimally doped
La22xSrxCuO4 confirm that g . 0, in agreement with these
arguments. One main purpose of this paper is to show how, even
if g . 0, magnetism and superconductivity can set in at the same
temperature in a single sample.

An important subtlety arises from the fact that, as in many
experiments on classical f luids, it is the total number of constit-
uents of the fluid rather than the chemical potential that is fixed.
For the cuprates, the constituents are the charge carriers (doped
holes), and their number is fixed by the chemical composition of
the compound under study (e.g., the x in La22xSrxCuO4). There-
fore, m must be determined from the implicit relation

2x 5 Fym 5 F90 1 a9uSW zSW u 1 a9uDu2 1 . . . , [2]

where x is the concentration of doped holes, 9 denotes differ-
entiation with respect to m, and SW and D are the equilibrium
values of the ordering fields as a function of T and m. However,
where two-phase coexistence occurs in the phase diagram, there
are values of m at which Fym has a discontinuity. In this case,
Eq. 2 has solutions for fixed m at two different values of x, x1,
and x2, but has no solutions for x1 , x , x2. The equilibrium state
for fixed x in this range consists of a two-phase mixture, with the
volume fractions of the hole-rich (x 5 x2) and hole-poor (x 5 x1)
phases determined by the classical lever rule, f1 5 (x2 2 x)y
(x2 2 x1), and f2 5 1 2 f1. Otherwise, in those ranges of x for
which the equilibrium state is single phase, it is possible, if
desired, to perform a Legendre transform, so that the coeffi-
cients in the Landau free energy (a, b, etc.) are expressed as
functions of x and T.

Generally, broken symmetry phases occur only at lower
temperatures, so it is reasonable to expect a and a to change sign
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at bare transition temperatures defined according to a(x, T) [
a0(x, T)[T 2 Ts(x)] and a(x, T) [ a0(x, T)[T 2TD(x)], where a0,
a0 . 0. (Here, we use the same symbol for the original and
Legendre transformed coefficients in the Landau theory.) On
both theoretical and empirical grounds, we expect the native
magnetic ordering temperature Ts(x) to be a generally decreasing
function of x, reflecting the frustration of hole motion in the
magnetically ordered state. However, a peak in Ts(x) at a special
‘‘commensurate’’ value of x can occur when the period of the
stripe order is a small integer times the underlying crystalline
lattice constant; such a commensurability effect gives rise (1, 4)
to the anomalous stability of the long period magnetism at x 5
1y8, as shown schematically in Fig. 1. TD(x) is known empirically
to be a nonmonotonic function of x, reaching a peak around an
optimal value of x ' 0.15 and dropping slowly as x is increased
or decreased.

Several generic phase diagrams are derivable from such a
Landau free energy. Most simply, a tetracritical point can occur
at (T, m) 5 (T*, m*), which leads to a phase diagram of the type
shown in Fig. 1a. Here, in addition to the phases with either
magnetic or superconducting order, there is a homogeneous
intermediate phase with bulk coexistence of the two orders. We
have included in this and all subsequent frames of Fig. 1 a second
superconducting phase (which is permitted but not required in
the simplest Landau theory) at hole concentrations x , 1y8. This
is motivated by the observation that many high-temperature
superconductors exhibit multiple humps in the superconducting
transition temperature plotted against hole concentration, most
notably the Yba2Cu3O7-d [especially when lightly Zn doped (32)]
and La22xSrxCuO4 related compounds. As mentioned above, we
have also indicated a peak in the magnetic ordering temperature
at x 5 1y8. The corresponding anomalous suppression of the
superconducting transition temperature at this point shown in
Fig. 1 is a consequence (4) of the peak in the magnetic ordering
under the assumption that g . 0, even if TD(x) is monotonic in
this range of x.

The tetracritical point obtains as long as solutions exist to the
simultaneous equations a(m*, T*) 5 0 and a(m*, T*) 5 0,
which at the same time satisfy the inequalities b(m*, T*) . 0,

b(m*, T*) . 0, and b(m*, T*) b(m*, T*) . 4 g(m*, T*)2. If, on
the other hand, the last of these inequalities is violated, i.e., if
=b(m*, T*)b(m*, T*) , 2g(m*, T*), the tetracritical point is
replaced by a bicritical point. Not only does that mean that there
is no phase with bulk coexistence of the two orders; it also means
that below the bicritical point, there is a region of two-phase
coexistence, where a hole-poor magnetically ordered and a
hole-rich superconducting state coexist, as shown in Fig. 1b. In
reality, this coexistence must not be taken literally. Because of
the long-range Coulomb interaction between holes, macroscopic
phase separation is thermodynamically forbidden. Where mac-
roscopic phase coexistence would occur in a neutral system, a
form of Coulomb frustrated phase separation (21, 22) is ex-
pected, leading to a state that is inhomogeneous on an inter-
mediate length scale. This also means that the two coexisting
phases are in microscopic proximity to each other, and hence
that a modicum of superconducting order will be induced in the
magnetic regions, via the proximity effect and conversely (ref.
33; and J. C. Davis, personal communication). Such competition
is a recurring theme in this problem; there are empirical and
theoretical reasons to believe (34, 35, 36) that the long antifer-
romagnetic stripe order itself is at least in part a consequence of
Coulomb frustrated electronic phase separation on a smaller
length scale.

A third possibility shown in Fig. 1c occurs if there is a tricritical
point where a(m*, T*) 5 b(m*, T*) 5 0, while all of the other
coefficients (including certain higher order terms, not discussed
explicitly) remain positive. This leads to a phase diagram of the
sort shown in Fig. 1c. Here, superconductivity, if it appears at all,
manifests itself below a phase boundary that terminates on the
edge of the two-phase region in a critical end point.

For completeness, we present a fourth possible phase diagram
topology, shown in Fig. 1d, for which a more thorough analysis
of the free energy function is necessary. Here, instead of a
multicritical point, we consider the occurrence of a simple
critical point, below which phase separation occurs into hole-rich
and hole-poor phases, neither of which is ordered. In this case,
both the antiferromagnetic and the superconducting phase
boundaries terminate at critical end points.

Relation to Experiment in La2CuO41d. The thermal evolution of a
given material should be associated with a trajectory in one of the
generic phase diagrams in Fig. 1. In particular, we propose
associating with La2CuO41d with the vertical dashed line in Fig.
1 c or d. It is a special trajectory, in the sense that it is tuned to
pass close to the critical end point, but this requires fine tuning
of only one parameter. Below Tc, the system forms an inhomo-
geneous mixture of a high-density superconducting and a low-
density antiferromagnetic phase. At Tc, the sample is a single-
phase superconductor, with a superconducting volume fraction
fSC(T) 5 1 2 fMag(T) that shrinks at the expense of the
antiferromagnet as T is reduced through the two-phase region.
Because there are no critical effects on the shape of the phase
boundary associated with a critical end point, just below Tc, fMag
5 A(Tc 2 T) 1 . . . . . . where A is determined by the slope of the
phase boundary. Because the magnetic ordering of the hole-poor
phase would set in at a temperature well above Tc, the ordered
moment M(T) in the antiferromagnetic fraction is immediately
large and essentially temperature independent! The growth of
the magnetism is associated more with the growth of the
hole-poor fraction rather than with the rise of the order param-
eter within the hole-poor regions.

Not only is this scenario consistent with the simultaneous
onset of superconductivity and magnetism, but it also reconciles
the neutron scattering and m-SR data, which we reproduce in
Fig. 2. Specifically, in a two-phase mixture in which only one
phase is magnetic, the intensity I of the Bragg scattering mea-

Fig. 1. Schematic phase diagrams derived from the Landau free energy
under the various conditions described in the text. IAF and SC indicate incom-
mensurate (striped) antiferromagnetic and superconducting order, respec-
tively. The circles represent classical critical or multicritical points and the
squares quantum critical points. The various vertical lines represent trajecto-
ries through the phase diagram discussed in the text. The pale blue phase
boundary in c represents the effect of an applied magnetic field on the phase
diagram.

11904 u www.pnas.orgycgiydoiy10.1073ypnas.211363698 Kivelson et al.



sured by neutrons is related to fMag and M, measured in m-SR,
according to the relation

I~T! 5 M2~T!fMag~T!. [3]

That the absolute neutron intensity (15) at low temperature is
0.022 mB

2 , which is 40% of that anticipated from the muon
experiments according to Eq. 3, suggests that either the sample
interior penetrated by the neutrons is different from the surface
region probed by the muons, or that the integration of the
magnetic signal in the neutron experiment could be incomplete.
(We look forward to future muon and neutron experiments on
the same samples to resolve the origin of the current discrep-
ancies.) In Fig. 2, we have scaled the neutron data so that it
matches the inferred intensity from m-SR data at T 5 0; the
(scaled) neutron data still falls somewhat short of M2(T)fMag(T)
immediately below Tc, probably because the neutron data are
peak intensities rather than integrals over the three-dimensional
(in reciprocal space) structures containing the net spectral
weight responsible for the muon data. More specifically, if there
is any broadening in the peaks as Tc is approached, the peak
intensity will be reduced relative to the integral. The red line in
the figure corresponds to the lever rule prediction for an average
hole density (15) x# 5 0.15 and assuming the simplest possible
parabolic form for the bounding curve of the two-phase region
Tc(x) 5 4T0 (x2 2 x)(x 2 x1)y(x2 2 x1)2. To have no free
parameters in determining the theoretical curve, we have taken
x1 5 1y8, reflecting the special stability of the striped phases
at x ' 1y8. The remaining parameters can be deduced directly
from f0 [ fMag (0) 5 0.4 and the condition that antiferromag-
netism and superconductivity onset at the same temperature,
T2(x#) 5 Tc 5 42K, according to To 5 Tcy[4f0(1 2 f0)] and x2 5
x1 1 (x# 2 x1)yf0. It turns out that the theoretical curves are very
sensitive to the exact value of f0. For instance, the quality of the
fit can be improved if we take f0 5 0.35, which is somewhat
smaller than the reported value, although possibly within exper-
imental uncertainty.

In the discussion above, we have ignored nonelectronic phys-
ics. The most obvious possibility here is that motion of excess

oxygen results in an inhomogeneous distribution of oxygen,
which in turn would lead to inhomogeneous hole-density and
electronic properties. The final outcome would be an inhomo-
geneous distribution of magnetism and superconductivity, even
while charge neutrality would obviously be satisfied on a local
scale. Nonetheless, our sense is that this explanation of the data
is improbable. First, the onsets of superconductivity and mag-
netism coincide (13, 14) in La22xSrxCuO4 as well as La2CuO41d

in the same range of average hole density. Second, the findings
of Lee et al. (15) provide an important clue concerning how
charge neutrality is preserved at long length scales without
substantial oxygen motion; they report magnetic order with a
remarkably long correlation length (greater than 125 Å) in the
basal plane, but with interplanar correlations extending only
over two to three planes. Charge neutrality can therefore be
preserved over distances of order 10–15 Å, even while the system
breaks up into thin magnetic and superconducting layers—
‘‘pancakes’’ parallel to the basal planes. Finally, NMR studies (T.
Imai and Y. S. Lee, personal communication) suggest that the
material is electronically single-phase at temperatures above Tc,
implying that the observed inhomogeneities are induced by the
onset of order.

La22xSrxCuO4, La1.62XNd0.4 Sr2CuO4, etc. The phase diagrams in Fig.
1 provide a framework for understanding many other properties
of the lanthanum cuprate family. To begin with, a miscibility gap
leading to coexistence of superconducting and nonsupercon-
ducting phases readily accounts for the finding of optimal
Meissner fractions for La22xSrxCuO4 only near special hole
densities (37). In addition, as for the superoxygenated
La2CuO41d discussed above, the ordered magnetic moments
deduced from neutron diffraction (13, 14) are less than the
frozen local moments deduced from muon spin relaxation (5–7)
and much less than that seen for ordinary insulating two-
dimensional antiferromagnets, implying also that the magnetic
order resides in only a part of the sample. The appropriate phase
diagram for La22xSrxCuO4 might then look like a disorder
broadened (glassy) image of Fig. 1b. On the other hand, as Nd
is inserted, the magnetism (as detected in neutron diffraction)
becomes stronger (1–4) and seems to appear throughout the
sample volumes (8), even while superconductivity survives.
There is also remarkable evidence for a nonmonotonic temper-
ature dependence of the superfluid density (38), which implies
that on cooling, La1.55Nd0.3Sr0.15CuO4 first undergoes a transi-
tion to a uniform superconducting state and then to a state with
coexistence of magnetism and superconductivity. Thus, the
tetracritical diagram, Fig. 1a might be more appropriate for
La1.62xNd0.4Sr2CuO4, with a microscopic coexistence of mag-
netic and superconducting order; La1.55Nd0.3Sr0.15CuO4 might
then be represented by the solid brown trajectory in that figure.
Finally, La12xBaxCuO4 exhibits two separated superconducting
‘‘domes,’’ with an intervening magnetic regime (at x 5 1y8) that
is magnetic and not superconducting (39–42). The correspond-
ing phase diagram could therefore be that shown in Fig. 1 a or
b. Of course, any real material exists not on a one-dimensional
axis representing the doping, but rather in a multidimensional
space spanned by the parameters required to shift from diagram
to diagram in Fig. 1. The outcome is then that, as demonstrated
by inelastic neutron scattering from La1.86Sr0.14CuO4 (43), op-
timally doped La22xSrxCuO4, described by the dotted trajectory
in Fig. 1a, can show behavior associated with the quantum
critical point where magnetism disappears in the tetratcritical
diagram.

Additional Details. With the exception of La2CuO41d, all of the
materials discussed have intrinsic disorder due to the random
arrangement of the dopant atoms; any stripe ordering transition
is thus expected (44–47) and observed (48) to be intrinsically

Fig. 2. Interplay between magnetic and superconducting order in
La2CuO41d. The open and closed circles represent, respectively, the antiferro-
magnetic fraction, fMag(T), and the product M2(T) fMag(T) from the m-SR data
in ref. 7. The open squares represent the neutron intensity I(T) from ref. 9,
scaled by a factor of 2.7. The solid line is a theoretical prediction for fMag(T),
using the lever rule, for the vertical dashed trajectory in the tricitical phase
diagram in Fig. 1c,assuming the two-phase region is bounded by the curve T2 5
4T0(x1 2 x)(x 2 x2)y(x2 2 x1)2 with parameters (discussed in the text) T0 5 43.7K,
x1 5 0.125, x2 5 0.188, and with a mean hole density X# 5 0.15, representative
(15) of stage IV La2CuO41d.
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glassy, with the ordered phase being a ‘‘stripe glass.’’ It should
also be clear that the interplay between magnetism and super-
conductivity, which accounts for so many key observations, omits
other features (49–52) expected or observed, of the actual phase
diagrams. Within the magnetic regime there can be a variety of
phases, which we have not indicated: the long period magnetic
order can be commensurate with the underlying lattice or
incommensurate, and the stripes can point along the copper
oxide bonds (‘‘horizontal’’) or (53, 54) at 45° to them (‘‘diago-
nal’’). Finally, we have not shown the transitions involving charge
order although certainly, at least for La1.62xNd0.4Sr2CuO4, there
is a separate transition (1, 4) at which unidirectional charge
density wave (‘‘charge stripe’’) order appears at a temperature
above the magnetic and superconducting transitions.

Prospects. A miscibility gap in the phase diagram not only resolves
old puzzles, but also provides a framework for understanding
current and future experiments. Particularly important are mea-
surements of magnetic field-dependent effects, as they permit a
continuous variation of the parameters in the Landau free
energy. Many predictions follow readily from the simple analysis
presented here. For example, if La2CuO41d, in zero field hap-
pens to lie on a trajectory that passes through a critical end point,
as we have supposed, then in a magnetic field, which will suppress
the superconducting Tc, magnetic Bragg scattering, originating
from a small magnetic fraction, will still appear at a temperature
roughly equal to the zero field Tc. This is illustrated in Fig. 1c,
where the field shrinks the superconducting region of the phase
diagram from the solid to the lighter blue line. However, as we
pointed out above, the vortex state is complicated—it is clear
that physics beyond the simple Landau theory needs to be
invoked (55) to understand the dramatic magnetic field-induced

increases in the antiferromagnetic Bragg intensities, which are
not anticipated from simply applying the lever rule (which would
make them field-independent). This physics is clearly beyond the
scope of the present work, but may relate to early theory
indicating that vortices in superconductors derived from Mott–
Hubbard insulators are insulating nano-antiferromagnets, with a
different charge density than the surrounding superconductor
(56, 57). Magnetoresistance data (58, 59) indicate enhanced
insulating tendencies in La22xSrxCuO4 for x near 1y8, i.e., fields
above Hc2 uncover the behavior also seen when superconduc-
tivity is suppressed by chemical pressure. Furthermore, neutron
diffraction reveals field-induced magnetic Bragg scattering,
which sets in near the zero-field critical temperature for super-
conductivity (60). Even for samples beyond the miscibility gap,
because type II superconductors below Hc2 are heterogeneous
mixtures of ‘‘normal’’ vortices and superconducting material, the
vortices can exhibit—on a finite length scale—the magnetism
one might have expected if superconductivity had not intervened
(assuming g . 0). Recent inelastic neutron scattering experi-
ments (30) on optimally doped La22xSrxCuO4 are in agreement
with this expectation—the vortices are found to behave as
nanomagnets with growing ‘‘stripe’’ order with decreasing
temperature.
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A. (2001) Science 291, 1759–1762.

31. Lake, B., Ronnow, H. M., Christensen, N. B., Aeppli, G., Lefmann, K.,
McMorrow, D. F., Vorderwisch, P., Smeibidl, P., Mangkorntong, N., Sasagawa,
T., et al. (1999) Nature (London) 400, 43–46.

32. Koike, Y., Akoshima, M., Aoyama, M., Nishimaki, K., Kawamata, T., Adachi,
T., Noji, T., Watanabe, I., Ohira, S., Higemoto, W. & Nagamine, K. (2000) Int.
J. Mod. Phys. 14, 3312–3315.

33. Howald, C., Fournier, P. & Kapitulnik, A. (2001) Preprint (cond-maty
0101251).

34. Emery, V. J., Kivelson, S. A. & Tranquada, J. (1999) Proc. Natl. Acad. Sci. USA
96, 8814–8817.

35. Zaanen, J. & Gunnarson, O. (1989) Phys. Rev. B Condens. Matter 40, 7391–7399.
36. Zaanen, J., Osman, O. Y., Kruis, H. V., Nussinov, Z. & Tworzydlo, J. (2001)

Preprint (cond-maty0102103).
37. Harshman, D. R., Aeppli, G., Batlogg, B., Espinosa, G. A., Cava, R. J., Cooper,

A. S., Rupp, L. W., Ansaldo, E. J. & Williams, D. Ll. (1989) Phys. Rev. Lett.
63, 1187–1190.

38. Tajima, S., Noda, T., Eisaki, H. & Uchida, S. (2001) Phys. Rev. Lett. 86,
500–504.

39. Moodenbaugh, A. R., Xu, Y., Suenaga, M., Folkerts, T. J. & Shelton, R. N.
(1988) Phys. Rev. B Condens. Matter 38, 4596–4600.

11906 u www.pnas.orgycgiydoiy10.1073ypnas.211363698 Kivelson et al.



40. Axe, J. D., Moudden, A. H., Hohlwein, D., Cox, D. E., Mohanty, K. M.,
Moodenbaugh, A. R. & Xu, Y. (1989) Phys. Rev. Lett. 62, 2751–2754.

41. Luke, G. M., Le, L. P., Sternlieb, B., Wu, W. D., Uemura, Y. J., Brewer, J. H.,
Riseman, T. M., Ishibashi, S. & Uchida, S. (1991) Physica C 185, 185–189.

42. Kumagai, K., Kawanao, K., Watanabe, I., Nishiyama, K. & Nagamine, K. (1994)
Hyperfine Interact. 86, 473–475.

43. Aeppli, G., Mason, T. E., Hayden, S. M., Mook, H. A. & Kulda, J. (1997)
Science 278, 1432–1435.

44. Hirota, K., Yamada, K., Tanaka, I. & Kojima, H. (1998) Physica B 241, 817.
45. Larkin, A. I. (1970) Zh. Eksp. Teoret. Fiz. 58, 1466–1469.
46. Kivelson, S. A. & Emery,V. J. (2000) in Stripes and Related Phenomena, eds.

Bianconi, A. & Saini, N. L. (Kluwer, New York) p. 91–100.
47. Zachar, O. (2000) Phys. Rev. B Condens. Matter 62, 13836–13839.
48. Tranquada, J. M., Ichikawa, N. & Uchida, S. (1999) Phys. Rev. B Condens.

Matter 59, 14712–14722.
49. Kivelson, S. A., Fradkin, E. & Emery, V. J. (1998) Nature (London) 393,

550–553.
50. Chakravarty, S., Laughlin, R. B., Morr, D. & Nayak, C. (2001) Phys. Rev. B

Condens. Matter 63, 94503–94512.

51. Varma, C. (1997) Phys. Rev. B Condens. Matter 55, 14554–14580.
52. Vojta, M. & Sachdev, S. (1999) Phys. Rev. Lett. 83, 3916–3919.
53. Wakimoto, S., Birgineau, R. J., Kastner, M. A., Lee, Y. S., Erwin, R., Gehring,

P. M., Lee, S.-H., Fujita, M., Yamada, K., Endoh, Y., et al. (2000) Phys. Rev.
B Condens. Matter 61, 3699–3706.

54. Wakimoto, S., Tranquada, J. M., Ono, T., Kojima, K. M., Uchida, S., Lee, S.-H.,
Gehring, P. M. & Birgineau, R. J. (2001) Preprint (cond-maty0103135).

55. Demler, E., Sachdev, S. & Zhang, Y. (2001) Phys. Rev. Lett. 87, 67202–67205.
56. Arovas, D. P., Berlinsky, A. J., Kallin, C. & Zhang, S. C. (1997) Phys. Rev. Lett.

79, 2871–2874.
57. Han, J. H. & Lee, D.-H. (2000) Phys. Rev. Lett. 85, 1100–1103.
58. Ando, Y., Boebinger, G. S., Passner, A., Kimura, T. & Kishio, K. (1995) Phys.

Rev. Lett. 75, 4662–4665.
59. Ono, S., Ando, Y., Murayama, T., Balakirev, F. F., Betts, J. B. & Boebinger,

G. S. (2000) Phys. Rev. Lett. 85, 638–641.
60. Lake, B., Ronnow, H. M., Christensen, N. B., Aeppli, G., Lefmann, K.,

McMorrow, D. F., Vorderwisch, P., Smeibidl, P., Mangkorntong, N., Sasagawa,
T., et al. (2001) Preprint (cond-maty0104026).

Kivelson et al. PNAS u October 9, 2001 u vol. 98 u no. 21 u 11907

PH
YS

IC
S


