Skip to main content
. 2018 May 10;18(5):1501. doi: 10.3390/s18051501

Table 2.

IrisDenseNet connectivity and output feature map size of each dense block (Conv, BN, and ReLU represent convolutional layer, batch normalization layer, and rectified linear unit layer, respectively. Cat, B-Conv, and Pool indicate concatenation layer, bottleneck convolution layer, and pooling layer, respectively) (Here, dense blocks 1 and 2 have the same number of convolution layers, and dense blocks 3, 4, and 5 have the same number of convolution layers) (Convolutional layers with “*” mean that these layers include BN and ReLU. Transition layers are a combination of max-pooling and B-Conv)

Block Name/Size No. of Filters Output Feature Map Size
(Width × Height × Number of Channel)
Dense Block-1 Conv-1_1*/3 × 3 × 3 64 300 × 400 × 64
Conv-1_2*/3 × 3 × 64 64
Cat-1 - 300 × 400 × 128
Transition layer-1 B-Conv-1/1 × 1 64 300 × 400 × 64
Pool-1/2 × 2 - 150 × 200 × 64
Dense Block-2 Conv-2_1*/3 × 3 × 64 128 150 × 200 × 128
Conv-2_2*/3 × 3 × 128 128
Cat-2 - 150 × 200 × 256
Transition layer-2 B-Conv-2/1 × 1 128 150 × 200 × 128
Pool-2/2 × 2 - 75 × 100 × 128
Dense Block-3 Conv-3_1*/3 × 3 × 128 256 75 × 100 × 256
Conv-3_2*/3 × 3 × 256 256
Cat-3 - 75 × 100 × 512
Conv-3_3*/3 × 3 × 256 256 75 × 100 × 256
Cat-4 - 75 × 100 × 768
Transition layer-3 B-Conv-3/1 × 1 256 75 × 100 × 256
Pool-3/2 × 2 - 37 ×50 × 256
Dense Block-4 Conv-4_1*/3 × 3 × 256 512 37 ×50 × 512
Conv-4_2*/3 × 3 × 512 512
Cat-5 - 37 ×50 × 1024
Conv-4_3*/3 × 3 × 512 512 37 ×50 × 512
Cat-6 - 37 ×50 × 1536
Transition layer-4 B-Conv-4/1 × 1 512 37 ×50 × 512
Pool-4/2 × 2 - 18 × 25 × 512
Dense Block-5 Conv-5_1*/3 × 3 × 512 512 18 × 25 × 512
Conv-5_2*/3 × 3 × 512 512
Cat-7 - 18 × 25 × 1024
Conv-5_3*/3 × 3 × 512 512 18 × 25 × 512
Cat-8 - 18 × 25 × 1536
Transition layer-5 B-Conv-5/1 × 1 512 18 × 25 × 512
Pool-5/2 × 2 - 9 × 12 × 512