
Molecular Imaging of Atherosclerosis: A Clinical Focus

Mohammed M. Chowdhury, MD, MRes, MSc, MRCSa, Ahmed Tawakol, MDb, and Farouc A. 
Jaffer, MD, PhDb

aDivision of Vascular & Endovascular Surgery, Department of Surgery, University of Cambridge 
and Cambridge University Hospitals, Cambridge, UK

bDivision of Cardiology, Massachusetts General Hospital; Harvard Medical School; Boston, 
Massachusetts

Abstract

Molecular imaging of cardiovascular disease is a powerful clinical and experimental approach that 

can inform our understanding of atherosclerosis biology. Complementing cross-sectional imaging 

techniques that provide detailed anatomical information, molecular imaging can further detect 

important biological changes occurring within atheroma, and refine the prediction of vascular 

complications. In addition, molecular imaging of atherosclerosis can illuminate underlying 

pathophysiology and serve as a surrogate end-point in clinical trials of new drugs. This review 

showcases promising molecular approaches for imaging atherosclerosis, with a focus on PET, 

MRI, and intravascular near-infrared fluorescence (NIRF) imaging methods that are in the clinic or 

close-to-clinical usage.
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Introduction

Atherosclerosis-induced cardiovascular disease is a major global health problem and a major 

cause of death in every region of the world (1). In clinical practice, anatomical imaging 

modalities such as computed tomography (CT), ultrasound (US) and magnetic resonance 

imaging (MRI) are essential to delineate vascular anatomy and diagnose atherosclerosis 

stenosis severity, but do not routinely provide information about underlying 

pathophysiological processes driving the disease and its consequences. Advances in 

molecular atherosclerosis imaging research provide opportunities to explore pathological 
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mechanisms occurring at the cellular level and within the vessel wall. When applied to 

studying atherosclerosis, nuclear imaging with positron emission tomography (PET) has the 

potential to detect early vascular changes, prior to the onset of clinical symptoms or even 

before angiographically-detectable luminal stenosis. In addition, cross-sectional multi-modal 

imaging using combined PET/CT or PET/MRI systems offers great potential to incorporate 

anatomical, functional and molecular datasets. Furthermore, catheter-based near-infrared 

fluorescence imaging (NIRF) molecular imaging has enabled high-resolution insights into 

atherosclerosis progression, stent restenosis, and stent thrombosis. This review will highlight 

promising novel approaches, with a focus on recent advances in the literature.

Positron Emission Tomography

Positron emission tomography (PET) produces three-dimensional quantitative images of the 

distribution of a positron-emitting radionuclide. PET typically images functional processes 

in the body, developing applications in areas such as oncology, cardiology, and neurology. 

PET is based on the radioactive decay of positron-emitter isotopes by beta plus decay. 

Among the positron-emitting isotopes which can be produced, the most commonly used in 

PET are those having a short half-life and which are present naturally in many biological 

compounds, such as 11C, 18F, 15O, and 13N.

The most common radiopharmaceutical in PET is 2-[18F] fluoro-2-deoxy-D-glucose (18F-

FDG), a compound which was first administered to patients in the late 1970’s, and now 

utilized in over 90% of clinical PET scans. It is an analogue of glucose allowing quantitation 

of glucose metabolism, and it is most commonly used for cancer detection, staging, and 

monitoring, being considered the gold standard for the in vivo assessment of many tumour 

types.

When a positron is emitted from the nucleus, it travels a short distance (typically 1–2 mm) 

until it collides with an electron. The positron-electron collision results in an annihilation 

event, which produces radiation in the form of two photons, each with an energy of 511 keV, 

emitted in opposed directions. PET detection systems are poised to identify the 

coincidentally emitted photon pairs, and reconstructs the line from which they originated 

(hence enabling quantification of tissue activity). A common measure of PET tracer uptake 

is the standardized uptake value (SUV). The SUV is a semi-quantitative measure, 

subsequently adjusted for injected tracer dose and body weight. When SUV is corrected for 

blood pool activity (the circulating level of tracer in the venous system), the target-to-

background ratio (TBR) is derived. Ongoing work is establishing the relative merits of SUV 

and TBR measures in PET characterization of atherosclerosis (2).

FDG PET molecular imaging of inflammation in atherosclerosis—
Fluorodeoxyglucose (18F-FDG) is a radiolabeled glucose analogue that is taken up by all 

glucose-metabolizing cells. Once internalized, it becomes metabolically trapped, and 

accumulates in direct proportion to the tissue rate of glycolysis. By exploiting the glucose-

dependent metabolism of macrophages in atherosclerosis, FDG PET can illuminate 

macrophage burden in vivo (3–5).
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Initial clinical studies: Rudd et al. performed the first prospective validation study of using 

FDG detect and quantify atheroma inflammation (5). The authors observed significantly 

higher FDG tracer uptake within symptomatic carotid plaques when compared to the 

contralateral asymptomatic carotid artery. Histological validation was performed in a second 

key study, in which PET imaging was performed on individuals scheduled for 

endarterectomy, and FDG uptake quantified from those images was later compared to 

detailed immunohistochemical analysis of the excised plaque specimens (6). Quantitative 

analysis subsequently revealed that the intensity of the FDG uptake correlated well with the 

macrophage content of plaque specimens (r=0.70, p<0.001) (Figure 1). These pivotal studies 

established the utility of FDG to assess plaque inflammation, with subsequent applications 

to understanding atherosclerosis pathophysiology and to assessing pharmacotherapies.

Relationship of FDG uptake to other plaque constituents: Carotid artery FDG uptake has 

also been shown to relate to the extent of neovascularization, a marker of plaque hypoxia – 

implicated in pathogenesis of the unstable atherosclerotic plaque (7). In a recent study by 

Taqueti et al, patients undergoing carotid endarterectomy underwent 18F-FDG PET/CT 

imaging prior to surgery. The endarterectomy specimens were then analyzed for macrophage 

content (CD68), activated inflammatory cells (MHC class II) and microvessels (CD31). 

Increased FDG uptake was observed in inflamed plaque regions as demonstrated in earlier 

studies but the authors also observed increased FDG uptake in areas of increased 

microvascular permeability, perfusion and microvascularization – possibly implicating 

positive uptake in areas that are linked to unstable plaque. Pathophysiologically, the presence 

of neovasculature may facilitate delivery of FDG to metabolically active cells.

FDG uptake in atherosclerotic specimens has also been linked to plaque hypoxia. (4) A 

recent study provided insights into the relationship between hypoxia and macrophage 

content and function. That study demonstrated that hypoxia triggered increased pro-

inflammatory activity by macrophages, via a HIF-1 alpha-dependent mechanism. 

Furthermore, the study showed that glycolytic flux remained closely related monocyte pro-

inflammatory actions (e.g. TNF alpha production), regardless of whether or not hypoxia was 

present (8). Hence, the amount of FDG that accumulates within macrophages is influenced 

not only the number of inflammatory cells, but also their pro-inflammatory phenotype, 

which can be impacted by hypoxia as well as other factors.

Arterial FDG signal as a predictor of atherosclerotic disease progression and clinical 
events: Moustafa et al. examined the role of 18F-FDG PET/CT in patients with 

symptomatic carotid disease (9). They identified a positive correlation between 

microembolic signals identified from transcranial Doppler and carotid FDG uptake on 

PET/CT. Notably, the percent luminal stenosis did not differentiate plaques that produced 

microemboli (10). Similarly, cross-sectional studies revealed that both aortic and coronary 

arterial FDG uptake increase after myocardial infarction (11).

The arterial FDG signal can also predict the progression of underlying atheroma. Abdelbaky 

et al observed that atheromatous plaques with high FDG uptake subsequently undergo more 

rapid atherosclerotic progression (measured as incident arterial calcification) compared to 

arterial locations with lower amounts of FDG uptake (12). Another study demonstrated that 
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early changes in arterial FDG uptake predict later changes in plaque progression (plaque 

thickness, by MRI) (13).

Moreover, the arterial FDG signal has been repeatedly shown to be an independent predictor 

of future atherothrombotic disease events. Rominger et al. first showed, in a population of 

individuals with oncologic diagnoses, that the arterial FDG signal predicts subsequent CVD 

events (14). Extending those findings, Figueroa et al. studied individuals without active 

cancer, and found that the arterial FDG signal independently predicted CVD events beyond 

coronary artery calcium measures or clinical risk scores (such as the Framingham Risk 

Score) (15) (Figure 2). Small prospective studies have demonstrated a similar relationship 

between arterial FDG uptake and subsequent CVD (16).

FDG PET assessment of anti-atherosclerosis pharmacotherapeutics: Given that the FDG 

signal is reproducible (17), and that its modulation predicts atherosclerotic disease 

progression (13), it is ripe for use as a biomarker to examine novel therapies. Indeed, several 

studies have assessed the impact of anti-inflammatory pharmacotherapy on the FDG signal. 

A question of substantial importance is whether the directional changes seen in the PET 

signal relate to directional changes seen in clinical endpoint evaluations in the context of 

pharmacotherapy. To date, insights are emerging from trials of 5 therapeutic compound 

classes for which there are both FDG PET as well as clinical endpoint trial data.

The first such drug class is statins. Several groups have shown that statins are associated 

with reduction is in arterial FDG uptake (18,19), findings that are undoubtedly in line with 

reductions in CVD events imparted by statins (20). Interestingly, the magnitude of signal 

reduction might also be important. High-dose statins have a 2-fold greater impact on the 

arterial signal compared to low dose statins (19), a finding that is concordant with the 

observation that high dose statins reduce CVD events roughly twice as well as low dose 

statins. Similarly, the thiazolidinedione, pioglitazone, was found to significantly reduce 

arterial FDG uptake in diabetic patients (21). Likewise, TZDs have been shown to reduce 

CVD events in this population (22).

On the other hand, a lack of change in the arterial FDG signal may forecast a lack of 

therapeutic efficacy. Fayad et al (23) demonstrated that dalcetrapib (a modulator of 

cholesteryl ester transfer protein activity) did not reduce any of the pre-specified FDG-PET 

measures. Likewise, dalcetrapib failed to improve clinical outcomes in a large outcomes trial 

(24). More recently, a selective inhibitor of lipoprotein phospholipase A2 was assessed using 

arterial FDG PET imaging, and was found to be ineffective at reducing the FDG signal (25). 

Concordantly, Lp-PLA2 inhibitors have subsequently been found to be ineffective in 

reducing CVD events (26, 27). Most recently, the results of both imaging and clinical 

outcomes trials of drugs targeting p38 MAP Kinase have been reported. One PET study 

reported no change in the signal, when the pre-defined endpoints were used, but identified a 

possible reduction in the signal using an exploratory endpoint (28). However, a subsequent 

study found no reduction in the PET signal using any of the measured FDG endpoints (29). 

A subsequent trial of p38 MAPK antagonism on CVD events subsequently found no benefit 

(30). Thus, for all 5 drug classes for which there are both imaging and clinical endpoint trial 

data, there has been concordance between the pre-specified imaging results and clinical end-

Chowdhury et al. Page 4

Curr Cardiovasc Imaging Rep. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



point results. Accordingly, arterial FDG PET imaging, when used in Phase II trials, may be 

used to identify drugs with greater likelihood for success in Phase III studies.

FDG PET molecular imaging of inflammation in abdominal aortic aneurysm 
(AAA)—Inflammation is a key driver of AAA expansion and rupture, and the ability to 

assess AAA inflammation could improve risk stratification and motivate specific anti-

inflammatory therapies. A small number of studies have explored the utility of FDG-

PET/CT imaging to characterize AAA. One pilot study of 26 patients with AAA using 

suggested a possible positive correlation between 18F-FDG uptake and aneurysmal growth 

rate and rupture (31). In contrast, a relatively brief longitudinal observational study (32) of 

39 patients with small-to-medium size AAA failed to replicate those findings (in fact there 

was in inverse association between tracer uptake change in AAA diameter). However, it 

should be noted that very few subjects experienced progression of AAA diameter in that 

study, likely due to the relatively short follow up period (of only 9 months). Since AAA 

diameters tend to enlarge at a rate of 2–3 mm per year (33), a 9-month follow period 

employed in that study may have been insufficient to robustly test the hypothesis. 

Accordingly, the relationship between FDG uptake in AAA and subsequent AAA behavior 

remains unclear and requires further investigation.

FDG PET molecular imaging of inflammation in peripheral atherosclerosis—
Relatively few molecular imaging studies have focused attention on the lower limb arterial 

tree. This may be due to the fact that those vessels tend to be relatively small, and that 

atherosclerotic inflammation may play a less important role in the lower limb 

atherosclerosis. The available data are derived from studies using multiple different tracers 

assessing: perfusion (including 15O-water, C15O2, 15O2, 13N-ammonia), angiogenesis 

(including 76Br-nanoprobe, 68Ga-NOTA-RGD, 64Cu-DOTA-CANF-comb, 64Cu-DOTA-

VEGF) or atherosclerosis (including 18F-FDG, 18F-sodium fluoride, 11C-acetate, 64Cu-

DOTA-CANF) (34, 35). Studies have also compared FDG uptake in peripheral vessels using 

PET/CT and PET/MRI in carotid and peripheral vessels (36). Silvera et al. demonstrated that 

both imaging modalities accurately identified areas of lipid-rich plaques more often than 

collagen-rich or calcified plaques.

PET molecular imaging of plaque osteogenic activity (active calcification)—
Cardiovascular calcification is associated with an increased risk of vascular events (37). 

Specifically, coronary artery calcification score (CAC) is now widely used to refine the 

prediction of future coronary artery events including myocardial infarction and cardiac death 

(38). Although vascular wall calcification seen on CT is considered a powerful surrogate risk 

factor for poor cardiovascular outcome, it represents the end stage of the overall calcification 

process (39). New approaches using PET CT imaging to assess the active calcification stage 

might improve risk prediction further and offer an opportunity to initiate directed anti-

atheroma therapy earlier.

18F Sodium fluoride molecular imaging of plaque osteogenesis/microcalcification: The 

tracer 18F-sodium fluoride (18F-NaF) typically deposits in bone where the fluoride ions 

undergo rapid exchange with the hydroxyl group (-OH) on the surface of the hydroxyapatite 
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matrix to form fluoroapatite (40). As such, its primary clinical application has been in the 

evaluation of primary and metastatic bone tumors (41). A major advantage of 18F-NaF is the 

lack of myocardial background compared to FDG, allowing high conspicuity of 18F-NaF+ 

coronary lesions. More recent interest has focused on its role in identifying areas of active 

microcalcification within the cardiovascular system, and specifically in atherosclerosis 

where it is believed that microcalcification may play a role in plaque rupture through both 

mechanical and inflammatory effects.

Initial clinical studies: Prior studies established a strong link between chronic inflammation 

and the subsequent development of soft tissue calcification in atherosclerosis (42). 

Clinically, Derlin et al (43) first described correlations and distinct differences across 

plaques whilst imaging with FDG and 18F-sodium fluoride, and found overlap of the two 

tracers in only 6.5% of plaques of various arterial beds, suggesting each tracer reports on 

different plaque pathological processes. Abdelbaky et al. evaluated 137 patients by 

determining the degree of aortic inflammation using 18F-FDG PET/CT scanning, and found 

that higher levels of inflammation were significantly associated with subsequent CT-

calcification over a 5-year period (44).

Derlin et al. further demonstrated the potential to image to early-stage, or “active,” 

microcalcification in atherogenesis using 18F-NaF in human carotid plaques (45). In a key 

study, this work was extended into the human coronary artery domain by Dweck and Newby 

(46), who demonstrated outstanding signal-to-noise of NaF uptake in coronary plaques 

(Figure 3). In a landmark study, Dweck and colleagues further demonstrated the value of 

18F-NaF to prospectively demonstrate that high 18F-NaF uptake was associated with high-

risk, often ruptured carotid and coronary lesions, with histological evidence of active 

calcification, macrophages, necrosis, and apoptosis (47). A recent retrospective study by Fiz 

et al. (48) further assessed the correlation between calcification density (as assessed by CT, 

in Hounsfield units) and 18F-NaF uptake within the infrarenal aorta of oncology patients. 

There was a significant inverse correlation between 18F-NaF uptake and macrocalcification, 

supporting the concept that 18F-NaF may act as a valid marker of calcium deposition 

primarily in the early stages of plaque formation.

Recently, detailed mechanistic studies of NaF tracer selectivity, specificity, and 

pharmacodynamic behavior have been performed, in vitro and in human carotid plaques 

(49). Irkle et al. demonstrated that 18F-NaF adsorbs to calcified deposits within plaque and 

is highly selective and specific, and further noninvasively detects areas of microcalcification 

that are associated with active unstable atherosclerosis. To this effect, 18F-NaF co-localized 

to areas of nascent calcification and could mark a novel non-invasive biomarker of the high-

risk pathology. Furthermore, the study has suggested that adsorption is dependent primarily 

on surface area, consistent with the notion that the complex surface of microcalcifications 

allows more binding.

18F-NaF PET and outcome studies: A molecular imaging modality that identifies early 

active microcalcification and allied inflammatory processes within atherosclerotic plaques 

could allow for a refined understanding of plaque vulnerability and prediction of lesion-

specific or artery-specific hard events such as myocardial infarction, stroke, and sudden 
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death. In the next several years, outcome studies are anticipated, including a multicenter 

observational study 18F-NaF PET as a marker of coronary plaque vulnerability to detect 

culprit and non-culprit unstable coronary plaques in patients with recent myocardial 

infarction (NCT02278211 at Clinicaltrials.gov). The investigators plan to follow these 

patients to determine the prognostic significance of coronary 18F-NaF uptake. A key 

question is whether 18F-NaF will offer significant predictive ability beyond the traditional 

calcium marker of coronary artery calcium (CAC) scoring, which has an established role in 

risk prediction in the primary prevention CAD population.

Alternate PET tracers—An important limitation of coronary FDG imaging is that the 

coronary plaque signal may be overwhelmed by high myocardial uptake. Therefore, the 

search for additional PET tracers that assess vascular inflammation remains important. 

68Ga-DOTATATE ({1,4,7,10-tetraazacyclododecane-N, N’, N”, N”’-tetraacetic acid}-D-

Phe(1), Tyr(3)-octreotate)) has specific binding capabilities for the somatostatin receptor 

subtype 2. It has been demonstrated that in retrospective studies there is positive uptake of 

this tracer in coronary arteries (50), as well uptake aorta, iliac, and carotid vessels (51). 

68Ga-DOTATATE offers a coronary imaging advantage as there is minimal uptake in the 

myocardium, in distinction to FDG. Positive 64Cu-DOTATATE uptake in human carotid 

plaques further correlates with cellular markers of inflammation (CD68 and CD163) (52). 

Furthermore, in a comparison with a similar somatostatin analogue tracer, 68Ga-DOTATOC, 

68Ga-DOTATATE correlated better with inflamed arteries alongside traditional 

cardiovascular risk factors – suggesting a potential role in atherosclerotic disease assessment 

(53). Prospective validation is, however, warranted.

11C-PK11195 targets the translocator protein (TSPO) on the macrophage surface. Its use in 

vascular imaging is challenging due to the shorter half-life of carbon 11 (20 minutes), but it 

has been utilized as a marker of plaque inflammation, particularly in the carotid circulation 

(54, 55). An advantage of this tracer is the significant correlation between 11C-PK11195 

uptake ratio and autoradiographic measurement of translocator protein binding sites (55).

18F-fluorodeoxymannose (FDM) is an isomer of glucose, and has been postulated to be 

expressed on the M2 (more reparative) subtype of macrophages. Its use in research has been 

limited to preclinical animal work (56) – yet further work may be published once 

radiolabeling becomes simpler. Nonetheless, Tahara et al proposed that as supported by in 
vitro investigations, FDM had a 35% higher uptake compared to FDG, based on lower 

inhibition of hexokinase activity – suggesting it may be more specific for areas of acute 

inflammation. Further investigation, including feasibility of clinical FDM imaging, is 

required to understand if FDM can provide additional or complementary clinical value in 

comparison to FDG in risk prediction.

Ultrasmall Superparamagnetic Iron Oxide Nanoparticle-enhanced MRI

Ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles are a well-established class 

of dextran-based MRI agents that report on phagocytic cellular activity. Several preparations 

have been clinically tested and one preparation, feurmoxytol, is FDA-approved as 

replacement therapy for iron-deficient chronic kidney disease patients. With regards to 
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atherosclerosis imaging, intravenously administered long-circulating UPSIO nanoparticles 

are eventually taken up by macrophages and thus allow visualization of macrophage-laden 

plaque. Their properties allow direct imaging on T2-weighted MRI sequences, where they 

induce a loss of MR signal.

USPIO-enhanced molecular MRI can assess inflammatory plaque burden in aortic 

aneurysms, carotid artery disease, myocardial infarction and response to pharmacotherapy. 

Kooi et al (57) first demonstrated successful histologically-confirmed USPIO (ferumoxtran) 

MRI of macrophage content in carotid plaque rupture-prone zones of patients undergoing 

carotid endarterectomy (validated with histology and electron microscopy). In a unique 

clinical trial, the ATHEROMA Study (58) provided new insights into the comparative of 

efficacy of low potency vs. high-potency statin therapy in attenuating plaque macrophages in 

patients. The authors evaluated the effects of low-dose (10mg) and high-dose (80mg) 

atorvastatin therapy on carotid plaque inflammation in 47 patients and demonstrated a 

significant reduction in UPSIO-defined inflammation in patients receiving high dose statin 

therapy (p=0.0003). Currently, long circulating USPIOs such as ferumoxtran are not 

routinely clinically available, which has limited USPIO MRI atherosclerosis imaging studies 

in recent years.

However, new data has emerged by repurposing FDA-approved ferumoxytol for molecular 

MRI. One study (59) investigated UPSIO MRI imaging in patients suffering a myocardial 

infarction and demonstrate areas of increased USPIO uptake in acute infarction as well as 

remote myocardium (n=16; p<0.001). Further work is required to assess its range of 

applications in the acute setting. In addition, in comparative studies with 18F-FDG PET, 

USPIO ferumoxytol MRI identified vascular inflammation reliably in abdominal aortic 

aneurysms yet subtle differences compared to FDG suggest that inflammatory cell 

phocytosis and glycolysis may not exactly coincide (60). As ferumoxytol is a weaker T2 

MRI contrast agent than ferumoxtran, it is not clear that ferumoxytol is strong enough to 

allow assessment of inflammation in smaller targets than the heart or aorta, such as carotid 

or coronary atheroma.

High-resolution Molecular Imaging Via Intravascular Near-Infrared Fluorescence Imaging

Optical imaging using near-infrared fluorescence (NIRF) light is an emerging imaging 

technique delivering high sensitivity and the ability to be employed to image a wide range of 

molecular entities in vivo, via a versatile fluorescent probe design (61–63). The use of NIR 

wavelengths allows deeper photon penetration into tissue and reduced tissue 

autofluorescence, resulting in higher sensitivity to detect exogenous NIR fluorophores 

(molecular imaging agents). Greater depth can be probed in the far-red or near-infrared 

spectral region as the absorption is as at least one order of magnitude lower than in the 

visible range. NIR light (650–900nm wavelength) can penetrate several centimeters into 

tissue. Furthermore, as optical imaging is routine in the cardiac catheterization laboratory 

(via intravascular optical coherence tomography), intravascular NIRF offers a promising 

translational approach into clinical coronary arterial imaging. Excitingly, the first human 

intravascular NIRF imaging study was recently performed and demonstrated the ability to 

sensitively to detect NIR autofluorescence in human coronary arteries (64). This study paves 
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the way forward for targeted intravascular NIRF molecular imaging studies in coronary 

patients.

Given the favorable high sensitivity in the NIR window, NIRF imaging can further enable 

signal detection through blood. The first real-time catheter molecular sensing probe was first 

described by Jaffer et al (65), who detected in vivo inflammatory cysteine protease activity 

in experimental atheroma of human-sized arteries. The first rotational, automated 2D 

imaging catheter was engineered by Jaffer et al (66) and intra-arterial imaging of stented 

rabbit aortas and coronary bare-metal stents demonstrated excellent nanomolar sensitivity to 

fluorophores to image plaque and stent injury-induced arterial inflammation. Further 

research into this novel imaging approach will also target key molecules in in atherosclerosis 

(i.e. OxLDL, acetylated LDL, MMPs). Recently for example, Khamis et al (67) developed 

an antibody-based NIRF approach for targeting oxLDL in vivo – providing new potential 

avenues for exploring molecular compositions of atheroma longitudinally with intravascular 

NIRF imaging.. In addition, FDA-approved indocyanine green is a promising translational 

NIR fluorophore for plaque imaging (68), and has recently been shown to report on impaired 

endothelial barrier function in human plaques (69).

One limitation to standalone NIRF imaging is the lack of co-registration (analogous to PET 

imaging without CT/MR anatomical information). One potential exciting approach is dual-

modality NIRF-optical coherence tomography (OCT). This concept has been translated into 

an intravascular imaging system (70) (Figure 4), and revealed the ability to successfully co-

localise microstructural and biological imaging data. Characterization in vivo of 

inflammatory cells using OCT can quantify molecular expression and activity using 

cathepsin protease-activated NIR molecular beacons. Furthermore, stent-induced injury 

(fibrin deposition in restenosis injury, platelet deposition and inflammatory endothelial 

infiltration) can be quantified and investigated using this single pullback technology (71). 

Attesting to the translational potential of NIRF-OCT, an intravascular NIRF-OCT system 

reporting on NIR autofluorescence has been recently performed in the coronary arteries of 

patients (64). Further research into its clinical implications and translation is required – yet 

the high-resolution information that such multi-modality imaging offers has the potential to 

transform coronary arterial molecular imaging of atherosclerosis.

Conclusions and Future Directions

Current risk stratifications in a number of vascular conditions are based primarily on 

anatomical data such as stenosis or calcium score. The advent of new molecular imaging 

techniques, including PET/CT and intravascular high-resolution NIRF-OCT, could enhance 

the identification of high-risk plaques, arteries, and patients harboring plaque inflammation 

or other pathobiology. These technologies, in particular FDG PET, have made significant 

clinical inroads into assessing atheroma pharmacotherapeutic efficacy in Phase II clinical 

trials. Furthermore, development of novel tracers will enhance in vivo assessment of key 

pathobiological processes including inflammation, hypoxia and neoangiogenesis. The 

overarching question is whether such imaging techniques will improve our understanding of 

human plaque biology and ultimately the risk of plaque complication and restenosis, to 

identify better those patients where such vascular events can be pre-empted utilizing tailored 
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systemic and/or local therapies. Given the ongoing translation of new imaging agents and 

new imaging devices, the future for atherosclerosis molecular imaging appears bright.
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Figure 1. 
FDG uptake in carotid plaques of patients. Axial images of both CT and PET data from a 

patient with low (PET A) and high (PET B) FDG uptake in the region of the internal carotid 

artery (arrows). FDG was associated with histological plaque macrophages, a key 

inflammatory cell driver of plaque complications. Reproduced by permission from reference 

(6).
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Figure 2. 
Arterial FDG uptake associates with the risk of subsequent CVD events. A) A study of 519 

individuals without active cancer or pre-existing cardiovascular disease found that those with 

high aortic FDG uptake (the highest tertile of activity) were subsequently found to have a 

substantially increased risk of CVD, which remained independently predictive after 

adjusting for Framingham Risk Score or Coronary Calcium Score. B) The baseline arterial 

FDG signal also related to the timing of the subsequent event, whereby those with highest 

signals had events that occurred earlier than those with intermediate arterial FDG signals. 

Reproduced by permission from reference (15).
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Figure 3. 
Molecular imaging of coronary plaque osteogenesis via 18F-NaF PET imaging fused with 

coronary CT images. (A) Control patient with little coronary calcification or 18F-NaF 

uptake. (B) The panel demonstrates extensive coronary calcification without significant 18F-

NaF uptake. (C and D) Focal NaF uptake in the LAD with flanking coronary arterial 

calcification. (E) Patient with a NSTEMI showing focal 18F-NaF tracer uptake in culprit 

lesion with (F) associated in-situ thrombus in the proximal right coronary artery. 

Reproduced by permission from reference (45).
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Figure 4. 
High-resolution intravascular NIRF-OCT molecular-structural imaging of inflammatory 

protease activity in rabbit atherosclerosis. (a–c) Cross-sectional NIRF-OCT imaging of 

normal artery wall (a) and an atherosclerotic lesion (b,c), lipid-rich demonstrated by green 

and blue asterisks. (d–f) RAM-11 macrophage staining of plaque sections demonstrating 

high macrophage density, fluorescence microscopy with elevated plaque protease activity 

and positive cathepsin immunostain signal. (g–i) higher magnification of images d–f. 

Reproduced by permission from reference (70).
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