Skip to main content
. 2018 Apr 26;18(5):1339. doi: 10.3390/s18051339

Table 2.

Mean classification accuracy across participants for a given training method, sequence length, and architecture. Number of parameters per model is displayed below each neural network architecture. Measured computational costs normalized to the cross-validated group model are displayed below each cross-participant training method. The best performing architecture for each training method and sequence length is shown in bold.

Training Method Sequence Length MPCRNN BDRLSTM BDLSTM LSTM 2L-LSTM CNN ANN
{Normalized Computational Cost} (6.2 M) (4.2 M) (4.2 M) (1.9 M) (0.7 M) (1.8 M) (1.1–6.5 M)
5 0.791 0.768 0.760 0.766 0.771 0.635 0.749
Cross-Validated Group Model 10 0.820 0.785 0.777 0.778 0.793 0.657 0.777
{1.0} 20 0.850 0.839 0.839 0.811 0.820 0.732 0.834
30 0.868 0.852 0.853 0.849 0.834 0.711 0.862
5 0.781 0.748 0.748 0.682 0.754 0.627 0.743
Optimal-Stopping Val-Set Group Model 10 0.819 0.786 0.785 0.689 0.782 0.599 0.774
{0.12} 20 0.834 0.825 0.825 0.802 0.809 0.684 0.828
30 0.850 0.860 0.846 0.838 0.824 0.691 0.855
5 0.791 0.775 0.771 0.757 0.773 0.731 0.767
7-Classifier Ensemble Model 10 0.822 0.806 0.805 0.789 0.797 0.757 0.798
{0.65} 20 0.842 0.814 0.803 0.833 0.798 0.757 0.834
30 0.865 0.833 0.812 0.808 0.808 0.732 0.838
5 0.768 0.780 0.778 0.765 0.773 0.701 0.769
28-Classifier Ensemble Model 10 0.800 0.804 0.806 0.792 0.801 0.690 0.802
{0.52} 20 0.809 0.807 0.816 0.826 0.799 0.731 0.833
30 0.837 0.825 0.818 0.809 0.810 0.694 0.841