Table 2.
Training Method | Sequence Length | MPCRNN | BDRLSTM | BDLSTM | LSTM | 2L-LSTM | CNN | ANN |
---|---|---|---|---|---|---|---|---|
{Normalized Computational Cost} | (6.2 M) | (4.2 M) | (4.2 M) | (1.9 M) | (0.7 M) | (1.8 M) | (1.1–6.5 M) | |
5 | 0.791 | 0.768 | 0.760 | 0.766 | 0.771 | 0.635 | 0.749 | |
Cross-Validated Group Model | 10 | 0.820 | 0.785 | 0.777 | 0.778 | 0.793 | 0.657 | 0.777 |
{1.0} | 20 | 0.850 | 0.839 | 0.839 | 0.811 | 0.820 | 0.732 | 0.834 |
30 | 0.868 | 0.852 | 0.853 | 0.849 | 0.834 | 0.711 | 0.862 | |
5 | 0.781 | 0.748 | 0.748 | 0.682 | 0.754 | 0.627 | 0.743 | |
Optimal-Stopping Val-Set Group Model | 10 | 0.819 | 0.786 | 0.785 | 0.689 | 0.782 | 0.599 | 0.774 |
{0.12} | 20 | 0.834 | 0.825 | 0.825 | 0.802 | 0.809 | 0.684 | 0.828 |
30 | 0.850 | 0.860 | 0.846 | 0.838 | 0.824 | 0.691 | 0.855 | |
5 | 0.791 | 0.775 | 0.771 | 0.757 | 0.773 | 0.731 | 0.767 | |
7-Classifier Ensemble Model | 10 | 0.822 | 0.806 | 0.805 | 0.789 | 0.797 | 0.757 | 0.798 |
{0.65} | 20 | 0.842 | 0.814 | 0.803 | 0.833 | 0.798 | 0.757 | 0.834 |
30 | 0.865 | 0.833 | 0.812 | 0.808 | 0.808 | 0.732 | 0.838 | |
5 | 0.768 | 0.780 | 0.778 | 0.765 | 0.773 | 0.701 | 0.769 | |
28-Classifier Ensemble Model | 10 | 0.800 | 0.804 | 0.806 | 0.792 | 0.801 | 0.690 | 0.802 |
{0.52} | 20 | 0.809 | 0.807 | 0.816 | 0.826 | 0.799 | 0.731 | 0.833 |
30 | 0.837 | 0.825 | 0.818 | 0.809 | 0.810 | 0.694 | 0.841 |