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Abstract

A measure of “clusterability” serves as the basis of a new methodology designed to preserve 

cluster structure in a reduced dimensional space. Similar to principal component analysis, which 

finds the direction of maximal variance in multivariate space, principal cluster axes finds the 

direction of maximum clusterability in multivariate space. Furthermore, the principal clustering 

approach falls into the class of projection pursuit techniques. Comparisons are made with existing 

methodologies, both in a simulation study and analysis of real-world datasets. Furthermore, a 

demonstration of how to interpret the results of the principal cluster axes is provided on the 

analysis of Supreme Court voting data and similarities between the interpretation of competing 

procedures (e.g., factor analysis and principal component analysis) is provided. In addition to the 

Supreme Court analysis, we also analyze several datasets often used to test cluster analysis 

procedures, including Fisher's Iris Data, Agresti's Crab Data, and a data set on glass fragments. 

Finally, discussion is provided to help determine when the proposed procedure will be the most 

beneficial to the researcher.

Introduction

Finding clusters in multidimensional space can be quite difficult for a variety of reasons. For 

instance, when there are a large number of variables (i.e., dimensions) present, Milligan 

(1980) showed that a few meaningless dimensions (i.e., variables that did not contribute to 

the cluster structure and were considered to be random noise) can degrade the capability of 

even the best algorithms of finding the underlying cluster structure. In general, there are 

three basic approaches to addressing this problem: (a) appropriately selecting the correct 

variables to include or exclude from the analysis, (b) appropriately weighting each variable's 

contribution to the objective function used in the clustering procedure, and (c) clustering 

observations that have been projected into a lower dimensional space.
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Steinley and Brusco (2008a) compared eight variable selection techniques that were based 

on a wide range of techniques and models. Regardless of whether the procedure was driven 

by “classic” clustering procedures (i.e., hierarchical or non-hierarchical cluster analysis) or 

the more statistically formal mixture models, Steinley and Brusco found that all procedures 

were subject to the problem induced by “noisy” variables. Furthermore, the procedures with 

higher rates of cluster recovery were more capable of excluding the noisy variables. Milligan 

and Cooper (1988) and Steinley and Brusco (2008b) also indicated that appropriately 

weighting variables prior to conducting the cluster analysis can have a marked influence on 

the recovery of the underlying cluster structure.

One potential drawback of many variable selection and weighting techniques is that each 

variable is evaluated univariately and its inclusion into the final cluster analysis routine is 

predicated on an individual display of clusterability; however, when working in a 

multivariate setting, researchers are often concerned with how the variables interact in a 

high-dimensional space. To that end, several researchers have proposed combining cluster 

analysis with data reduction techniques to obtain low-dimensional representations of the 

cluster structure while including information about all of the variables.

The current presentation proposes a new method for preserving the cluster structure when 

reducing the dimensionality of the original, observed data. In contrast to existing procedures 

developed explicitly for this purpose, the proposed procedure does not rely on any clustering 

algorithm to project the cluster structure into the desired lower dimensional space. The 

development of the proposed procedure, termed principal cluster axes projection pursuit 
(PCAPP), is based on projection pursuit techniques pioneered by Friedman and Tukey 

(1974). First, the structure and nature of projection pursuit is presented, followed by the 

underlying theory of PCAPP and an algorithmic description that outlines its implementation. 

Finally, after the technique for extracting the projections is outlined, a procedure for 

determining the number of principal cluster axes (i.e., the dimensionality of the reduced 

data) is introduced.

A detailed example of the procedure is given and followed by a comparison with current 

practice in the literature on the classic Fisher Iris data. Through a simulation study, it is 

demonstrated that PCAPP outperforms extant procedures, with the results being reinforced 

by the analysis of specific data sets commonly used to validate cluster analytic methods. 

Lastly, we analyze Supreme Court voting data using PCAPP, illustrating approaches to 

interpretation and considerations that result in implications that are different from data 

reduction techniques that aim to create more continuous latent spaces (e.g., principal 

component analysis, etc.). Finally, a conclusion is provided that discusses several reasons 

why existing procedures may have trouble finding clusters when data are projected into 

lower dimensional space.

Principal Cluster Axes Projection Pursuit

Notation

To provide a common framework for the methods to be discussed, the following notational 

scheme is adopted.
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N := the number of objects, indexed i = 1, …, N;

V := the number of variables, indexed v = 1, …, V;

U := the number of variables in the reduced space, indexed u = 1, …, U;

X := an N × V data matrix whose elements, xiv, represent the measurement of object i on 

variable v;

K := the number of clusters, indexed k = 1, …, K;

Ck := the set of objects in the kth cluster;

Nk := the number of objects in Ck;

σ2(xv) := the variance of the vth variable;

r(xv) := the range of the vth variable;

c := a V × 1 vector of coefficients.

I(c) := the value of the index associated with the linear combination, Xc

Projection Pursuit

Prior to the presentation of PCAPP, a short review of projection pursuit is provided. The 

common use of projection techniques in psychology is for data reduction, for example, 

principal component analysis. For instance, the first principal component is the projection of 

the data onto the unidimensional space with maximum variance. In the format of the present 

discussion, this goal is represented as

IPCA(cv) = maxc σ2(Xc), (1)

where the length of cv is unity (e.g., cv′cv = 1) and cv is orthogonal to the remaining V – 1 

principal components (e.g., cv⊥ck ∀k < v; v = 2, …, V). Projection pursuit is also concerned 

with data reduction; however, the nature of the space into which the data are projected varies 

based on the application. Projection pursuit originated with Friedman and Tukey (1974) as a 

procedure to find non-Gaussian projections of high-dimensional data (for excellent full-

length reviews, see Friedman, 1987; Huber, 1985; Jones & Sibson, 1987). This initial 

conjecture is that non-Gaussian projections are the most “interesting” projections to 

investigate as they provide insight into the structure of high-dimensional data beyond the 

standard principal components extraction of directions of most variation. To quote Friedman 

(1987, p. 250), based on the arguments of Huber (1985) and Jones (1983), it is most useful 

to identify what constitutes the most “uninteresting” projection, which is in fact the normal 

distribution:
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1. “The multivariate normal density is elliptically symmetric and is totally specified 

by its linear structure (location and covariances).

2. All projections of a multivariate normal distribution are normal. Therefore, 

evidence for nonnormality in any projection is evidence against multivariate joint 

normality. Conversely, if the least normal projection is – not significantly 

different from – normal, then there is evidence for joint normality of the 

measurement variables.

3. Even if several linear combinations of variables (possibly high) structured 

(nonnormal), most linear combinations (views) will be distributed approximately 

normally. Roughly, this is a consequence of the central limit theorem (sums tend 

to be normally distributed). This notion was made precise by Diaconis and 

Freedman (1984).

4. For fixed variance, the normal distribution has the least information (Fisher, 

negative entropy).” (p. 250)

In fact, the primary motivation behind projection pursuit is that directions of high variation 

are not guaranteed to be the same as directions of structured variation. Unfortunately, when 

moving away from principal component analysis, analytic solutions for projections of 

functions other than maximal variance are almost exclusively non-existant and the desired 

projections must be found numerically (see Jones & Sibson, 1987). Once the notion of what 

is “interesting” is defined by the researcher, an appropriate index is chosen to maximize/

minimize in order to extract the appropriate projections. Naturally, since the solutions are 

driven by a numerical process and not an analytic solution, the possibility of finding locally 

optimal solutions (e.g., projections that do not find the global maximum or minimum value 

for the projection pursuit index). However, Jones and Sibson (1987) indicated that solutions 

that are “close” to the optimal solution will often suffice and too much concern should not 

be given to the lack of a guarantee of finding the globally optimal solution. Prior to 

presenting the algorithm developed for extracting the projections that result in the directions 

of most clusterability, we discuss past indices used in projection pursuit and propose the use 

of a measure developed by Steinley and Brusco (2008b).

Projection Pursuit Indices

Over the years, several different types of projection pursuit indices have been proposed to 

find various structures. For the task at hand, we are interested in indices that are designed to 

preserve clusters when the data space is reduced. Friedman and Tukey (1974) developed an 

index with the purpose of finding clusters within the data by using a measure of local density 

to find relatively dense regions of the high-dimensional space that would be preserved and 

projected into lower dimensional space; however, Jones and Sibson (1987) called into 

question its use and indicated that this original index often found structures that would not 

usually be thought of as clusters and proposed the alternative index

Iκ(c) = max (κ3
2(c) + κ4

2(c)/4)/12, (2)
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where the first term is the square of the third cumulant (e.g., the square of the numerator of 

skewness) and the second term is the square of the fourth cumulant (e.g., the square of the 

numerator of kurtosis). Obviously, if one were to choose c to maximize (2), then the 

denominator can be eliminated from the computation; however, we leave it for fidelity to the 

original source. Additionally, this index is used as an approximation to an entropy index, 

which is minimized by the normal distribution; consequently, this index will search for 

maximal departures from normality. This follows Huber's (1985) suggestion that an index is 

suitable for projection pursuit as long as it measures some departure from normality, and, if 

one so desired, standard test statistics for normality could be used directly as the projection 

pursuit index. However, Friedman (1987) indicated that one must exercise caution if looking 

for clusters because using cumulants (or related statistics) can also highlight departures from 

normality that do not necessarily reflect cluster structure. Indeed, this was recently 

supported by Steinley and Brusco (2008a) when showing the comparatively poor 

performance of chi-square index designed by Montanari and Lizzani (2001) to select 

variables that exhibit cluster structure.

Proposed Index and Properties—We propose to use the “clusterability” index designed 

by Steinley and Brusco (2008b) as the projection pursuit index to maximize. The 

clusterability index is basically the ratio of a variable's variance to its range. The index is 

computed for each variable

CI(xv) =
12 × σ2(xv)

(r(xv))
2 . (3)

The potential drawback of this procedure is the fact that each variable is evaluated 

independently and multivariate relationships are not pursued or considered. For the 

theoretical properties of the univariate index, we refer readers to Steinley and Brusco 

(2008b). Additionally, there is potential for the index, as presented, to be influenced by 

outlying observations. In the case where outliers are expected, we follow the 

recommendations of Steinley and Brusco (2008b) and trim the data before the calculation of 

univariate descriptive statistics 1.

To account for the relationship between variables in a multivariate setting, the goal shifts 

from individually computing the clusterability index for each variable to finding the linear 

combination that results in the maximum clusterability for the data set. Like other data 

reduction techniques (i.e., principal component analysis), multiple linear combinations are 

extracted subject to the constraint that they are mutually orthogonal. Recalling that cv 

represents a V × 1 vector of coefficients, the corresponding linear combination is given by

1Additionally, in the subsequently described procedure, we also screen for outlying observations in the projected data as well
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xv
∗ = Xcv = cv1x1 + cv2x2 + ⋯ + cvVxV . (4)

The goal then becomes finding c1 such that

ICI(c) = maxc
12 × σ2(Xc1)

(r(Xc1))2
subject to c1′ c1 = 1 .

The subsequent linear combinations, c2, …, cV are “extracted” under similar conditions:

maxc
12 × σ2(Xcv)

(r(Xcv))2
subject to cv′ cv = 1; cv ⊥ ck ∀k < v; v = 2, …, V ,

creating a system of V mutually orthogonal projections where each projection maximizes 

the clusterability of the data given it is orthogonal to the prior projection 2. Before 

proceeding to the algorithmic implementation, we show that the proposed index is both 

affine invariant and robust to outliers.

Affine Invariance—To be appropriate for projection pursuit, Huber (1985) recommends 

that an index is affine invariant, where in general the index is affine invariant if

f (aZ + b) = f (Z), a ≠ 0. (5)

Theorem. CI(xv) is affine invariant if CI(xv) = CI(axv + b).

Proof. Let u = max(xv) and l = min(xv).

CI(axv + b) = (12σ2(axv + b))/((r(axv + b))2)

= (12a2σ2(xv))/((au + b − al − b)2)

= (12a2σ2(xv))/(a2u2 − 2a2ul + a2l2)

= (12a2σ2(xv))/(a2(u − l)2)

= 12σ2(xv)/(r(xv)
2) = CI(xv)

(6)

2Note here that what is really of concern is that the linear combinations themselves are orthogonal (i.e., cv⊥ck ∀k < v), not 
necessarily that the projections (i.e., Xcv) are orthogonal.
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Robustness—To illustrate the robustness of the index, we repeat the experiment designed 

by Nason (2001) and compare IPCA, Iκ, and ICI. The initial setup of the experiment is 

presented in Figure 1a, with results for each of the measures presented in the remaining 

three panels. In Figure 1a, there are two clusters (each cluster is bivariate standard normal) 

separated by distance s, each centered on the y-axis. Centered on the x-axis, there is a small 

group of outliers distance η from the zero value of the y-axis (also a bivariate standard 

normal). If the goal were to reduce the dimensionality from two dimensions to one 

dimension – which is essentially a choice between the horizontal and the vertical axis – the 

horizontal axis should be chosen to preserve the cluster structure; on the other hand, 

choosing the vertical axis would cause the clusters to overlap and obscure the inherent 

structure in the data.

For an index I, the outliers are moved in increments until η reaches a value such that the 

projection onto the y-axis is preferred over the projection onto the x-axis. Nason (2001) 

deemed this the switch point, with larger values for the switch point indicating that the index 

is more resilient to a small number of points determining the direction of the preferred 

projection(s). In this investigation, values of s range from 1 to 10 in steps of .5, and η begins 

at the origin and is incremented at levels of .1 until the switch point is located (or until η = 

1000 as a practical limit). Finally, the clusters each are bivariate standard normal with one 

thousand observations apiece. The number of outliers assumed three levels of 1%, 5%, and 

10% of the total number of observations in the clusters (e.g., 20, 100, and 200 – see 

Milligan, 1980, and Steinley, 2003, for prior use of 10% of all observations being the 

threshold for what constitutes the smallest cluster).

IPCA and Iκ both behave as predicted. As the small cloud of outliers increases in size and 

moves away from the origin, the switch points decrease. Thus, larger numbers of outliers 

that are more “outlying” are more likely to cause the indices to prefer the incorrect 

projection. However, ICI behaves in somewhat of an opposite manner. First, at s = 1 for 1%, 

ICI dominates all other solutions of Iκ across all conditions; likewise, at s = 5 for 1%, ICI 

dominates all other solutions of IPCA across all conditions. Second, as the outlier cloud 

grows in size, given sufficient s, ICI favors the outliers as a small cluster, projecting them 

between the two larger clusters on the x-axis, dramatically favoring correct projection in 

almost all instances regardless of the value of η. Indeed, ICI was more than 10 times as 

robust as IPCA for the majority of conditions, and more than 25 times as robust than Iκ.

Algorithmic Implementation

This section outlines the procedure for finding c1, …, cV. The algorithmic implementation is 

akin to a procedure used by Posse (1995). At first, the process seems somewhat haphazard in 

that it is a random search optimization method; however, Posse (1995) showed that this 

approach outperforms many of the steepest-ascent techniques that have been implemented 

for projection pursuit (Martinez, Martinez, & Soka, 2011). We have augmented Posse's 

general algorithm in several subtle manners. Primarily, we have added a stochastic element 

that is akin to simulated annealing (Kirkpatrick, Gelatt, & Vecchi, 1983) and variable 

neighborhood search (Hansen & Mladenoviĉ, 2001).

To begin the extraction of linear combinations, special attention is given to c1.
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1. The user defines values for maxit (the maximum number of iterations without a 

change in the index being maximized), ∊ (the minimum size of the neighborhood 

around the current projection to search), S (the initial step size for searching for a 

new projection), and sets J = 0 (the current iteration).

2. Create the matrix of candidate projections, PN+1×V, which contains the V 
eigenvectors of S (the covariance matrix of X), the rows of X after it has been 

centered at the origin and each row normalized to have length one, and if V ≤ 10, 

include all 2V hyperoctants (e.g., all possible sign vectors). Compute Ii = CI(Xpi) 

∀i = 1, …, V and choose the initialization projection to be a = pi such that Ii > Ij 

∀i ≠ j.

3. Generate two random linear combination vectors, b1 and b2 (from the unit 

sphere), and augment a by a1
∗ = (a + Sb1)/‖a + Sb1‖ and a2

∗ = (a + Sb2)/‖a + Sb2‖

where ‖ · ‖ denotes the norm of a vector.

4. Compute X1
∗ = Xa1

∗ and X2
∗ = Xa2

∗. Compute I1
∗ = CI(Xa1

∗) and I2
∗ = CI(Xa2

∗). 

Choose I∗ = max (I1
∗, I2

∗).

5. If I* > I then set I = I*, a = a*. GO TO step 3.

6. If I ≥ I* then J = J + 1, S = S/2, and let t = 1 – J/maxit.

7. If t > Uniform(0,1), randomly generate a new vector, a′ from the unit sphere. If I
′ > I, then a = a′, J = 0 and GO TO step 3. If I > I′ or t ≤ Uniform(0,1), then a is 

unchanged and GO TO step 8.

8. STOP if J > maxit or S < ∊, set c1 = a, else GO TO step 3.

Step 1 requires the user to provide a set of parameters that govern the implementation of the 

algorithm, including the number of iterations, maxit, without a change that will result in 

termination of the algorithm, ∊ the minimum size of the neighborhood around the projection 

to search for a better projection, and S the initial step size to move away from the current 

projection to search for a better projection. Experimentation has shown that reasonable 

values for these parameters are maxit = 100, ∊ = 1 × 10−7, and S = 50, respectively.

Step 2 creates a candidate matrix of initial projections to begin the process. Daszykowski 

(2007) recommended using each observation as a potential projection as this is a manner in 

which to cover the directions in which the data are present, while an anonymous reviewer 

suggested using the first eigenvector as a starting point. We have included all V eigenvectors 

to protect against the instance of the cluster separation being embedded orthogonal to 

directions of large variance. Finally, for cases when V ≤ 10, all 2V hyperoctants are included 

as recommended by Switzer (1985). The starting point, a, of the algorithm is the chosen to 

be the vector which maximizes I across all vectors.

Step 3 generates two candidate random vectors from the unit sphere. Each vector is then 

multiplied by the neighborhood size, S and adds it to the original vector a. The new vectors 

are normalized to unit length, resulting in two new projections within the neighborhood of a. 
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Two candidates are chosen, rather than one, as it provides an additional potential direction of 

movement that seems to help avoid locally optimal solutions.

Step 4 calculates the new clusterability index for both projections and chooses the value 

which is largest.

Step 5 compares the maximum chosen in Step 4, I*, to the incumbent value, I. If the new 

value is greater, the augmented projection, a* replaces a and the search procedure continues 

by returning to Step 3.

Step 6 handles the situation where the incumbent solution is preferred to the randomly 

perturbed solutions. If this is the case, the number of iterations is increased by one, the 

neighborhood is reduced by half and the value t is set equal to 1 – J/maxit. The relevant 

property of t is that it decreases as the number of iterations increases.

Step 7 compares t to a random variable drawn from a Uniform(0,1) distribution. If t is 

greater than that value, the algorithm searches the quality of a random projection in a 

different part of the unit sphere. This step allows a probabilistic mechanism for potentially 

escaping locally optimal solutions. As the neighborhood around a particular projection is 

investigated more fully and it is determined to be more stable, the probability of abandoning 

the solution decreases.

Step 8 determines when the algorithm converges. If at any time, the number of random 

searches around the incumbent solution (i.e., J) exceeds the maximum allowed (i.e., maxit), 

convergence is assumed and the algorithm is terminated. Alternatively, if the neighborhood 

of the search around a particular vector (i.e., S) is smaller than the minimum neighborhood 

size (i.e., ∊), convergence is assumed and the algorithm is terminated. If one chooses the 

values of S and ∊ recommended in Step 1, convergence requires 25 iterations around the 

same projection without a change.

After c1 has been determined, the subsequent V × 1 linear combinations are guaranteed to be 

orthogonal through the Gram-Schmidt orthogonalization procedure (see Golub & Van Loan, 

1996, pp. 230-232). The process proceeds the same as for c1 except in Step 3. For instance, 

when searching for cV, the appropriate step is:

3. Generate a from the unit sphere. Compute b = (a − ∑i = 1
v − 1ci′aci)/‖a − ∑i = 1

v − 1ci′aci‖.

The final set of linear combinations is collected in CV×V = [c1 c2 … cV]. Finally, given the 

nature of the algorithm, it is clear that the solution is only guaranteed to be a locally optimal 

solution rather than a globally optimal solution. However, Jones and Sibson (1987) indicate 

that the local optima do not require “very high accuracy” (p. 9) because the projected data 

do not change abruptly with projection direction.

Choosing the Projected Dimensionality—To choose the appropriate number of 

principal cluster axes, we adapted a procedure illustrated by Steinley (2008). Tibshirani, 

Walter, and Hastie (2001) indicated that a uniform distribution is the most likely to lead to 

“spurious” clusters in the data space. Thus, as recommended by Lattin, Carroll, and Green 
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(2003) when estimating the number of components in prinicpal component analysis, we 

adopt the following strategy 3:

1. For each of the variables in X, compute the lower and upper bounds (i.e., the 

minimum and maximum values observed for each of the variables). For the vth 

variable, the two values are represented by LBv and UBv, respectively.

2. Generate an N × V data set, Xfake, where the vth variable of Xfake is generated 

from a uniform distribution, U(LBv, UBv).

3. Conduct the principal cluster axes analysis on Xfake, computing CI for each of 

these projections.

4. Repeat steps one, two, and three several times (we have chosen 100 repetitions), 

saving the values of CI at each repetition.

5. The average values of CI for C and Cfake are plotted on the same graph (akin to 

scree plots in principal component analysis). The number of principal cluster 

axes retained corresponds to the number prior to the intersection point on the 

graph (for a visual demonstration, see the example below).

Detailed Example: Iris Data

The initial example is provided on the ubiquitous Iris data (Fisher, 1936) containing 

measurements (in millimeters) on sepal length, sepal width, petal length, and petal width on 

fifty specimens from each of three species: Iris Setosa, Iris Versicolor, and, Iris Virginica. 

The data set provides a nice “real world” example where the cluster structure is generally 

assumed to be known in advance. Table 1 provides the coefficients determined for each 

variable across all 4 projections. Additionally, Table 1 provides the corresponding loadings 

extracted from a prinicpal component analysis (with the loadings from a varimax rotated 

PCA solution in parantheses). Figure 2 provides marginal kernel density plots of both the 

principal components solution (panels (a)-(d)) and the principal axes clusters solution 

(panels(e) - panels(h)). Upon inspection, one can see that the first component is the only 

component that provides a bimodal distribution and it is also the only component with a 

clusterability index above one. For principal axes clustering, two projections have a 

clusterability index above one, while three of the marginal projections exhibit bimodality in 

their projections.

When inspecting the coefficients of the principal cluster axes, it is seen that the first axis is 

comprised almost solely of information regarding the petal, with the most emphasis placed 

on width. On the other hand, the second principal cluster axis is defined mostly by petal 

length, with some minor contrasts with sepal length and petal width. The general 

interpretation attributed to the principal cluster axes should follow standard guidelines for 

interpreting any set of orthogonal linear combinations (i.e., principal component analysis 

and some variants of factor analysis).

3Note that this procedure is similar to the procedure denoted as parallel analysis by Horn (1965) for determining the number of factors 
in factor analysis.
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Figure 3 provides the plots to determine the dimensionality of the cluster structure. Figure 3 

indicates that two principal cluster axes should be retained (note that the intersection occurs 

between the second and third principal cluster), while Figure 4 provides the two dimensional 

projection of the Iris data by PCAPP. After the appropriate projections are determined, the 

transformed data can be clustered using any standard procedure for finding the groups in 

data. The important aspect to note is that the data reduction process is independent from any 

clustering algorithm or other method for finding groups in data. However, the index itself is 

designed to highlight cluster structures that are usually sought when trying to minimize the 

sum-of-squares error (see Brusco & Steinley, 2007, for an extensive review). Thus, this 

projection pursuit procedure will be most effective when used in conjunction with 

techniques that optimize this criterion, some examples include: H-means (Forgy, 1965), K-

means (MacQueen, 1967), HK-means (Hansen & Mladenovic, 2001), KI-means (Banfield & 

Bassil, 1977), J-means+ (Hansen & Mladenovic, 2001), tabu-search (Pacheco & Valencia, 

2003), simulated annealing (Klein & Dubes, 1989), genetic algorithms (Maulik & 

Bandyopadhyay, 2000), variable neighborhood search (Hansen & Mladenovic, 2001), and 

Ward's method (Ward, 1963).

In this example and throughout the remainder of the paper, we implement the popular K-

means algorithm (Steinley 2003, 2006a, 2006b) on the reduced data sets. To evaluate the 

quality of the cluster analysis, we use the Hubert-Arabie adjusted Rand index (ARI; Hubert 

& Arabie, 1985; Steinley, 2004). For the ARI, values of unity indicate perfect cluster 

recovery while values of zero indicate recovery equal to chance. When clustering the 

direction of the first principal cluster axis, the ARI is .9030, and adding the second principal 

cluster axis raises the ARI to .9410–the equivalent result of conducting a discriminant 

analysis (see Figure 3 for a graphical depiction of the transformed data in the principal 

cluster axes space). Thus, using the PCAPP on the Iris data set results in a solution that is 

equivalent to knowing the original group structure.

Comparison to Existing Methods

K-means Clustering—In order to illustrate the utility of the proposed procedure, 

comparisons were made to a selected set of existing procedures in the literature. The 

methods chosen for comparison are recent methods that have been proposed to find 

clustering in low-dimensional space. Many of the methods rely on a combination of cluster 

analysis and dimensionality reduction. Thus, the following notation is adapted to introduce a 

clustering procedure into the process. All of the methods utilize the popular K-means 

clustering procedure (MacQueen, 1967). Recalling that X is the N × V data matrix, the goal 

of K-means clustering is to assign each object into one of K clusters to minimize

F(R, M) = tr[(X − MR)′(X − MR) , (7)

where R is a K × V matrix with each row being the centroid vector for the kth clusters and an 

N × K membership matrix, M where mik = 1 if object i belongs to the kth cluster. The 

general estimation procedure is to use an alternating least squares algorithm that alternates 

Steinley et al. Page 11

Multivariate Behav Res. Author manuscript; available in PMC 2018 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



between minimizing (7) with respect to M given the current estimate of R and minimizing 

(7) with respect to R given the current cluster membership.

Principal Component Analysis—Principal component analysis has long been used to 

reduce the dimensionality of data sets. Some authors, as recently as Ben-Hur, Horn, 

Siegelmann, and Vapnik (2001) and De Backer and Scheunders (1999), advocate conducing 

a principal component analysis on the original data set X and then clustering the data that is 

projected into the space of the principal components, denoted as P = XAU, where AU is a U-

dimensional matrix of orthonormal projections (i.e., the first U eigenvectors of X′X). This 

basically transforms the original objective function in (7) into

F(R(U), M) = tr[(PN × U − MN × KRK × U
(U) )′(PN × U − MN × KRK × U

(U) ) , (8)

where R(U) is a K times; U matrix of cluster centroids in reduced space. However, this 

process-often referred to as tandem analysis-has long been cautioned against (see Chang, 

1983; Arabie & Hubert, 1994). The primary caution is that while the first few principal 

components define the directions which account for the maximum amount of variance in the 

original data they do not necessarily result in a subspace that is most representative of the 

cluster structure present in the data.

Reduced K-means (De Soete & Carroll, 1994)—De Soete and Carroll (1994) 

attempted to incorporate clustering and data reduction into the same objective function. 

Their insight was to rewrite (7) as

F(R, M) = ∑
i = 1

N
∑

v = 1

V
xiv − ∑

k = 1

K
mikrkv

2
(9)

and then rewriting (7) as

F(R, M) = ∑
i = 1

N
∑

k = 1

K
mik ∑

v = 1

V
(xiv − ykv)

2 + ∑
k = 1

K
nk ∑

v = 1

V
(ykv − rkv)

2 (10)

where ykv = nk
−1∑i = 1

N mikxiv and nk is the number of objects in the kth cluster. The key to this 

problem is that De Soete and Carroll (1994) required the rank of R to be U (i.e., the K 
centroids are restricted to lie in a U-dimensional subspace). Like the standard K-means 

algorithm, (8) is minimized by an alternating least squares algorithm that alternates between 

minimizing with respect to R given M and minimizing with respect to M given R.

Given R, the estimate of M is determined by assigning each object to the cluster
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mik = 1 ∑
v = 1

V
(xi j − rk j)

2 < ∑
v = 1

V
(xi j − rk ∗ j)

2∀k∗ = 1, …, K k ≠ k∗ (11)

and mik = 0 otherwise. Once M is determined the estimate of R is updated by

R = N−1/2UUΛUVU′ (12)

where UUΛUVU′  is the rank U truncated singular value decomposition of N1/2Y and N ≡ 

diag(n1, n2, …, nK). The algorithm proceeds by updating M via (9) and R via (10) until no 

change occurs in M. Like the standard K-means algorithm, either initial estimates of R or M 
is required. Following the recommendation in Steinley (2003) and Steinley and Brusco 

(2007), which includes estimating the best clustering from 5,000 random initializations of 

the K-means algorithm, we provide an initial estimate of M derived from conducting a K-

means clustering of X in the full V-dimensional data space. To insure that these initial values 

for M were reasonable, we also initialized M with 1,000 random initializations.

Factorial K-means (Vichi & Kiers, 2001)—Vichi and Kiers (2001) postulated the 

model

XBB′ = MRB′ + E (13)

where E is a matrix of error components and B is a columnwise orthonormal matrix. The 

coordinates of the projections onto the orthonormal subspace are given by D = XB. Then, 

the minimized function is

F(B, M) = tr[(XB − MR∗)′(XB − MR∗) , (14)

where R* = (M′M)−1M′XB. The algorithm proceeds by

1. Choosing initial values for B and M. For initialization, we chose B = A (i.e., the 

eigendecomposition used in principal component analysis) and M was chosen 

from a K-means clustering on X in V-dimensional space. After the initial 

estimates of B and M were chosen, R* was computed via (12). To insure that 

these initial values for M were reasonable, we also initialized M with 1,000 

random initializations.

2. Given the current estimate of B and R* update M by assigning dij to the cluster 

centroid in the lower dimensional space that it is closest (i.e., compute the 
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Euclidean distance between each projected object and each projected cluster 

centroid).

3. Set B equal to the first U eigenvectors of X′(M(M′M)−1M′ – IN)X, then set R* 

= (M′M)−1M′XB.

4. Repeat Steps 2 and 3 until M remains unchanged between subsequent iterations. 

For a detailed discussion concerning the relationship between the Vichi and 

Kiers (2001) procedure and the DeSoete and Carroll (1994) procedure, the 

interested readers are referred to Timmerman, Ceulemans, Kiers, & Vichi (2010).

Simulation

Prior to analyzing real-world data sets, the procedures were compared across several factors. 

To our knowledge, this is the first systematic simulation involving varying factors while 

investigating a range of projection pursuit indices and data reduction techniques for their 

ability to recover an embedded cluster structure. The six procedures compared were: (i) K-

means clustering (KM) on the non-reduced data set to provide a baseline of performance, (ii) 

tandem analysis (TA; principal component analysis followed by cluster analysis), (iii) 

reduced K-means (RKM), (iv) factorial K-means (FKM), (v) projection pursuit clustering 

using the measure based on kurtosis (PPCK; see Equation 2) and, (vi) principal cluster axes 

projection pursuit (PCAPP). To maintain focus on the index, the same projection pursuit 

algorithm is used for both the kurtosis index and the proposed method, with the only change 

being how I is computed within the algorithm. The “between-methods” factors that were 

manipulated were: (a) the number of true variables, defined as the subspace of variables that 

define the cluster structure and assuming four levels TV = 4, 6, 8, 12, (b) the number of 

masking variables, defined as variables exhibiting no cluster structure (i.e., merely noise) 

and assuming four levels MV = 4, 6, 8, 12, (c) the relative density of each cluster, assuming 

levels 10%, 60%, and equal, with the first level indicating there is one small cluster that has 

10% of all observations while the other 90% of observations is divided between the 

remaining K – 1 clusters (a similar definition is given for 60%, while equal indicates all 

clusters are of equal size), and (d) the number of clusters, assuming three levels K = 4, 6, 8.

The true cluster structure was generated following the procedure outlined in Milligan 

(1985), which ensures that each cluster is well-separated (e.g., using Cormack's, 1971, 

definition, they are internally cohesive and externally isolated) on some subspace of the data. 

The masking variables were generated from spherical multivariate normal distributions with 

variance equal to the largest variance of the variables defining the cluster structure. This 

condition ensures that any discovered structure is not due to coincidence of a large variance, 

the primary reason that principal component analysis can seem to be successful in certain 

situations. Every data set was generated with 200 observations and all conditions were 

completely crossed (resulting in 144 separate conditions). Consistent with the prior literature 

on evaluating cluster analysis techniques, each condition was replicated three times (see 

Milligan, 1980; Milligan & Cooper, 1985; Steinley, 2003, 2006).

Each procedure projected the higher dimensional data into a lower dimensionality defined 

per the method described above. Thus, the proposed method, PCAPP, chose the 
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dimensionality and then the remaining five methods also projected the full data set into the 

chosen dimensionality with the goal of determining if the competing methods can maintain 

the fidelity of the cluster structure to the same degree as the proposed technique. To 

determine how well the cluster structure was maintained in the lower dimensional 

representation, each of the projected data sets were cluster analyzed with K-means clustering 

per the guidelines outlined in Steinley and Brusco (2007). The resultant partitions were 

compared with the “true” cluster structure by computing the adjusted Rand index, recalling 

that values of one indicate perfect agreement and values of zero indicate chance agreement. 

Table 3 provides the mean adjusted Rand index by each factor level for all of the approaches.

Within each row, an asterisk denotes the best-performing method, on average, for a 

particular factor level. Across all levels, PCAPP has the greatest cluster recovery. 

Conversely, the projection-pursuit method relying on the third and fourth cumulants has the 

worst cluster recovery across all levels. Unexpectedly, the multiple restarts for FKM and 

RKM performed worse than those same procedures initialized with a K-means clustering on 

the full data sets. The performance of K-means clustering on the full-dimensional data set 

mirrored results found in Milligan (1980), Steinley (2003 Steinley (2006) and Steinley and 

Brusco (2011a and Steinley and Brusco (2011b). Given the best performance across all 

conditions is observed for PCAPP, discussion of effects focuses on this technique. As it 

turns out, the effects of each of the factors are what we would expect.

First, as the number of clusters increases, the ability to reliably detect them in a reduced 

dimensionality decreases. To some degree, this is to be expected as projecting points from a 

higher dimensional space into a lower dimensional space increases the chances that the 

clusters will overlap. Second, for PCAPP there is a reduced cluster recovery as the number 

of cluster defining variables increases; whereas, for the other methods, recovery increases as 

the number of true variables increases. This is most likely due to the nature of the cluster 

generation algorithm pioneered by Milligan (1985). Specifically, for any pair of clusters, 

they are only guaranteed to not overlap on one of the V dimensions. Furthermore, each of 

the (K2) pairs of clusters may be separated on different dimensions. Thus, as the number of 

variables increase and the number of clusters increase, it is highly likely that there is not a 

unidimensional projection through the V-dimensional space that captures all of the cluster 

separation. The number of masking variables does not have as strong of an effect on PCAAP 
as the other methods, which is consistent with the results provided in Steinley and Brusco 

(2008b) concerning the robustness of the clusterability index with respect to irrelevant noise 

in the data. Finally, for cluster density, the best performance is when all clusters are of equal 

size — this is consistent with the expected properties of K-means clustering (see Steinley & 

Brusco, 2011a see Steinley & Brusco, 2011b) and may be a consequence of clustering the 

projected data with K-means clustering rather than an inherent property of the projection 

pursuit procedure.

Data Sets

The first comparison will be carried out using the Iris data set from the detailed example 

provided above. The second data set is the Crab data set discussed in Venables and Ripley 
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(1999). The 200 crabs are either orange or blue and male or female, resulting in four real 

groups of crabs. Additionally, there are five measurements that serve as variables: carapace 

length (CL), carapace width (CW), frontal lobe (FL), rear width (RW), and body depth 

(BD). There is good separation between the colors but not between the sexes. The third data 

set is the forensic Glass data set (Ripley, 1996) containing 214 glass fragments with 

measurements of the proportions of eight elements and the refraction index, resulting in a 

total of nine variables.

Table 4 provides the general cluster recovery for the proposed procedure, the four alternative 

procedures, and a K-means cluster analysis on the original data set. For the Iris data, the 

projection pursuit procedure using kurtosis performs the worst of all the procedures, while 

PCAPP technique performed 29% better than the next best method. The crab data set 

consists of highly correlated variables and is more difficult to cluster than the Iris data. 

Figure 5 depicts the bivariate scatterplot matrix of the crab data (where the univariate 

histograms are depicted on the diagonal). Inspection of the scatterplots reveals that it is 

difficult to detect any separation between the bivariate distributions and the histograms are 

all unimodal in nature. This trend is further reflected in the recovery of the cluster structure 

by the K-means clustering of the original data–a dismal .0157 ARI.

In fact, all of the competing methods had an ARI of near chance performance. Conversely, 

the principal clustering procedure exhibited an ARI = .7876, an average of 5,879.2% better 

than the other methods. The lower dimensional representation is depicted in Figure 6. As is 

seen in Figure 4, the clusters are not spherical in nature. Thus, if a different clustering 

procedure was chosen that was more appropriate for elliptical clusters (e.g., finite mixture 

model), cluster recovery would likely improve. We did not do so here because the competing 

methods use K-means clustering as an integral part of their dimensionality reduction process 

and we did not want to confound the results with the clustering algorithm chosen for the 

analysis.

The performances of all methods for the Glass data were very poor. The projection pursuit 

and factorial K-means procedures performed near chance recovery levels, while the 

remaining methods exhibited ARI's between .25 and .30. PCAPP performed the best, but it 

was not an outstanding level of cluster recovery. Figure 7 displays the projected space of the 

six clusters in the GLASS data. As can be seen, most of the clusters do not appear to be well 

separated. In fact, the projected data appear to lie on a fairly continuous one-dimensional 

line through space. If the groups of glass that appear in the middle of the continuum were 

sampled more, this may provide an argument for some type of common factor model. More 

generally, if the projected space exhibits very little cluster structure, it is likely that a strong 

cluster structure does not exist in the high-dimensional data4. In fact, Steinley and 

McDonald (2007) extensively discuss the relationship between the factor model and the 

ability to detect cluster structure in a reduced (i.e., latent) space.

4In the present situation, inspection of the graph would lead to the conclusion of a weak cluster structure as the middle of the point 
cloud is fairly sparse–corresponding to the moderate to low ARI for the principal cluster structure.
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Analysis of Empirical Data: Supreme Court Justices

For this example, we analyze the voting records of the Supreme Court Justices on the so-

called “Rhenquist Court” (e.g., the Supreme Court from 1994/95 – 2003/04)5. Hubert and 

Steinley (2005) analyzed a proximity matrix derived from these data in an attempt to 

determine whether a categorical or continuous model was more appropriate. For the present 

analysis, the data set consists of 971 court cases (e.g., the observations of the data set) and 

nine variables (e.g., the Supreme Court Justices). After removing cases where some of the 

justices did not vote and all cases where there was a unanimous decision, 507 cases 

remained. Subsequently, in this analysis, the specific cases are of less interest; rather, the 

interest is in how the projections are defined in relation to the original variables. The nine 

projections are given in Table 5. According to the method for determining the number of 

dimensions, two projections were adequate to represent the cluster structure in reduced 

space. Figure 8 plots the loadings for the first two projections. In general, there are broad 

agreements with these results and the unidimensional representation provided by Hubert and 

Steinley (2005), and it is quite natural to visualize the conservative faction of the Supreme 

Court (e.g., Thomas, Scalia, Rhenquist) as being on the opposite side of the two dimensional 

space as the more liberal faction (e.g., Ginsberg, Stevens, Souter), both of which are 

separated by the other three members (e.g., O'Connor, Kennedy, Breyer). However, there are 

some subtle differences in the interpretation than that provided by either the unidimensional 

scaling or the ultrametric representation (a form of hierarchical clustering) previously 

presented.

The primary interpretation derived from the current projections is what mostly determines 

the cluster structure in the reduced dimensionality are Justices Thomas, Scalia, and Breyer 

on the first dimension and Stevens and Ginsburg (with Souter, Rhenquist, and Scalia to a 

lesser degree) on the second dimension. To demonstrate why this analysis does not strictly 

follow the unidimensional representation in Hubert and Steinley (2005), a more in-depth 

analysis of voting patterns is required. For ease of presentation, we focus first on Justice 

Thomas and Justice Breyer as they anchor the two ends of the first dimension. Of the 507 

cases, Justices Thomas and Breyer agreed 172 times, and of those agreements 168 of them 

placed them in the majority and four placed them in the minority vote. Additionally, the 

number of 5-4 decisions in which Thomas and Breyer were in the majority was only 12. 

Similarly, the number of agreements for 6-3, 7-2, and 8-1 decisions were 38, 40, and 78, 

respectively. Furthermore, when Thomas and Breyer are in agreement, Rhenquist and 

Stevens are only in agreement 23 (out of 121) times. Furthermore, Thomas, Breyer, 

Rhenquist, and Stevens are never in agreement in a 5-4 split (of which there are 188), 

whether it be in the majority or the minority. For 6-3 splits, they are in agreement 3 times 

(out of 118); for 7-2 splits, they are in agreement 8 times (out of 111); for 8-1 splits, they are 

in agreement 12 times (out of 90).

These four judges lack enough mutual overlap to provide a strong separation between the 

sets of cases. This is expected, as PCAPP focuses on the variables (in this case, judges) who 

provide the most discrimination – which would be the judges that are less likely to “bridge” 

5The data being analyzed can be obtained from the Supreme Court Database (http://scdb.wustl.edu/data.php)
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the two ends of the political spectrum. Whereas specific case information was not included 

in the downloaded file, it is likely that substantive knowledge concerning the types of cases 

in which the Supreme Court Justices agreed/disagreed would provide a more nuanced view 

than purely conservative vs. liberal.

Discussion

A procedure has been proposed to preserve the cluster structure in a high-dimensional data 

set on a “few” lower dimensional projections. Termed principal cluster axes projection 

pursuit, the spirit of the procedure is similar to that of principal component analysis. 

Specifically, the relevant cluster information is preserved in a set of orthogonal projections. 

When analyzing several data sets previously used in the literature, we found that the 

proposed procedure was superior in terms of cluster recovery.

The main advantage of principal cluster analysis is that the data reduction is independent of 

the clustering algorithm employed by the analyst. This is the distinction that likely results in 

the observed performance difference. The likely Achilles' heels of the competing procedures 

examined here are:

1. If the full data set is clustered via K-means, it has been repeatedly shown that 

noisy dimensions, or merely ill-defined cluster structure, can have a detrimental 

effect on cluster recovery (see Milligan, 1980; Steinley, 2003, 2006b).

2. It has long been known that standard data reduction practices are poor precursors 

to a cluster analysis. Primarily, the objective functions that are maximized during 

procedures such as principal component analysis or factor analysis are not 

congruent with preserving cluster structure (see Chang, 1983; Arabie & Hubert, 

1994). Additionally, it has long been argued that principal component analysis 

does a poor job of identifying heterogeneity in the data.

3. The Reduced K-means procedure suffers from the fact that it requires an initial 

estimate of the cluster membership. The procedure then uses the initial estimate 

of the cluster membership to obtain a lower-dimensional projection. 

Unfortunately, obtaining a rational estimate for the cluster membership could be 

compromised by extraneous information in the data space (see Point #1). All 

results are extremely dependent on this initial estimate.

4. Similar to Reduced K-means, Factorial K-means requires an initial estimate of 

the cluster structure and an initial estimate of the projection. Moreover, the final 

results can be severely impacted by initial choices. Vichi & Kiers (2001) 

recommend using prior analysis of the data to determine the initial values. 

However, as seen in Points #1 and #2, prior analyses of the data can be corrupted 

if there is a sufficient amount of noise or if the objective functions do not 

correspond with the goals of cluster analysis. Both the logical choices for 

determining the initial cluster analysis (e.g., conducting a cluster analysis on the 

full data) and principal component analysis (a standard eigendecomposition on 

the covariance matrix) suffer from this drawback.
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5. Surprisingly, using multiple random restarts for both Reduced K-means and 

Factorial K-means did not improve the results over the rationally started 

procedures. We hypothesize that if the initialization is completely random in the 

higher dimension, then there is nothing to “tether” the cluster structure in the 

reduced dimensionality to the true cluster structure that is embedded in the full 

dimensional space. Prior research (Milligan, 1980; Steinley, 2003; 2006b, 

Steinley & Brusco, 2008a) has shown that while noisy dimensions degrade 

cluster performance, cluster recovery still remains above chance levels. Thus, 

conducting a K-means clustering on the full data set results in a starting point for 

the data reduction that still contains some information about the true cluster 

structure. Conversely, when using random initialization, the data reduction 

procedure starts from “no information” about the true cluster structure, resulting 

in degraded performance in the long run.

The proposed technique navigates around these weaknesses and provides the additional 

flexibility of accommodating many procedures that are geared at finding groups in data.

Potential Limitations and Future Directions

The orthogonality constraint introduced by the extraction process allows for a couple of 

desirable properties; namely, the independence of each of the projected dimensions. This 

independence allows both for an additive nature between the dimensions and the ability to 

demarcate how much “clusterability” is accounted for by each projection. One potential 

limitation is that the projection pursuit procedure designed here extracts one dimension at a 

time in a sequential fashion. It is entirely possible that interesting structure may be 

embedded completely in a joint lower dimensional space that cannot be realized by a series 

of unidimensional projections. Indeed, the clusters for the simulation were generated in such 

a fashion. However, Huber (1985) indicates that one dimension at a time is a reasonable 

place to start. Furthermore, the ordered set of projections provided here are easier to 

interpret as a multidimensional projection requires the interpretation of the full subspace. 

From a theoretical perspective, understanding the properties of the index for one-

dimensional projections will aid in generalizing the current index to one that is appropriate 

for multivariate projections (e.g., planer projections and beyond), allowing for the inclusions 

of subspaces that are oblique and effectively eliminating the orthogonality constraint. One 

avenue of future research is to develop a multivariate index and augment the projection 

pursuit algorithm in such a manner that the optimization over U * V variables is not too 

computationally demanding for practical purposes.

Another property that deserves further investigation is the decrease in cluster recovery as the 

number of true variables increases and the eventual ability of masking variables to swamp 

the true variables (a similar result was observed in Steinley & Brusco, 2008b). What this 

suggests is that neither variable selection or data reduction should be used independently, but 

rather as complementary procedures with results that mutually reinforce the other. Currently, 

we are working on a hybrid procedure that combines variable selection with data reduction, 

with the goal being to conduct data reduction on the most “pure” cluster variables. The logic 

behind the hybrid procedure is that, if masking variables are in the system, they will be 

included — even if only to a minimal degree – in each projection because the projections 
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include information about every one of the original variables. Eventually, if there are enough 

masking variables (e.g., too much noise) it will be highly unlikely for any data reduction 

technique to be successful.
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Figure 1. Experiment Schematic and Results for Testing Robustness of Projection Pursuit 
Indices
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Figure 2. Kernel Density Plots for Comparing Marginal Projections of Both PCA and PPCAP
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Figure 3. Determining the Number of principal cluster axes for the Iris Data
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Figure 4. Two Dimensional Projection of Iris Data by PCAPP
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Figure 5. Bivariate Scatterplot Matrix of Crab Data
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Figure 6. Principal Cluster Axes of Crab Data
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Figure 7. Principal Cluster Axes of Glass Data
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Figure 8. Loadings for Dimensions for Supreme Court Justice Data
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Table 3
Mean Differences of Adjusted Rand Indices Between PCAPP and Other Methods

Comparison Difference in Means SD Effect Sizes†

PCAPP vs. KM (.51-.26)=.25** .29 1.28

PCAPP vs. TA (.51-.18)=.33** .28 1.69

PCAPP vs. RKM (.51-.31)=.20** .30 0.95

PCAPP vs. FKM (.51-.17)=.34** .30 1.65

PCAPP vs. PPK (.51-.06)=.45** .22 3.09

Note. df = 431 for each t-test.

**
p ≤ .0001, two-tailed.

†
the effect size was computed assuming independent groups to protect against over-inflating the estimate as recommended by Dunlop, Cortina, 

Vaslow, and Burke (1996).

KM = K-means clustering; TA = Tandem Analysis; RKM = Reduced K-means; FKM = Factorial K-means; PPK = Projection Pursuit Kurtosis; 
PCAPP = Principal Cluster Axes Projection Pursuit.
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Table 4
Cluster Recovery (ARI) for Example Data Sets by Technique

Dataset

Technique Iris Crab Glass

K-means .7302 .0157 .2702

Principal Component Analysis (Tandem Analysis) .7163 .0207 .2501

Reduced K-means .7302 .0157 .2542

Factorial K-means .7163 .0068 .0694

Projection Pursuit Kurtosis .6743 .0176 .0548

Principal Cluster Axes Projection Pursuit .9410 .7876 .2841
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