Skip to main content
. Author manuscript; available in PMC: 2018 Jun 1.
Published in final edited form as: Multivariate Behav Res. 2012 Jun 18;47(3):463–492. doi: 10.1080/00273171.2012.673952

Table 2. Mean ARI by Method and Factor Level.

Factor KM TA RKM FKM PPK PCAPP
# of Clusters 4 .30 .23 .39 (.23) .21 (.12) .06 .64*
6 .24 .18 .31 (.19) .15 (.14) .07 .49*
8 .23 .14 .24 (.16) .15 (.12) .06 .41*

# of True Variables 2 .14 .07 .16 (.16) .11 (.10) .04 .58*
4 .19 .12 .27 (.19) .15 (.12) .06 .52*
6 .22 .21 .33 (.23) .18 (.16) .07 .48*
12 .46 .34 .46 (.34) .24 (.21) .08 .47*

# of Masking Variables 2 .36 .29 .45 (.27) .29 (.20) .11 .53*
4 .29 .20 .36 (.24) .18 (.14) .18 .52*
6 .22 .16 .28 (.19) .13 (.12) .13 .54*
12 .15 .08 .16 (.08) .08 (.06) .02 .42*

Cluster Density Equal .26 .18 .32 (.17) .11 (.12) .04 .56*
10% .30 .19 .34 (.17) .14 (.10) .06 .51*
60% .20 .18 .28 (.25) .26 (.17) .09 .45*

Note: KM = K-means clustering; TA = Tandem Analysis; RKM = Reduced K-means; FKM = Factorial K-means; PPK = Projection Pursuit Kurtosis; PCAPP = Principal Cluster Axes Projection Pursuit. For FKM and RKM, the values in parantheses are the results from the multiple random restarts with 1,000 random restarts.