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Abstract

The problem of partitioning a collection of objects based on their measurements on a set of 

dichotomous variables is a well-established problem in psychological research, with applications 

including clinical diagnosis, educational testing, cognitive categorization, and choice analysis. 

Latent class analysis and K-means clustering are popular methods for partitioning objects based on 

dichotomous measures in the psychological literature. The K-median clustering method has 

recently been touted as a potentially useful tool for psychological data and might be preferable to 

its close neighbor, K-means, when the variable measures are dichotomous. We conducted 

simulation-based comparisons of the latent class, K-means, and K-median approaches for 

partitioning dichotomous data. Although all three methods proved capable of recovering cluster 

structure, K-median clustering yielded the best average performance, followed closely by latent 

class analysis. We also report results for the three methods within the context of an application to 

transitive reasoning data, where it was found that the three approaches can exhibit profound 

differences when applied to real data.

Introduction

The problem of partitioning N objects into K clusters based on measurements of the objects 

on V dichotomous variables is a well-studied problem in the psychological sciences (Brusco, 

2004; Dimitriadou, Dolnicar, & Weingessel, 2002). Dichotomous items can arise in the form 

of correct and incorrect answers on cognitive tests (Chiu, Douglas, & Li, 2009; Ellis, 2014; 

Van der Ark, Croon, & Sijtsma, 2008), responses to true or false questions on an 

examination (Ohan, Cormier, Hepp, Visser, & Strain, 2008), the presence or absence of 

symptoms in a psychiatric evaluation (Williams, Barton, White, & Hosik, 1976), the 

cognitive categorization of competitive relationships among retailers (Porac & Thomas, 

1994), pick-any-subset tasks (Coombs, 1964; Hubert, 1974), and the presence or absence of 

ties in a social network (Brusco & Steinley, 2007a).
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The measurement of N objects on V dichotomous variables results in what is known as two-
mode, two-way dichotomous data. The data are two-way because they are assembled in a 

two-dimensional array, and are two-mode because the dimensions correspond to two distinct 

types of entities. One dimension of the array corresponds to the N objects and the other to 

the V variables. There is a variety of possible approaches to the problem of classifying the 

objects based on the dichotomous variable measures. There are also different bases that can 

be used to distinguish among these approaches. The first formal basis pertains to the 

important distinction between partitioning and non-partitioning approaches. Partitioning 

methods produce clusters that are non-empty, mutually exclusive, and exhaustive. 

Effectively, this means that each cluster has at least one object, each object is assigned to one 

(and only one) cluster, and all objects are assigned. By contrast, overlapping clustering 

(Chaturvedi, Carroll, Greeen, & Rotondo, 1997) methods allow objects to be members of 

more than one cluster. Likewise, fuzzy clustering methods (Bezdek, Coray, Gunderson, & 

Watson, 1981; Wedel & Steenkamp, 1989) permit objects to have partial (fractional) 

memberships in multiple clusters. Although overlapping and fuzzy clustering methods and 

principles have some history in the psychological literature (Arabie & Carroll, 1980; 

Chapman & Goldberg, 2011; Hedges & Olkin, 1983; Shepard & Arabie, 1979), their usage 

is negligible in comparison to partitioning methods and, accordingly, our focus is restricted 

to partitioning throughout the remainder of this paper.

A second formal basis for distinguishing among clustering methods is whether or not they 

are based on a underlying statistical model (Andrews, Brusco, Currim, & Davis, 2010; 

Wedel & Kamakura. 2000). Methods based on a statistical model are referred to by terms 

such as latent class clustering (Magidson & Vermunt, 2002), latent class analysis (Eshghi, 

Haughton, Legrand, Skaletsky, & Woolford, 2011), mixture model clustering (McLachlan & 

Peel, 2000; Steinley & Brusco, 2011a), or model-based clustering (Banfield & Raftery, 

1993; Fraley & Raftery, 1999). Succinctly, in model-based clustering, the data are assumed 

to be generated from a mixture of distributions with different parameters, and the relevant 

objective criterion for the classification process is one of maximizing likelihood. 

Contrastingly, non-model-based methods are not grounded by an underlying statistical 

model and typically correspond to discrete optimization algorithms that may seek to 

optimize a diverse range of objective criteria.

A third, less formal basis for distinguishing among clustering approaches is whether they are 

special-purpose or general-purpose. Special-purpose methods are those that are customized 

in their design for specific applications in the analysis of dichotomous data. The 

distinguishing aspect of special-purpose methods is the incorporation of salient objective 

criteria or constraints that are unique to the particular problem under study. In the case of 

dichotomous data, one family of special-purpose methods includes those procedures that are 

grounded in set theory (Curry, 1976; Restle, 1959), such as methods found in the diverse 

family of hierarchical classes (HICLAS) models that are designed for structural analysis of 

multi-mode, multi-way dichotomous data (Ceulemans & Van Mechelen, 2005, 2008; 

Ceulemans, Van Mechelen, & Leenen, 2007; DeBoeck & Rosenberg, 1988; Vande Gaer, 

Ceulemans, Van Mechelen, & Kuppens, 2012; Wilderjans, Ceulemans, & Van Mechelen, 

2008, 2012). A second category corresponds to the literature stream pertaining to cognitive 

diagnosis methods to assess mastery (or non-mastery) of a collection of items in educational 
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testing (Chiu et al., 2009; Macready & Dayton, 1977; Templin & Henson, 2006; Templin, 

Henson, & Douglas, 2007). Blockmodeling methods for social network analysis represent 

yet another class of special-purpose methods for dichotomous data (see Doreian, Batagelj, & 

Ferligoj, 2005 for an extensive review).

Although they may require some parametric assumptions, general-purpose approaches for 

clustering dichotomous data consist of those methods that are broadly applicable to both 

dichotomous and non-dichotomous data, and include methods such as K-means partitioning, 

K-median partitioning, and latent class analysis. Since its development in the 1950’s and 

1960’s (Forgy, 1965; Jancey, 1966; Lloyd, 1957; MacQueen, 1967; Steinhaus, 1956; 

Thorndike, 1953), K-means partitioning has arguably been the most prominent clustering 

method in scientific research (see Bock, 2007; Kogan, 2007; and Steinley, 2006 for reviews). 

Although not originally designed for clustering dichotomous data, there is computational 

evidence supporting the efficacy of K-means for clustering such data (Brusco, 2004; Chiu et 

al., 2009; Dimitriadou et al., 2002; Köhn, Chiu, & Brusco, 2015). K-median partitioning has 

its origins in graph theory, specifically with respect to the location of switching centers in 

networks (Hakimi, 1964, 1965). In light of the fact that network ties correspond to 

dichotomous measurements, it is logical to posit that K-median methods might prove 

particularly effective for dichotomous data applications (Ruiz, Chebat, & Hansen, 2004).

Unlike K-means and K-median approaches, the latent class model (LCM) is formulated as a 

probabilistic, finite mixture modeling approach for classifying objects (Goodman, 1974; 

Lazarsfeld, 1950). The LCM is the most commonly chosen method for clustering 

dichotomous data in psychological applications. Recent examples published in APA outlets 

include the use of the LCM in the following contexts: (i) as a diagnostic tool in conjunction 

with an internet gaming disorder scale (Lemmens, Valkenberg, & Gentile, 2015), (ii) to 

establish subgroups of smokers with distinct patterns on dichotomous risk behavior 

measures (Prochaska et al., 2014), (iii) to establish classes based on the presence of different 

gambling activities (Savage, Slutske, & Martin, 2014), (iv) to obtain subgroups based on 

dichotomous ratings of social skill (De Los Reyes, Bunnell, & Beidel, 2013), (v) to classify 

students based on the presence or absence of various forms of bullying (Waasdorp & 

Bradshaw, 2011) or peer victimization (Bradshaw, Waasdorp, & O’Brennan, 2013), and (vi) 

to assess knowledge of attention-deficit disorder (Ohan et al., 2008). By contrast, a search of 

the PsycArticles database for the 2008-2015 time period did not uncover any applications of 

K-means cluster analysis to dichotomous data in APA outlets.

A comparison of special-purpose approaches is difficult because they are designed to 

accomplish different goals. However, it is possible to undertake a comparison of general-

purpose procedures for clustering dichotomous data with respect to their ability to recover 

underlying known cluster structure. In this paper, we present comparisons of three general 

methods for the partitioning of dichotomous data: (i) LCM, (ii) K-means clustering, and (iii) 

K-median clustering.1 Although all three of these methods have been available for decades, 

1Given that LCM is a mixture-model approach to clustering, whereas K-means and K-median are non-model-based methods, our 
comparative analyses are comparable to the recent recovery-based comparisons of finite mixture models and K-means within the 
context of metric variables (Steinley & Brusco, 2011a).
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little is known about their relative performances for classifying dichotomous data. In light of 

this gap in the literature, comparisons are conducted using two simulation experiments that 

control for variation in the number of objects (N), the number of clusters (K), the number of 

clustering variables (V), the relative sizes of the clusters, and the level of error perturbation 

applied to the underlying cluster structure. Comparative analyses are performed under the 

assumption that the correct number of clusters is known, as well as under conditions where 

K is unknown and must be determined as part of the model selection process.

In addition to the simulation-based comparisons, LCM, K-means, and K-median clustering 

are applied to dichotomous data associated with the study of transitive reasoning (Verweij, 

Sijtsma, & Koops, 1996). The results of this application are particularly noteworthy, as the 

three methods yield profoundly different two-cluster partitions of the transitive reasoning 

data. This finding suggests that, although the three methods might perform comparably in a 

controlled simulation experiment, they can lead to different interpretations when applied to 

real data. Succinctly, K-means produced a two-cluster solution that was difficult to interpret, 

LCM yielded one large cluster and one small cluster of poor performers, and K-median 

clustering provided a solution whereby the two clusters were differentiated primarily based 

on the three most discriminating test items. In light of its performance in both the simulation 

experiments and the application to real data, our key recommendation is that researchers 

give serious consideration to the use of K-median clustering when analyzing dichotomous 

data.

Formal descriptions of the LCM, K-means, and K-median clustering methods are provided 

in the next section. Subsequent sections report the results for the implementation of these 

methods in two simulation studies, as well as for the transitive reasoning data. The paper 

concludes with a brief summary and suggestions for future research.

Methods

The Latent Class Model (LCM)

The latent class model (LCM) is a finite mixture model originally developed to explain the 

structure of a set of multivariate dichotomous data (Lazarsfeld, 1950; Lazarsfeld & Henry, 

1968). As noted in the introduction, the term ‘latent class clustering’ is now sometimes used 

more broadly to refer to other types of model-based clustering (Eshghi et al., 2011; 

Magidson & Vermunt, 2002). However, our focus here is limited to the original formulation 

in the case of dichotomous measures. There are a number of thorough treatments of the 

original formulation of the LCM and its extensions (Bartholomew & Knott, 1999; 

McCutcheon, 1987; McLachlan & Peel, 2000; Vermunt & Magidson, 2005a).

To facilitate the description of the LCM, we define xi = [xij] as the vector of observed 

measurements for object i on the V dichotomous variables (1 ≤ i ≤ N and 1 ≤ j ≤ V), where 

xij may take values from the set {0, 1}. The parameters estimated by the model are contained 

in the set Θ = {λ, Π}. The vector λ = [λk] consists of the K class membership probabilities, 

where λk is the probability that any given object belongs to class k (for 1 ≤ k ≤ K). The class 

probabilities are constrained to sum to unity (i.e., ∑
k = 1

K
λk = 1). The matrix Π = [πjk] contains 
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the probabilities of a positive measurement (i.e., a value of 1) for each variable j from class 

k. Given these definitions, the LCM is:

f (xi |Θ) = ∑
k = 1

K
λk ∏

j = 1

V
π jk

xi j(1 − π jk)
1 − xi j, (1)

The posterior probability that an object i with measurements xi belongs to class k is 

computed as follows:

f (k | xi, Θ) =
λk ∏

j = 1

V
π jk

xi j(1 − π jk)
1 − xi j

f (xi |Θ) , for1 ≤ k ≤ K . (2)

The likelihood function for the LCM is computed across all observations as follows:

L = ∏
i = 1

N
∑

k = 1

K
λk ∏

j = 1

V
π jk

xi j(1 − π jk)
1 − xi j ; (3)

however, for model estimation purposes, it is common to work with the log-likelihood 

function:

log(L) = ∑
i = 1

N
log ∑

k = 1

K
λk ∏

j = 1

V
π jk

xi j(1 − π jk)
1 − xi j . (4)

The estimation of the model parameters for Equation (4), subject to the constraint on the 

sum of the cluster membership probabilities, is accomplished via maximum likelihood 

methods available in software packages such as Mplus (Muthén & Muthén, 1998-2012), 

Latent Gold (Vermunt & Magidson, 2005b), and the R programming libraries polka (Linzer 

& Lewis, 2011), e1071 (Dimitriadou, Hornik, Leisch, Meyer, & Weingessel, 2014), and 

BayesLCA (White & Murphy, 2014). Herein, estimation was completed using a Matlab 

(MathWorks, Inc., 2005) implementation of the expectation-maximization (EM) algorithm 

(Dempster, Laird, & Rubin, 1977). This facilitated the simulation-based comparison with 

competing methods, which were also implemented in Matlab.

The EM algorithm for LCM assumes that a value of K is supplied as input. In our first 

simulation experiment, the LCM was implemented using the correct (or true) value of K for 

each underlying test problem. The algorithm was restarted 20 times using different random 

partitions to initialize the algorithm for each restart. The restart producing the maximum 

value of log(L) was stored as the best solution. Cluster assignments were established by 

assigning each case to the cluster for which its class posterior probability (see Equation 2) 
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was largest, which is the typical practice in mixture model clustering (Steinley & Brusco, 

2011a).

In the second experiment, the value of K was assumed to be unknown and was determined 

as part of the clustering process. Specifically, five restarts of the EM-algorithm were applied 

for each number of clusters on the interval 2 ≤ K ≤ 8. The restart producing the maximum 

value of the log-likelihood function was identified and this value (and its corresponding 

solution) was stored for each value of K on the interval 2 ≤ K ≤ 8. The value of the log-

likelihood function, log(L), generally increases as K increases, but at the expense of a 

greater number of model parameters. Therefore, the selection of the best value of K requires 

the use of information criteria that incorporate both log(L) and the number of estimated 

model parameters in their computation. The total number of parameters in Θ is KV + K, 

where KV is the number of parameters in Π and K is the number of cluster membership 

proportions. However, in light of the constraint that the proportions must sum to one, there 

are only K-1 proportions that actually require estimation.

Three distinct information criteria were evaluated for selecting the best value of K. The first 

two criteria were based on Akaike’s (1973) information criterion (AIC). For a given penalty 

parameter (ρ) and number of clusters (K), the AIC is computed as follows:

AIC(ρ, K) = − 2log(L) + ρ KV + K − 1 . (5)

The first version of the AIC (AIC2) corresponds to the original penalty of parameter of ρ = 

2. However, in light of the excellent performance of ρ = 3 in other clustering contexts 

(Andrews & Currim, 2003a, 2003b), we consider the AIC with this penalty parameter 

(AIC3) for the second version. The third criterion that we considered was Schwartz’ (1978) 

Bayesian information criterion (BIC), which is computed as follows:

BIC(K) = − 2log(L) + log(N) KV + K − 1 . (6)

For each of the three criteria (AIC2, AIC3, or BIC), the goal of the model selection process 

is to identify the value of K that minimizes Equation (5) or (6) as appropriate. To understand 

the tradeoffs associated with seeking the value of K that produces the minimum value for 

each of the information criteria, it is helpful to observe that the first term, −2log(L), in 

Equations 5 and 6 will generally decrease as K increases because log(L) generally increases 

as K increases. However, the second terms in Equations 5 and 6 clearly increase as a 

function of K and are, effectively, the penalties incurred for using more parameters.

K-means Partitioning

The K-means algorithm seeks to find a partition that minimizes the sum, across all objects, 

of the squared Euclidean distances of each object to the centroid of the cluster to which it is 

assigned. Hereafter, this measure is referred to as SSE. Denoting P = {C1, …,CK} as a 

partition of the N objects into K clusters, where Ck contains the set of objects assigned to 

cluster k, the SSE is computed as follows:
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SSE = ∑
k = 1

K
∑

i ∈ Ck

∑
j = 1

V
xi j − x jk

 2, (7)

where x jk is the mean for variable j of the objects assigned to cluster k.

As noted by Brusco and Steinley (2007b), there is a variety of different algorithmic 

implementations of K-means clustering (Forgy, 1965; Hartigan & Wong, 1979; Jancey, 

1966; MacQueen, 1967; Steinhaus, 1956). In this paper, we use an implementation known as 

HK-means (Hansen & Mladenović, 2001), which was particularly effective in the 

comparative study performed by Brusco and Steinley (2007b). The steps of the HK-means 

algorithm are as follows:

1. Randomly assign the objects to obtain a K-cluster partition.

2. Compute the cluster centroids.

3. Assign each object to the cluster corresponding to its nearest centroid.

4. Repeat steps 2 and 3 until convergence (i.e., no objects change membership at 

Step 3).

5. Consider each object in turn with respect to relocation from its current cluster to 

one of the other K-1 clusters. Any relocation that reduces SSE should be 

accepted.

6. Repeat Step 5 until no relocation of an object will further reduce SSE.

Steps 1 through 4 are often used to characterize the K-means algorithm (Chiu et al., 2009; 

Steinley, 2003), although others refer to these steps as H-means (Hansen & Mladenović, 

2001; Späth, 1980).2 It is important to recognize that completion of Step 4 does not 

guarantee a solution that is locally-optimal with respect to all possible relocations of an 

object from its current cluster to one of the other clusters. Completion of Steps 5 and 6 does 

afford such a guarantee of local optimality and commonly improves the SSE measure 

produced after Step 4. Nevertheless, a global optimum is not assured. Multiple restarts of the 

K-means algorithm using different random initial partitions can help mitigate the chances of 

a poor local optimum (Steinley, 2003; Steinley & Brusco, 2007). Alternatively, 

metaheuristics such as tabu search, genetic algorithms, variable neighborhood search, and 

simulated annealing can be used in lieu of multiple restarts of the K-means heuristic. 

However, simulation results reported by Brusco and Steinley (2007b) indicate that HK-

means generally performed as well or better than most metaheuristics when there were 10 or 

fewer clusters.

2Steps 1-4 are typically what is used to define the K-means algorithm (Bock, 2007; Steinley, 2003, 2006); however, not all authors 
adopt this terminology. Hartigan (1975), Späth (1980), Hansen and Mladenović (2001) and others use K-means to refer to the process 
of Steps 5-6. The latter two of these sources refer to Steps 1-4 as H-means. Following Hansen and Mladenović, we integrate Steps 1-4 
with 5-6 and refer to the entire procedure as HK-means.
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Like the EM algorithm for the LCM, K-means procedures require a pre-specified value of K. 

For the first simulation study, the K-means algorithm is supplied with the correct value of K. 

For the second experiment, we select the value of K based on the Calinski-Harabasz (CH: 

1974) pseudo-F statistic.3 Although many other methods for selection of K are possible (see 

Dimitriadou et al., 2002; Steinley & Brusco, 2011b), the CH measure has performed well in 

previous simulation experiments (Milligan & Cooper, 1985; Steinley & Brusco, 2011a). The 

CH index is computed as follows:

CH(K) = SST − SSE(K) /(K − 1)
SSE(K)/(N − K) , (8)

where SSE(K) is the value of Equation 7 for K clusters and SST is computed as:

SST = ∑
i = 1

N
∑
j = 1

V
xi j − x j

 2, (9)

and x j is the mean for variable j across all N objects. The selected value of K is the one for 

which CH(K) is maximized.

K-median Partitioning

The K-median partitioning problem requires the selection of exactly K objects (often called 

exemplars) to serve as cluster centers and the assignment of each object to its nearest 

exemplar, with the goal of minimizing the sum of the distances of the objects to the 

exemplars. Denoting E(k) as the exemplar object for cluster k, the criterion function for the 

K-median problem is as follows:

SSKmed = ∑
k = 1

K
∑

i ∈ Ck

∑
j = 1

V
xi j − xE(k) j

 2, (10)

A comparison of SSE in Equation (7) and SSKmed (10) helps to clarify the distinction 

between K-means and K-median clustering. The SSE measures, for each variable, distances 

between each object and the cluster means (i.e., x jk). By contrast, SSKmed measures, for 

each variable, distances between each object and its cluster exemplar (i.e., xE(k)j).

In this paper, we use the multistart fast interchange procedure (see Brusco & Köhn, 2008a, 

2009; Köhn, Steinley, & Brusco, 2010) that seeks to obtain solutions that minimize 

SSKmed. This method is based on the pioneering work of Teitz and Bart (1968), Whitaker 

(1983), and Hansen and Mladenović (1997). The procedure consists of the following steps:

1. Randomly select K objects to serve as exemplars.

3We also tested the method of Ratkowsky and Lance (1978), which performed best in the Dimitriadou et al. (2002) study, however, it 
was less effective than CH at choosing the correct number of clusters.
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2. Assign each object to the cluster corresponding to its nearest exemplar.

3. Consider each exemplar in turn with respect to its replacement with one of the 

objects not selected as an exemplar. Any replacement that reduces the sum of the 

distances of the objects to their exemplars should be accepted.

4. Repeat Step 3 until no replacement of an exemplar will further reduce SSKmed.

Completion of Step 4 guarantees a solution that is locally-optimal with respect to all 

possible replacements of an exemplar with an object not currently selected as an exemplar. 

However, like the K-means heuristic, the resulting solution is not guaranteed to be globally-

optimal. Therefore, multiple restarts of the algorithm are advised. Hansen and Mladenović 

(1997) indicated that the multiple restart approach was generally effective for problems 

where K < 50 (see also Brusco & Köhn. 2009). Given the relatively small number of clusters 

associated with our analyses (K ≤ 6), we confidently used the multiple restart approach and 

followed the practice of Brusco and Köhn (2008a) by using 20 restarts for the results 

obtained herein. As is the case for K-means clustering, when K exceeds 10, we recommend 

the use of metaheuristics for K-median clustering (see Mladenović, Brimberg, Hansen, & 

Moreno-Pérez, 2007 for a review).

For instances where the number of clusters was not pre-specified, we used the following rule 

based on maximum ratio of percentage changes (MRPC) in SSKmed on the left and right, 

which is computed for K clusters as follows:

MRPC(K) = SSKmed(K − 1) − SSKmed(K) /SSKmed(K − 1)
SSKmed(K) − SSKmed(K + 1) /SSKmed(K) , (11)

where SSKmed(K) is the value of Equation (10) for K clusters.4 If MRPC(K) is large, that 

means that the percentage change going from K – 1 clusters to K clusters is large relative to 

the percentage change going from K to K + 1 clusters and, accordingly, K is judged to be a 

good stopping point for the number of clusters. The motivation for the MRPC index dates 

back (at least) to the work of Hansen and Delattre (1978), who used a similar index within 

the context of minimum diameter partitioning (see also Brusco & Cradit, 2004). More 

recently, Ceulemans and Van Mechelen (2005) found that ratio rules such as MRPC 

generally performed well within the context of hierarchical classes models, and their use in 

the context of multi-mode clustering is particularly common (Schepers, Ceulemans, & Van 

Mechelen, 2008; Schepers & Van Mechelen, 2011; Wilderjans, Ceulemans, & Meers, 2013).

Methods Not Included in the Comparisons

It should be recognized that LCM, K-means, and K-median clustering methods are not the 

only possible methods that can be used for clustering dichotomous data. Among the other 

possible methods are clique partitioning (Brusco & Köhn, 2009b), SEGWAY (Krieger & 

Green, 1999), and artificial neural networks (ANNs: McCulloch & Pitts, 1943). Andrews, 

Brusco, and Currim (2010) compared the recovery performances of latent class modeling 

4We also tested the silhouette index (Kaufman & Rousseeuw, 2005), however it was far less effective than MRPC at choosing the 
correct number of clusters.
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approach, clique partitioning, and SEGWAY within the context of finding consensus 

partitions. The latent class approach provided the best recovery in their study. This fact, in 

conjunction with greater scalability and accessibility of latent class clustering software, 

contributed to our decision to exclude clique partitioning and SEGWAY from consideration.

Du (2010) provides a thorough review of ANN approaches to clustering. There are several 

categories of ANNs, such as the self-organizing map (SOM: Kohonen, 1982), learning 

vector quantization (LVQ: Kohonen, 1990), and adaptive resonance theory (ART; Grossberg, 

1976), as well as multiple versions of methods within each of these categories. One reason 

that we excluded ANNs from our simulation analyses is that several previous comparisons in 

the context of continuous clustering variables have shown that K-means and K-median 

clustering generally provide better recovery of cluster structure than ANNs. For example, a 

simulation comparison reported by Balakrishnan, Cooper, Jacob, and Lewis (1994) found 

that K-means clustering outperformed the SOM with respect to cluster recovery. A 

subsequent study comparing the SOM and K-means was conducted by Mingoti and Lima 

(2006) and supported the Balakrishnan et al. (1994) findings. Balakrishnan, Cooper, Jacob, 

and Lewis (1996) also report the results of a study showing that K-means provided better 

recovery than an alternative type of ANN that used frequency-sensitive competitive learning. 

One of the newest and most popular clustering methods is affinity propagation (Frey & 

Dueck, 2007); however, results reported by Brusco and Köhn (2008a, 2009a) suggest that 

the K-median method typically provides better values of the criterion function that affinity 

propagation seeks to optimize.

Another significant factor in our decision not to include ANNs in the comparative study is 

the lack of a definitive model that would be best for neural clustering based on dichotomous 

measures. Kohonen’s (1982) SOM was originally designed for clustering based on 

continuous variables; however, some efforts have been made to adapt the method for 

dichotomous data (Lebbah, Bennani, & Rogovschi, 2008; Lebbah, Thiria, & Badran, 2000; 

Leisch, Weingessel, & Dimitriadou, 1998). The ART1 neural clustering procedure 

(Carpenter & Grossberg, 1987) is also designed explicitly for dichotomous data, and Du 

(2010, p. 93) provides a list of several ART1-type clustering algorithms. Unfortunately, there 

do not appear to be any thorough, simulation-based comparisons of the variety of neural 

models available for dichotomous data. Therefore, unlike K-means, K-median, and LCM, 

where the appropriate clustering criterion is definitive, the appropriate neural modeling 

criterion is unknown.

To summarize, we deemed it appropriate to focus our comparison on the two most 

accessible and popular methods (LCM and K-means) for clustering dichotomous data, plus 

one additional method that is closely related to K-means and has been touted as effective for 

dichotomous data. This focus also enabled us to use a larger number of design feature levels, 

a larger number of cell replicates, and a more generous implementation of the three methods 

than would have been possible if a large number of methods had been included.
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Simulation I

Experimental Design Features

Five experimental design features were manipulated to generate the datasets for the first 

simulation experiment. These between dataset features were:

1. The sample size (levels of N = 100, N = 200, N = 400)

2. The number of latent classes/clusters (levels of K = 2, K = 3, K = 4, K = 5, and K 
= 6).

3. The number of clustering variables (levels of V = 6, V = 9, and V = 12)

4. The cluster membership probabilities (levels of λk = 1/K for 1 ≤ k ≤ K (equal), 

λ1 = .6 with λk = .4 / (K – 1) for 2 ≤ k ≤ K, and λ1 = .1 with λk = .9 / (K – 1) for 

2 ≤ k ≤ K)

5. The level of error in the cluster structure (ε = 5%, ε = 10%, and ε = 15%).

The selection of the design feature levels is based on an amalgamation of simulation studies 

from the literature. For example, Steinley (2003) used N = 300 is his simulation study, and 

two of our selected levels (N = 200 and N = 400) surround this value. The other level of N = 

100 was added to capture the important instance of small sample sizes. Dimitriadou et al. 

(2002) used settings of 4 ≤ K ≤ 6 in their simulation study; however, we augmented these 

settings with the levels of K = 2 and K = 3 because they are fairly common in practice. The 

levels for the number of variables are comparable to those used in recent simulation studies 

(Dimitriadou et al., 2002; Steinley & Brusco, 2011a). The cluster membership probabilities 

are based on the three classic settings for relative cluster sizes (often referred to as cluster 

density) originally devised by Milligan (1980). The most challenging parameter settings to 

establish are those for the perturbation parameter, ε. In a perfectly structured dataset, all 

objects in any given cluster, k, have exactly the same patterning of zeros and ones across the 

V variables. For each element in the data matrix, X, the value of xij is changed from 0 to 1 

(or 1 to 0) with probability ε. Accordingly, the structure in the dataset is degraded as ε is 

increased. The challenge is to choose levels for ε that are small enough to preserve structure 

in the data, but large enough to differentiate performance among the methods.5 A full-

factorial design associated with each of these six design features produced 5 × 34 = 405 

cells. Twenty datasets were generated for each cell (i.e., 20 replicates per cell), resulting in 

8100 unique datasets.

The data generation process was based largely on the methods described by Brusco (2004) 

and, especially, Dimitriadou et al. (2002). The set of baseline patterns are shown in Table 1. 

The pattern corresponding to V = 12 and K = 6 was taken from Dimitriadou et al. (2002, p. 

138) and provided the foundation for the development of the other patterns in the table. The 

within dataset design feature was the clustering method, which consisted of levels 

corresponding to the LCM, K-means, and K-median procedures.

5Although phrased in a slightly different way, the study by Dimitriadou et al. (2002) used error levels of 10%, 20%, and 30%. We 
experimented with these levels but found them to be far too deleterious to cluster recovery on average. Our original experiments were 
with levels of 2%, 4%, and 6%, but these yielded very high ARI’s for all methods.
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Implementation Issues

The LCM, K-means, and K-median procedures were written as Matlab (MathWorks, Inc., 

2005) m-files. All computational results were obtained by implementing these programs on 

a microcomputer using an Intel 3.4 GHz processor and 8GB of RAM. In the first simulation 

study, the EM-algorithm for the LCM, K-means heuristic, and K-median heuristic were 

implemented assuming the correct number of clusters for each dataset. The EM algorithm 

and K-median heuristic were limited to 20 restarts. The K-means heuristic was allotted 5000 

restarts based on the recommendation of Steinley (2003).

The key performance measure for Simulation I is the adjusted Rand index (ARI: Hubert & 

Arabie, 1985; Steinley, 2004), which quantifies the agreement between two partitions. The 

ARI between two partitions (1 and 2) is computed as follows (see Brusco, 2004):

ARI =
H(τ1 + τ2) − [(τ1 + τ3)(τ1 + τ4) + (τ2 + τ3)(τ2 + τ4)]

H2 − [(τ1 + τ3)(τ1 + τ4) + (τ2 + τ3)(τ2 + τ4)]
. (12)

where, H = N(N-1)/2, τ1 is the number of object pairs in the same cluster in both partitions, 

τ2 is the number of object pairs in different clusters in partition 1 and partition 2, τ3 is the 

number of object pairs in the same cluster in partition 1 but different clusters in partition 2, 

and τ4 is the number of object pairs in the same cluster in partition 2 but different clusters in 

partition 1. The ARI assumes a value of 1 for perfect agreement, and is 0 for chance 

agreement.

For each of the 8100 test problems and each of the three clustering methods, the ARI is 

computed between the partition obtained by the method and the correct (or true) cluster 

memberships associated with the test problem. Steinley (2004, p. 392) has provided some 

guidelines for interpreting ARI values in simulation experiments, with thresholds of 0.90, 

0.80, and 0.65 provided for excellent, good, and fair recovery, respectively. Values of the 

ARI below 0.65 are judged to be poor.

Results

Across the 8100 test problems, the average ARI values for the K-median, LCM, and K-

means methods were .8367, .8317, and .8173, respectively. This order of performance was 

consistent for the criterion corresponding to the number of times each method produced the 

best ARI value. Defining, for each test problem, ARI* as the best ARI across the three 

methods, the K-median, LCM, and K-means procedures matched ARI* for, respectively, 

57%, 51%, and 42% of the 8100 problems.

A repeated measures analysis-of-variance (ANOVA) was used to analyze the ARI results 

(see Brusco, 2004; Steinley, 2006b; Steinley & Brusco, 2008). The within datasets design 

feature was clustering method, with the three levels corresponding to the LCM, K-means, 

and K-median methods. The between datasets features were N, K, V, λk, and ε. Given the 

large number of datasets used in the simulation, it is expected that most main effects and 

almost all interactions will be significant; consequently, Table 2 reports effect sizes ( η2) for 
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each of the design features. Although all higher-order interactions in the full-factorial design 

were estimated, consistent with Steinley and Brusco (2008), specific interactions are 

displayed in Table 2 only if they account for at least 1% of the variance (i.e., η2≥ .01).

The largest effect sizes were observed for the between datasets main effects of V ( η2= .

3308) and ε ( η2= .3307). The main effect of K ( η2= .1228) also accounted for a large 

portion of the variance. The main effects for the sample size (N) and cluster membership 

probability (λk) did not exceed the 1% cut-off that is commonly used in these types of 

studies. Table 3 reports the means at each level of all of the design features, which 

correspond to the main effects. As can be seen, the biggest changes in mean levels align with 

the largest effects seen in the repeated measures ANOVA (in terms of η2). The general 

takeaway being that, regardless of method, it is more difficult to accurately recover groups 

when there are a large number of clusters and a higher degree of error; however, having 

more variables helps with cluster recovery.

In addition to the between datasets main effects, there were three two-way interactions that 

had η2≥ .01. The number of clusters by number of variables interaction reflected a sharper 

decrease in recovery when moving from K = 2 to K = 6 for fewer variables than in the 

presence of more variables (e.g., the change in ARI from K = 2 to K = 6 was .28 for V = 6; 

however, it was only .05 when V = 12). The second largest interaction in terms of effect size 

was the interaction between number of clusters and the probability of cluster membership, 

with the interaction being driven by a greater difficulty in accurately recovering the true 

cluster structure when there was one large cluster and several smaller clusters. The final two-

way interaction with η2≥ .01 was the number of clusters by the error level, where the 

interaction is driven by the greater drop in recovery experienced when ε = .15 (change of .

22 when moving from K = 2 to K = 6) versus ε = .05 (change of .09 when moving from K = 

2 to K = 6).

For the within datasets features, the cluster method was significant and accounted for 

approximately three percent of the variation. All of the two way interactions involving the 

clustering method design had modest effect sizes; however, the three-way interaction 

corresponding to method × K × λk ( η2= .0801) had the strongest effect of all three-way 

interactions. This interaction exhibited the same properties as described above for the two-

way between-datasets interaction (K × λk), with the addition that K-means clustering was 

the most resilient method when the number of clusters increased and probability of cluster 

membership was equal, while also being the most vulnerable with increasing numbers of 

clusters and one large cluster and several smaller clusters – a finding consistent with other 

studies investigating K-means clustering (see, for instance, Steinley, 2006b).

Further inspection of Table 3, reveals perhaps the most striking aspect of the table involves 

the comparison of the two non-model-based methods: K-means and K-median. The K-

median clustering method yielded a better average ARI than K-means for all levels of all 

design features. Most notably, the degree of superiority of the K-median method generally 

increased as the number of clusters increased and as the error level increased. Moreover, 
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there was a marked superiority of the K-median method at the 60% and 10% levels for 

relative cluster size.

The LCM and K-median approaches were competitive, and relative performance tended to 

be influenced by the levels of the design features. The K-median method yielded better 

recovery for N = 100 observations (ARILCM = .8133, ARIKmed = .8309) and N = 200 

observations (ARILCM = .8339, ARIKmed = .8366); however, LCM was superior for N = 400 

observations (ARILCM = .8480, ARIKmed = .8426). Thus, whereas LCM recovery improves 

as sample size increases, K-median recovery is not as strongly influenced by the increase in 

N.

The results also show that the K-median method systematically improved relative to LCM 

over the range of the number of clusters (2 ≤ K ≤ 6). Although LCM yielded better average 

recovery for 2 ≤ K ≤ 3, K-median clustering was superior for the three largest levels for the 

number of clusters (K = 4, K = 5 and K = 6). Moreover, by K = 6, K-median clustering was 

appreciably better (ARILCM = .7373, ARIKmed = .7631). In the presence of only V = 6 

clustering variables, LCM provided better average recovery than K-median clustering 

(ARILCM = .7146, ARIKmed = .6989), whereas the K-median approach was superior at K = 9 

(ARILCM = .8559, ARIKmed = .8807) and K =12 (ARILCM = .9247, ARIKmed = .9305). The 

K-median clustering method generated a larger average ARI when cluster sizes were equal 

(ARILCM = .8319, ARIKmed = .8441) and at the 60% cluster density condition (ARILCM = .

8332, ARIKmed = .8381); however, LCM was better at the 10% condition (ARILCM = .8300, 

ARIKmed = .8280). Finally, K-median clustering provided better average recovery than LCM 

at all three error levels. The strongest advantage of K-median clustering was observed at the 

lowest level corresponding to 5% error (ARILCM = .9347, ARIKmed = .9416), whereas the 

performances were closer at the 10% (ARILCM = .8485, ARIKmed = .8512), and 15% 

(ARILCM = .7119, ARIKmed = .7173) levels of error.

Table 4 provides a comparison of the three methods on two secondary measures of 

performance: (i) attraction rate, and (ii) computation time. The attraction rate is the 

percentage of restarts for which each algorithm obtained its best-found solution. For 

example, if the K-median heuristic obtained the same minimum value of Equation (10) for 

15 of its 20 restarts for a given dataset, then its attraction rate for that dataset would be 75%. 

Table 4 shows that, across all 8100 test problems, the average attraction rates for the K-

median, LCM, and K-means methods were 89%, 57%, and 34%, respectively. It is also 

evident from Table 4 that the attraction rate of the K-median method is somewhat less 

sensitive to parameter settings than the other methods. Moreover, the average attraction rate 

for the K-median method is larger than that of its competitors for all levels of all design 

features, with one exception: the average attraction rate of 96% for LCM is slightly greater 

than the 93% attraction rate for the K-median method at K = 2.

We acknowledge that computation times are affected by hardware and software 

considerations, as well as our decisions for the number of restarts; however, some 

examination of the differences among the methods is noteworthy. Across all 8100 test 

problems, the average computation times for the K-median, LCM, and K-means methods 

were .31, .89, and 80.89 seconds, respectively. The average K-means time is appreciably 
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greater because of its much greater number of restarts. Although the difference between the 

average K-median and LCM computation times is small in an absolute sense, this should not 

obscure the fact that the average computation time for LCM is nearly three times greater 

than that of the K-median method.

It is especially interesting to observe that the rank order of the three methods from best-to-

worst in terms of ARI and attraction rate is identical to the rank ordering of the methods 

from least-to-greatest in terms of computation time. For example, the K-median method 

yielded the largest average ARI, the largest average attraction rate, and the smallest average 

computation time. The LCM is second on all three of these measures, and the K-means 

method is third.

Simulation II

Motivation for the Second Simulation Study

Simulation I compared the relative performance of the three methods under the assumption 

that the correct number of clusters is known. However, in most applications, the correct 

number of clusters is unknown. For this reason, following the work of Steinley and Brusco 

(2011a), we conducted a second simulation study (Simulation II) to compare the methods 

when the number of clusters is assumed unknown. Accordingly, Simulation II was designed 

to assess the cluster recovery performances of the three methods when used in conjunction 

with an appropriate rule for choosing the number of clusters.

Experimental Design Features

The between dataset experimental design features and test problems for Simulation II were 

identical to those from Simulation I. The within dataset design feature was expanded to 

include different combinations of methods with different rules for choosing the number of 

clusters.6 The seven combinations were: (i) LCM using AIC with penalty parameter ρ = 2; 

(ii) LCM using AIC with penalty parameter ρ = 3; (iii) LCM using BIC; (iv) K-means using 

CH; (v) K-means using AIC3; (vi) K-median using MRPC; and (vii) K-median using AIC3.

Implementation Issues

Simulation II was conducted using the same hardware and software platform as Simulation 

I. The LCM algorithm was implemented for 2 ≤ K ≤ 8 clusters, using five restarts for each 

value of K. The partition maximizing the log-likelihood across all restarts was obtained for 

each value of K, and the selection of K using AIC2, AIC3, or BIC was made accordingly. 

The K-means algorithm was also run for 2 ≤ K ≤ 8 clusters, using 100 restarts for each value 

of K. The CH measure was used to choose the number of clusters for the K-means_CH 

combination. Because the CH measure is undefined for K = 1, all methods in the comparison 

were required to select two or more clusters and, therefore, underestimation of the number 

6It is important to acknowledge that Simulation I provides a purer test of the LCM, K-means, and K-median approaches because they 
are each supplied with the true number of clusters. Contrastingly, Simulation II is simultaneously evaluating the efficacy of the 
clustering method and the criterion used for selecting the number of clusters. To help disentangle whether it is the method or the 
criterion for choosing K that leads to superior performance, we also report results for K-means and K-median clustering using AIC3. 
Admittedly, these results must be viewed as hybrid approaches because LCM was used to produce the AIC3.
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of clusters at the K = 2 design feature level was not possible in the simulation. For the K-
means_AIC3 combination, the value of K for the K-means algorithm was made based on the 

LCM_AIC3 result. Similarly, the LCM_AIC3 results were used to select K for the K-
median_AIC3 combination. Finally, for the K-median_MRPC combination, 10 restarts of 

the K-median heuristic were run for 2 ≤ K ≤ 9 clusters and the MRPC criterion was used to 

choose K. The nine-cluster solution was obtained for the K-median method because it is 

needed to compute the MRPC criterion for K = 8. Thus, to ensure that all three methods 

could select anywhere from 2 ≤ K ≤ 8 clusters, it was necessary to have the K = 9 result for 

the K-median method.

The LCM_AIC2, LCM_AIC3, and LCM_BIC methods use model-based clustering 

procedures and an information criterion to choose the number of clusters. The K-means_CH 

and K-median_MRPC use a non-model-based clustering procedure and a heuristic to choose 

the number of clusters. The K-means_AIC3 and K-median_AIC3 combinations, however, 

are hybrid methods. They use the model-based clustering procedure (LCM) with AIC3 to 

choose K, but then use a non-model-based clustering method with the selected K to obtain 

the partition.

Like Simulation I, the primary performance measure for Simulation II is the adjusted Rand 

index. For each of the 8100 test problems and each of the seven combinations of clustering 

method and criterion for choosing K, the ARI is computed between for the partition obtained 

by the method and the correct (or true) cluster memberships associated with the test 

problem. A secondary performance measure pertains to the precision of recovery of the true 

number of clusters in the dataset. For each of the LCM_AIC2, LCM_AIC3, LCM_BIC, K-
means_CH, and K-median_MRPC methods, precision is actually defined based on three 

related sub-measures: (i) the hit-ratio, which is the percentage of test problems for which the 

correct number of clusters was obtained, (ii) the bias, which is the average of the raw 

differences between the correct (or true) number of clusters and the number of clusters 

selected by the method, and (iii) the mean-absolute-deviation (MAD), which is the average 

of the absolute differences between the correct(or true) number of clusters and the number of 

clusters selected by the method. The MAD and bias are measures, respectively, of the 

average magnitude and direction of error.

Results

A repeated measures ANOVA was conducted using the seven combinations of clustering 

method and K selection rule as the levels of the within datasets design feature. The between 

datasets design features were the same as those in Simulation I. The patterns of between 

datasets effect sizes were identical to those displayed in Table 2; furthermore, the 

magnitudes of the effect sizes were almost identical as well (for instance, η2for the number 

of clusters was .1542 versus the .1228 found in Simulation I). Similar results are seen for the 

within datasets effect sizes, where both the patterning and magnitude correspond closely to 

what was seen in Simulation I. The sole exception is the much larger effect size for 

clustering method ( η2= .1603), an effect that can be attributed to the across the board ARI 

performance of K-means_CH.
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Table 5 reports the average ARI values for each level of each of the design features for all 

combinations of clustering methods and criteria for choosing K. We begin with a 

comparison of the different information criteria used in conjunction with LCM. Across all 

8100 datasets, the average recovery measures associated with the AIC3, BIC, and AIC2 

criteria were ARILCM_AIC3 = .8260, ARILCM_BIC = .8115, and ARILCM_AIC2 = .8107, 

respectively. The AIC3 yielded better average recovery than AIC2 for all levels of all design 

features with the exception of V = 6. The AIC3 also yielded better average recovery than 

BIC for all levels of all design features with the exception of N = 400 (where the two 

criterion were tied) and K = 2.

Relative to the LCM approaches, the overall average recovery performance of K-means_CH 

(ARIKmeans_CH = .7188) was poor; however, the performance of K-means_AIC3 

(ARIKmeans_AIC3 = .8147) was much more competitive with the LCM versions. The K-

median procedure performed reasonably well using MRPC (ARIKmedian_MRPC = .7952). 

However, the K-median approach was the top performing method overall with respect to 

average ARI when using LCM in conjunction with AIC3 to select its number of clusters 

(ARIKmedian_AIC3 = .8288). It is also encouraging to recognize that this level of average 

recovery differs by less than .01 from the average ARI of .8367 that was realized for the K-

median method in Simulation I, where the number of clusters was assumed known.

Tables 6, 7, and 8 summarize the precision performance for all combinations of clustering 

methods and criteria for choosing K. Table 6 reports, both overall and for each level of each 

of the design features, the hit-ratio measures, which correspond to the percentage of datasets 

for which the correct number of datasets was identified. Table 7 reports the average 

differences between the correct number of clusters and the number selected by the method, 

which is a measure of the bias of the method (i.e., the propensity for too many or too few 

clusters). Table 8 is similar to Table 7, except that it corresponds to the MAD measures, 

which are averages of absolute differences.

Collectively, Tables 6, 7, and 8 reveal that the use of LCM with the AIC3 criterion yielded 

the greatest level of precision. Table 6 shows that, across all 8100 datasets, the LCM_AIC3, 

LCM_AIC2, and LCM_BIC methods yielded the correct number of clusters for 80%, 74%, 

and 68% of the test problems, respectively. The K-median_MRPC method also performed 

well on this measure, providing the correct number of clusters 76% of the time, while the K-

means_CH method performed the worst, only estimating the correct number of clusters 49% 

of the time – a performance so much worse than the competing methods that it can be 

dropped from consideration for the remainder of the discussion regarding Simulation II. The 

LCM using AIC3 also yielded the smallest average deviation between the correct number of 

clusters and the number selected by the method. Table 8 reveals that the average MAD 
values for LCM_AIC3, LCM_AIC2, and LCM_BIC were 0.31, 0.33, and 0.58, respectively. 

The K-median_MRPC method yielded an average MAD of 0.65. Table 7 shows that, across 

all 8100 datasets, the bias of 0.55 and 0.61 for LCM_BIC and K-median_MRPC, 

respectively, were very similar to their respective MAD values of 0.58 and 0.65. This 

suggests that the bias of these two methods is toward underestimation of the correct number 

of clusters. The LCM_AIC3 approach also has a propensity for underestimation, but to a 
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lesser degree, with an average bias of 0.23. By contrast, LCM_AIC2 has a near zero average 

bias of −0.07, which suggests that it overestimates the number of clusters on average.

Final Caveat Regarding Design Features—The design feature settings for the number 

of objects (N), number of clusters (K), number of variables (V), and the relative densities/

sizes of the clusters are easily controllable and facilitate the assessment of methods over a 

range of conditions that might be encountered in practice. By contrast, the design feature 

corresponding to error is tricky. If not enough error is introduced, then there is an inability to 

differentiate among methods because recovery of the correct underlying cluster structure is 

too easy. However, if too much error is introduced, then the issue of recovery becomes 

thorny as there might actually no longer be a ‘correct’ cluster structure preserved in the data 

and, therefore, the relative ARI’s of the methods effectively become meaningless.7

In Simulation I, the average ARI (across all three methods) at the 5% error condition was .

9380, whereas the average at the 15% error condition was .7050. It could be argued that, at 

the 15% error level condition, the measurement of cluster recovery is becoming tenuous 

because of the severe degradation in the structure of the clusters. By similar logic, it might 

be appropriate to consider the results at the 5% error condition as the most reflective of 

relative performance because of the greatest degree of preservation of a correct cluster 

structure to be recovered. From this perspective, the clear ‘winner’ in Simulation I is the K-

median method, and the methods using AIC3 were the top performers in Simulation II. At 

the 5% error level in Simulation I, the average ARI’s for the K-median, K-means, and LCM 

methods were .9416, .9364, and .9347, respectively. Likewise, in Simulation II, the average 

ARI’s for K-median_AIC3, K-means_AIC3, LCM_AIC3, LCM_BIC, LCM_AIC2, K-

median_MRPC, and K-means_CH, were .9317, .9287, .9270, .9243, .9211, .9191, and .

9084, respectively.

An Example: Transitive Reasoning

The Data

We consider an example corresponding to measurements for N = 425 schoolchildren on V = 

12 dichotomous variables. The data were originally collected and studied by Verweij et al. 

(1996) and are available in the mokken package in R (Van der Ark, 2007, 2012). The 12 

dichotomous items pertain to transitive reasoning problems that were presented to the 

children. Specifically, the children were posed with transitivity problems associated with a 

stimulus set consisting of either three {A, B, C} or four {A, B, C, D} stimuli, and then asked 

to deduce the relationship for a different subset. For example, the crux of transitive 

reasoning within the context of a triple of stimuli {A, B, and C} is that, when presented with 

relationships between two pairs (e.g., {A, B} and {B, C}), children should be able to 

identify the relationship between the third pair {A, C}. The binary measurement for each 

child on each item corresponds to the incorrectness (xij = 0) or correctness (xij = 1) of their 

deduction. The V = 12 test items are summarized in Table 9.

7This problem is not unique to our study, but pervades most cluster-recovery based simulation experiments in the literature during the 
past several decades.
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Subsequent to the original study by Verweij et al. (1996), the transitive reasoning data have 

been analyzed by Van der Ark (2012) and Brusco, Köhn, and Steinley (2015). In each of 

these studies, however, the focus was principally on Mokken (1971) scaling of the 12 

dichotomous items rather than the clustering of the 425 schoolchildren. Van der Ark et al. 

(2008) have identified two components of Mokken scaling: (1) evaluating a collection of 

ordered items to detect the presence of one or more scales, and (2) follow-up analyses to 

discover relevant psychometric characteristics of those scales. Thus, the first part of this 

process can be viewed as a problem of partitioning the scale items, and that was the problem 

tackled by Van der Ark (2012) and Brusco et al. (2015). Contrastingly, we do not seek to 

partition the 12 scale items here. Instead, our goal is to compare and contrast the results 

obtained by LCM, K-means, and K-median clustering when used to partition the 425 

schoolchildren based on their measurements on the 12 dichotomous variables.

Results

All three methods were applied to the transitive reasoning data for 2 ≤ K ≤ 8 clusters. A two-

cluster solution for LCM was selected based on the BIC. Likewise, two-cluster solutions for 

the K-means and K-median approaches were selected based on the CH and MRPC 

measures, respectively. Although a two-cluster solution was supported for each of the three 

methods, the resulting partitions were profoundly different from one another. The ARI 

between the K-means and K-median partitions was only .2590. The agreement between the 

K-means and LCM partitions was .0503, whereas the agreement between the LCM and K-

median partitions was .0657.8 Table 10 reports the number and percentage of schoolchildren 

in the complete sample who correctly answered each of the 12 questions. The table also 

includes, for each of the three methods, the cluster sizes and the percentage of children in 

each cluster who correctly answered each question.

The LCM partition consisted of two clusters that were substantially different in size (n1 = 

375 and n2 = 50). Effectively, cluster two of the LCM partition corresponds to a small 

cluster of children who performed poorly on the test items. The percentage of correct 

responses for the larger cluster in the LCM partition was 77.2%; however, the corresponding 

percentage for the second cluster was only 54.8%. Moreover, the results for the individual 

items shows that the second cluster consists of children that even performed poorly on some 

of the easiest items (item 7 and item 3, for example).

The K-means partition was arguably the least interpretable of the three solutions. The 

method made a strong separation of the children based on item #10, but was appreciably less 

differentiating with respect to many of the other variables. By contrast, the K-median 

partitions makes a sharp differentiation between the clusters on the three most differentiating 

items (i.e., items 10, 11, and 12 which have percentage correct responses closest to 50%).

There is, of course, some degree of subjectivity in the assessment of which of the three 

partitions is the most appropriate for the transitive reasoning data. Interpretability is an 

8The ARI’s among the three methods improved slightly for larger K, but remained well below the threshold of .65 for adequate 
agreement recommended by Steinley (2004). For example,, at K = 4, the ARI’s among the pairs (LCM, K-means), (LCM, K-median), 
and (K-means, K-median) were .2400, .2298, and .4480, respectively.
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important factor, but that alone is not sufficient to select a model. Both the LCM and K-

median partitions are quite interpretable, yet they are very different. Another criterion that is 

sometimes of relevance in cluster analysis is substantiality (see Wedel & Kamakura, 2000). 

This criterion pertains to the relative sizes of the clusters. For the LCM partition, the smaller 

cluster (n2 = 50) contains only 12% of the students in the overall sample. Effectively, the 

LCM has peeled off a very small subset of poor performers. By contrast, the smaller cluster 

(n2 = 178) in the K-median partition is far more substantial, containing 42% of the students 

in the overall sample. This factor, in conjunction with the ability of the K-median partition to 

differentiate with respect to the most challenging questions, could be purported as a basis for 

choosing the K-median solution as the most appropriate for the application.

Conclusions

Summary of Major Findings

Two simulation comparisons of latent class, K-means, and K-median methods for clustering 

dichotomous data were completed: (i) Simulation I applied the methods using the correct 

number of clusters, and (ii) Simulation II required selection of the number of clusters as part 

of the model-fitting process. The three methods were also compared on a real dataset. A 

summary of findings is as follows:

1. All three methods are capable of providing good cluster recovery when the 

number of clusters is assumed to be known. The overall average ARI values 

ranged from .8173 for K-means to .8367 for K-median clustering when this 

assumption was made.

2. When the number of clusters was assumed to be known, K-median clustering 

outperformed K-means clustering with respect to average recovery of the 

underlying cluster structure across all design feature levels.

3. When the number of clusters was assumed to be known, LCM and K-median 

clustering were competitive, with the latter method holding a slight advantage on 

average. However, LCM tended to outperform K-median clustering when K was 

2 or 3, but K-median clustering was superior when K was 4 or greater.

4. When the number of clusters was assumed to be unknown, LCM provided its 

best recovery when using AIC3 (ARI = .8260), whereas average recovery dipped 

slightly for BIC (ARI = .8115) and AIC2 (ARI = .8107). The use of AIC3 with 

LCM also resulted in the selection of the correct number of clusters 80% of the 

time, which was better than any other index evaluated.

5. The recovery performance of K-means clustering deteriorated substantially when 

using the CH heuristic to select the number of clusters (ARI = .7188). When 

using the number of clusters obtained using LCM with AIC3, the recovery 

performance of K-means clustering improved markedly to ARI = .8147.

6. The recovery performance of K-median clustering remained quite strong (ARI 

= .7952) when using the MRPC measure to choose the number of clusters. 

Moreover, when supplied with the number of clusters selected using the AIC3, 
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K-median clustering yielded the best average recovery of ARI = .8288. A 

particularly encouraging finding is that this average recovery differs by less 

than .01 from the average K-median recovery of .8367 in Simulation I, where the 

correct number of clusters was assumed to be known.

7. When applied to the transitive reasoning data, the three methods yielded 

profoundly different two-cluster solutions. The K-means solution was difficult to 

interpret. The LCM solution consisted of one large cluster and a small cluster of 

poor performers. The K-median clustering method produced two clusters that 

were differentiated by performance on some of the most discriminating items. 

The key takeaway from this application, in conjunction with the simulation 

results, is that psychological researchers cannot make the assumption that the 

three methods will generally produce comparable partitions for dichotomous 

data.

Limitations and Extensions

Some of the findings of our simulation experiment differ from those obtained in a 

comparison of K-means and mixture-model clustering using data that were not dichotomous, 

but rather continuous measures generated from mixtures of normal distributions (Steinley & 

Brusco, 2011a). For example, the BIC measure performed poorly in the Steinley and Brusco 

study, but performed much better in our simulation experiments. Nevertheless, the BIC was 

outperformed by the AIC3 measure, which is consistent with the findings of Andrews and 

Currim (2003a). Another difference between our results and those from the Steinley and 

Brusco (2011a) study pertains to the CH measure. Whereas this measure generally yielded 

good results when used with K-means in the Steinley and Brusco (2011a) study, it was 

ineffective in our experiments. These findings are concordant, however, with the results of 

Dimitriadou et al. (2002), who reported mediocre performance for CH in their experiments 

with dichotomous data. Accordingly, we recommend caution regarding the use of CH with 

dichotomous data.

One of the advantages of LCM is that it is flexible and can be adapted easily to 

accommodate other objectives, such as those that include both metric and nonmetric 

variables. The LCM can also be extended to allow for repeated measurements and the 

estimation of trajectories over time (see, for example, Martin-Storey & Crosnoe, 2015). The 

K-median procedure can also be adapted and customized for problem-specific situations. For 

example, Blanchard, Aloise, and DeSarbo (2012) developed an extension known as the 

heterogeneous p-median model that is particularly well-suited for applications pertaining to 

categorization tasks. Moreover, K-median clustering is broadly applicable to very general 

proximity data, including asymmetric and rectangular dissimilarity matrices (see Köhn et al., 

2010).

Another advantage of LCM (and K-means) relative to K-median clustering is software 

accessibility. As noted previously, programs such as Mplus and Latent Gold are generally 

accessible for latent class analysis, and K-means clustering is available in nearly all of the 

major commercial software packages (see Steinley, 2003). By contrast, K-median software 

is often not commercially available and, instead, must be obtained from other sources. For 
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example, Kaufman and Rousseeuw (2005) offer an R implementation of a K-median 

heuristic, and Köhn et al. (2010) have described a suite of Matlab programs for K-median 

clustering.

Although the accessibility and generalizability of K-median clustering is undoubtedly less 

than that of LCM, the results from our experiments clearly reveal that K-median clustering 

yields comparable and, in some cases, better performance than LCM when applied to 

dichotomous data. When the true number of clusters was assumed known, the simulation 

results showed that K-median clustering provided, on average, slightly better cluster 

recovery than LCM. Moreover, the results showed that K-median clustering was superior 

when there were four or more clusters in the dataset.

Given the number of studies in the psychological literature that have recently used LCM to 

cluster dichotomous data, the results reported herein suggest that K-median clustering 

should at least be considered as an alternative approach. Perhaps one strategy is to use LCM 

to obtain a partition and select the number of clusters (K). Subsequently, a K-median 

clustering solution could be obtained for that same number of clusters. If the LCM and K-

median solutions are concordant, then additional confidence in the clustering process is 

established.

In cases of discordant LCM and K-median partitions, great care is necessary in the selection 

of a solution. In a purely exploratory context, a researcher might opt for the solution that has 

the more salient interpretation. However, even here the researcher is exerting a degree of 

subjective bias in the selection process. This problem is even more severe if the cluster 

analysis is seeking to confirm a hypothesized structure in the data. Although there is no 

definitive solution to this problem, one approach that is commonly used is to profile the 

clusters using variables that are external to the clustering process. For example, in the case 

of the transitive reasoning data, a researcher could profile the clustering variables on external 

variables such as course grades in mathematics, IQ measures, or any other measures or 

constructs that might be deemed to be theoretically related to transitive reasoning. These 

profiles could potentially uncover differences between the partitions that might make the 

selection process less arbitrary.

Acknowledgments

The authors are grateful for the helpful comments of three reviewers and the Action Editor, which led to substantial 
improvements in this article.

References

Akaike, H. Information theory and an extension of the maximum likelihood principle. In: Petrov, BN., 
Csaki, BF., editors. Second international symposium on information theory. Budapest: Academiai 
Kiado; 1973. p. 267-281.

Andrews RL, Brusco MJ, Currim IS. Amalgamation of partitions from multiple segmentation bases: A 
comparison of model-based and non-model based procedures. European Journal of Operational 
Research. 2010; 201:608–618.

Andrews RL, Brusco MJ, Currim IS, Davis B. An empirical comparison of methods for clustering 
problems: Are there benefits from having a statistical model? Review of Marketing Science. 2010; 
8:1–32.

Brusco et al. Page 22

Psychol Methods. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Andrews RL, Currim IS. Retention of latent segments in regression-based marketing models. 
International Journal of Research in Marketing. 2003a; 20:315–321.

Andrews RL, Currim IS. A comparison of segment retention criteria for finite mixture logit models. 
Journal of Marketing Research. 2003b; 40:235–243.

Arabie P, Carroll JD. MAPCLUS: A mathematical programming approach to fitting the ADCLUS 
model. Psychometrika. 1980; 45:211–235.

Balakrishnan PV, Cooper MC, Jacob VS, Lewis PA. A study of the classification capabilities of neural 
networks using unsupervised learning: A comparison with K-means clustering. Psychometrika. 
1994; 59:505–525.

Balakrishnan PV, Cooper MC, Jacob VS, Lewis PA. Comparative performance of the FSCL neural net 
and K-means algorithm for market segmentation. European Journal of Operational Research. 1996; 
93:346–367.

Banfield JD, Raftery AE. Model-based Gaussian and non-Gaussian clustering. Biometrics. 1993; 
49:803–821.

Bartholomew, DJ., Knott, M. Latent variable models and factor analysis. London: Arnold; 1999. 

Blanchard SJ, Aloise D, DeSarbo WS. The heterogeneous p-median problem for categorization based 
clustering. Psychometrika. 2012; 77:741–762.

Bock, HH. Clustering methods: a history of K-means algorithms. In: Brito, P.Bertrand, P.Cucumel, C., 
DeCarvalho, F., editors. Selected contributions in data analysis and classification. Heidelberg, 
Germany: Springer; 2007. p. 161-172.

Bradshaw CP, Waasdorp TE, O’Brennan LM. A latent class approach to examining forms of peer 
victimization. Journal of Educational Psychology. 2013; 105:839–849. [PubMed: 25414522] 

Brusco MJ. Clustering binary data in the presence of masking variables. Psychological Methods. 2004; 
9:510–523. [PubMed: 15598102] 

Brusco MJ, Cradit JD. Graph coloring, minimum-diameter partitioning, and the analysis of confusion 
matrices. Journal of Mathematical Psychology. 2004; 48:301–309.

Brusco MJ, Köhn HF. Comment on ‘Clustering by passing messages between data points’. Science. 
2008a; 319:726c.

Brusco MJ, Köhn HF. Optimal partitioning of a data set based on the p-median model. Psychometrika. 
2008b; 73:89–105.

Brusco MJ, Köhn HF. Exemplar-based clustering via simulated annealing. Psychometrika. 2009a; 
74:457–475.

Brusco MJ, Köhn HF. Clustering qualitative data based on binary equivalence relations: A 
neighborhood search heuristic for the clique partitioning problem. Psychometrika. 2009b; 74:685–
703.

Brusco MJ, Köhn HF, Steinley D. An exact algorithm for item selection within the framework of the 
monotone homogeneity model. Psychometrika. 2015; 80:949–967. [PubMed: 25850618] 

Brusco M, Steinley D. A variable neighborhood search method for generalized blockmodeling of two-
mode binary matrices. Journal of Mathematical Psychology. 2007a; 51:325–338.

Brusco MJ, Steinley D. A comparison of heuristic procedures for minimum within-cluster sums of 
squares partitioning. Psychometrika. 2007b; 72:583–600.

Calinski T, Harabasz J. A dendrite method for cluster analysis. Communications in Statistics. 1974; 
3:1–27.

Carpenter GA, Grossberg S. A massively parallel architecture for a self-organizing neural pattern 
recognition machine. Computer Vision, Graphics, and Image Processing. 1987; 37:54–115.

Ceulemans E, Van Mechelen I. Hierarchical classes models for three-way three-mode binary data: 
interrelations and model selection. Psychometrika. 2005; 70:461–480.

Ceulemans E, Van Mechelen I. CLASSI: A classification model for the study of sequential processes 
and individual differences therein. Psychometrika. 2008; 73:107–124.

Ceulemans E, Van Mechelen I, Leenen I. The local minima problem in hierarchical classes analysis: 
An evaluation of a simulated annealing algorithm and various multistart procedures. 
Psychometrika. 2007; 72:377–391.

Brusco et al. Page 23

Psychol Methods. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Chapman BP, Goldberg LR. Replicability and 40-year predictive power of childhood ARC types. 
Journal of Personality and Social Psychology. 2011; 101:593–606. [PubMed: 21744975] 

Chiu CY, Douglas JA, Li X. Cluster analysis for cognitive diagnosis: theory and applications. 
Psychometrika. 2009; 74:633–665.

Coombs, CH. A theory of data. New York: Wiley; 1964. 

Curry DJ. Some statistical considerations in clustering with binary data. Multivariate Behavioral 
Research. 1976; 11:175–188. [PubMed: 26821670] 

De Boeck P, Rosenberg S. Hierarchical classes: Model and data analysis. Psychometrika. 1988; 
53:361–381.

De Los Reyes A, Bunnell BE, Beidel DC. Informant discrepancies in adult social anxiety disorder 
assessments: links with contextual variations in observed behavior. Journal of Abnormal 
Psychology. 2013; 122:376–386. [PubMed: 23421526] 

Dempster AP, Laird NM, Rubin DB. Maximum likelihood from incomplete data via the EM algorithm 
(with discussion). Journal of the Royal Statistical Society B. 1977; 39:1–38.

Dimitriadou E, Dolničar S, Weingessel A. An examination of indices for determining the number of 
clusters in binary data sets. Psychometrika. 2002; 67:137–160.

Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., Weingessel, A. Misc functions of the department of 
statistics (e1071) TU Wien. 2014. p. e1071R package version 1.6-2: URL http://CRAN.R-
project.org/package=e1071

Doreian, P., Batagelj, V., Ferligoj, A. Generalized blockmodeling. Cambridge, UK: Cambridge 
University Press; 2005. 

Du KL. Clustering: a neural network approach. Neural Networks. 2010; 23:89–107. [PubMed: 
19758784] 

Ellis J. An inequality for correlations in unidimensional monotone latent variable models for binary 
variables. Psychometrika. 2014; 79:303–316. [PubMed: 24659373] 

Eshghi A, Haughton D, Legrand P, Skaletsky M, Woolford S. Identifying groups: a comparison of 
methodologies. Journal of Data Science. 2011; 9:271–291.

Forgy, EW. Biometric Society Meeting. Vol. 21. Riverside, CA: 1965. Cluster analyses of multivariate 
data: Efficiency versus interpretability of classifications; p. 7681965Abstract in Biometrics

Goodman L. The analysis of systems of qualitative variables when some of the variables are 
unobservable. Part I: A modified latent structure approach. American Journal of Sociology. 1974; 
79:1179–1259.

Grossberg S. Adaptive pattern classification and universal recording: I. Parallel development and 
coding of neural feature detectors. Biological Cybernetics. 1976a; 23:121–134. [PubMed: 974165] 

Grossberg S. Adaptive pattern classification and universal recording: II Feedback, expectation, 
olfaction, and illusions. Biological Cybernetics. 1976b; 23:187–202. [PubMed: 963125] 

Hakimi SL. Optimum locations of switching centers and the absolute centers and medians of a graph. 
Operations Research. 1964; 12:450–459.

Hakimi SL. Optimum distribution of switching centers in a communication network and some related 
graph theory problems. Operations Research. 1965; 13:462–475.

Hansen P, Delattre M. Complete-link cluster analysis by graph coloring. Journal of the American 
Statistical Association. 1978; 73:397–403.

Hansen P, Mladenović N. Variable neighborhood search for the p-median. Location Science. 1997; 
5:207–226.

Hansen P, Mladenović N. J-Means: A new local search heuristic for minimum sum of squares 
clustering. Pattern Recognition. 2001; 34:405–413.

Hartigan, JA. Clustering algorithms. New York: Wiley; 1975. 

Hartigan JA, Wong MA. Algorithm AS136: A k-means clustering program. Applied Statistics. 1979; 
28:100–128.

Hedges LV, Olkin I. Clustering estimates of effect magnitude from independent studies. Psychological 
Bulletin. 1983; 93:563–573.

Hubert L. Problems of seriation using a subject by item response matrix. Psychological Bulletin. 1974; 
81:976–983.

Brusco et al. Page 24

Psychol Methods. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://CRAN.R-project.org/package=e1071
http://CRAN.R-project.org/package=e1071


Hubert LJ, Arabie P. Comparing partitions. Journal of Classification. 1985; 2:193–218.

Jancey RC. Multidimensional group analysis. Australian Journal of Botany. 1966; 14:127–130.

Kaufman, L., Rousseeuw, PJ. Finding groups in data: An introduction to cluster analysis. 2nd. New 
York: Wiley; 2005. 

Kogan, J. Introduction to clustering large and high-dimensional data. New York, NY: Cambridge 
University Press; 2007. 

Kohonen T. Self-organized formation of topologically correct feature maps. Biological Cybernetics. 
1982; 43:59–69.

Kohonen T. The self-organizing map. Proceedings of the IEEE. 1990; 78:1464–1480.

Köhn HF, Chiu CY, Brusco MJ. Heuristic cognitive diagnosis when the Q matrix is unknown. British 
Journal of Mathematical and Statistical Psychology. 2015; 68:268–291. [PubMed: 25496248] 

Köhn HF, Steinley D, Brusco MJ. The p-median model as a tool for clustering psychological data. 
Psychological Methods. 2010; 15:87–95. [PubMed: 20230105] 

Krieger AM, Green PE. A generalized Rand-index method for consensus clustering of separate 
partitions of the same data base. Journal of Classification. 1999; 16:63–89.

Lazarsfeld, PF. The logical and mathematical foundations of latent structure analysis. In: Stouffer, SA., 
editor. Measurement and prediction. Princeton, NJ: Princeton University Press; 1950. p. 362-412.

Lazarsfeld, PF., Henry, N. Latent structure analysis. Boston: Houghton-Mifflin; 1968. 

Lebbah M, Bennani Y, Rogovschi N. A probabilistic self-organizing map for binary data topographic 
clustering. International Journal of Computational Intelligence and Applications. 2008; 7:363–383.

Lebbah, M., Thiria, S., Badran, F. Topological map for binary data. In: Verleysen, M., editor. 
Proceedings of the 8th European symposium for artificial neural networks – ESANN 2000. 
Bruges, Belgium: D-facto publications; 2000. p. 267-272.

Leisch, F., Weingessel, A., Dimitriadou, E. Competitive learning for binary data. In: Niklasson, 
L.Boden, M., Ziemke, T., editors. Proceedings of the 8th international conference on artificial 
neural networks - ICANN ’98. London: Springer-Verlag; 1998. p. 779-784.

Lemmens JS, Valkenburg PM, Gentile DA. The Internet gaming disorder scale. Psychological 
Assessment. 2015 in press. 

Linzer DA, Lewis JB. polka: An R package for polytomous variable latent class analysis. Journal of 
Statistical Software. 2011; 42:1–29.

Lloyd, SP. Least squares quanitization in PCM. Vol. 2. Bell Telephone Labs Memorandum; Murray 
Hill, NJ: 1957. p. 129-137.Reprinted in IEEE Transactions on Information Theory IT-28 (1982)

MacQueen, JB. Some methods for classification and analysis of multivariate observations. In: Le Cam, 
LM., Neyman, J., editors. Proceedings of the fifth Berkeley symposium on mathematical statistics 
and probability. Vol. 1. Berkeley, CA: University of California Press; 1967. p. 281-297.

Macready GB, Dayton CM. The use of probabilistic models in the assessment of mastery. Journal of 
Educational Statistics. 1977; 33:379–416.

Magidson J, Vermunt JK. Latent class models for clustering: A comparison with K-means. Canadian 
Journal of Marketing Research. 2002; 20:37–44.

Martin-Storey A, Crosnoe R. Trajectories of overweight and their association with adolescent 
depressive symptoms. Health Psychology. 2015 in press. 

MathWorks, Inc. Using MATLAB. Natick, MA: The MathWorks, Inc; 2005. (Version 7)

McCullough WS, Pitts W. A logical calculus of the ideas immanent in nervous activity. Bulletin of 
Mathematical Biophysics. 1943; 5:115–133.

McCutcheon, AL. Latent class analysis. Newbury Park, CA: Sage; 1987. 

McLachlan, G., Peel, D. Finite mixture models. New York: Wiley; 2000. 

Milligan GW. An examination of the effects of six types of error perturbation on fifteen clustering 
algorithms. Psychometrika. 1980; 45:325–342.

Milligan GW, Cooper MC. An examination of procedures for determining the number of clusters in a 
data set. Psychometrika. 1985; 50:159–179.

Milligan GW, Cooper MC. A study of the standardization of variables in cluster analysis. Journal of 
Classification. 1988; 5:181–204.

Brusco et al. Page 25

Psychol Methods. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Mingoti SA, Lima JO. Comparing SOM neural network with fuzzy c-means, K-means, and traditional 
clustering algorithms. European Journal of Operational Research. 2006; 174:1742–1759.

Mladenović N, Brimberg J, Hansen P, Moreno-Pérez JA. The p-median problem: A survey of 
metaheuristic approaches. European Journal of Operational Research. 2007; 179:927–939.

Mokken, RJ. A theory and procedure of scale analysis. The Hauge/Berlin: Mouton/DeGruyter; 1971. 

Muthén, LK., Muthén, BO. Mplus user’s guide. 7th. Los Angeles: Author; 1998-2012. 

Ohan JL, Cormier N, Hepp SL, Visser TAW, Strain MC. Does knowledge about attention-deficit/
hyperactivity disorder impact teachers’ reported behaviors and perceptions? School Leadership 
Quarterly. 2008; 23:436–449.

Porac JF, Thomas H. Cognitive categorization and subjective rivalry among retailers in a small city. 
Journal of Applied Psychology. 1994; 79:54–66.

Prochaska JJ, Fromont SC, Delucchi K, Young-Wolff KC, Benowitz NL, Hall S, Bonas T, Hall SM. 
Multiple risk-behavior profiles of smokers with serious mental illness and motivation for change. 
Health Psychology. 2014; 33:1518–1529. [PubMed: 24467257] 

Ratkowsky DA, Lance GN. A criterion for determining the number of groups in a classification. 
Australian Computer Journal. 1978; 10:115–117.

Restle F. A metric and an ordering on sets. Psychometrika. 1959; 24:207–220.

Ruiz JP, Chebat JC, Hansen P. Another trip to the mall: a segmentation study of customers based on 
their activities. Journal of Retailing and Consumer Services. 2004; 11:333–350.

Savage JE, Slutske WS. Personality and gambling involvement: a person-centered approach. 
Psychology of Addictive Behaviors. 2014; 28:1198–1211. [PubMed: 25134059] 

Schepers J, Ceulemans E, Van Mechelen I. Selection among multi-mode partitioning models of 
different complexities. Journal of Classification. 2008; 25:67–85.

Schepers J, Van Mechelen I. A two-mode clustering method to capture the nature of the dominant 
interaction pattern in large profile data matrices. Psychological Methods. 2011; 16:361–371. DOI: 
10.1037/a0024446 [PubMed: 21744969] 

Schwartz G. Estimating the dimension of a model. Annals of Statistics. 1978; 6:461–464.

Späth, H. Cluster analysis algorithms for data reduction and classification of objects. Chichester, 
England: Ellis Horwood; 1980. 

Steinhaus H. Sur la division des corps matériels en parties. Bulletin de l’Académie Polonaise des 
Sciences, Classe III Mathématique, Astronomie, Physique, Chimie, Géologie, et Géographie. 
1956; IV(12):801–804.

Steinley D. Local optima in K-means clustering: What you don’t know may hurt you. Psychological 
Methods. 2003; 8:294–304. [PubMed: 14596492] 

Steinley D. Properties of the Hubert-Arabie adjusted Rand index. Psychological Methods. 2004; 
9:386–396. [PubMed: 15355155] 

Steinley D. K-means clustering: A half-century synthesis. British Journal of Mathematical and 
Statistical Psychology. 2006a; 59:1–34. [PubMed: 16709277] 

Steinley D. Profiling local optima in K-means clustering: Developing a diagnostic technique. 
Psychological Methods. 2006b; 11:178–192. [PubMed: 16784337] 

Steinley D, Brusco MJ. Initializing K-means batch clustering: A critical analysis of several techniques. 
Journal of Classification. 2007; 24:99–121.

Steinley D, Brusco MJ. A new variable weighting and selection procedure for K-means cluster 
analysis. Multivariate Behavioral Research. 2008:77–108. [PubMed: 26788973] 

Steinley D, Brusco MJ. Evaluating mixture-modeling for clustering: Recommendations and cautions. 
Psychological Methods. 2011a; 16:63–79. [PubMed: 21319900] 

Steinley D, Brusco MJ. Choosing the number of clusters in K-means clustering. Psychological 
Methods. 2011b; 16:271–285.

Templin JL, Henson RA. Measurement of psychological disorders using cognitive diagnosis models. 
Psychological Methods. 2006; 11:287–305. [PubMed: 16953706] 

Templin J, Henson R, Douglas J. General theory and estimation of cognitive diagnosis models: Using 
Mplus to retrieve model estimates. 2007 Unpublished manuscript. 

Thorndike RL. Who belongs in the family? Psychometrika. 1953; 18:267–276.

Brusco et al. Page 26

Psychol Methods. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Vande Gaer E, Ceulemans E, Van Mechelen I, Kuppens P. The CLASSI-N method for the study of 
sequential processes. Psychometrika. 2012; 77:85–105.

Van der Ark LA. Mokken scale analysis in R (version 2.4). Journal of Statistical Software. 2007; 20:1–
19.

Van der Ark LA. New developments in Mokken scale analysis in R. Journal of Statistical Software. 
2012; 48:1–27.

Van der Ark LA, Croon MA, Sijtsma K. Mokken scale analysis for dichotomous items using marginal 
models. Psychometrika. 2008; 73:183–208. [PubMed: 20046851] 

Vermunt, JK., Magidson, J. Latent class cluster analysis. In: Hagenaars, JA., McCutcheon, AL., 
editors. Applied latent class analysis. Cambridge, England: Cambridge University Press; 2005a. 
p. 89-106.

Vermunt, JK., Magidson, J. Technical guide for Latent Gold 4.0: Basic and advanced. Statistical 
Innovations Inc; Belmont, Massachusetts: 2005b. 

Verweij AC, Sijtsma K, Koops W. A Mokken scale for transitive reasoning suited for longitudinal 
research. International Journal of Behavioral Development. 1996; 19:219–238.

Waasdorp TE, Bradshaw CP. Examining student responses to frequent bullying: a latent class 
approach. Journal of Educational Psychology. 2011; 103:336–352.

Wedel, M., Kamakura, WA. Market segmentation: Conceptual and methodological foundations. 
Boston, MA: Kluwer; 2000. 

Wedel M, Steenkamp JBEM. Fuzzy clusterwise regression approach to benefit segmentation. 
International Journal of Research in Marketing. 1989; 6:241–258.

White A, Murphy TB. BayesLCA: An R package for Bayesian latent class analysis. Journal of 
Statistical Software. 2014; 61:1–28.

Wilderjans TF, Ceulemans E, Van Mechelen I. The CHIC model: A global model for coupled binary 
data. Psychometrika. 2008; 73:729–751.

Wilderjans TF, Ceulemans E, Meers K. CHull: A generic convex hull based model selection method. 
Behavior Research Methods. 2013; 45:1–15. [PubMed: 23055156] 

Wilderjans TF, Ceulemans E, Van Mechelen I. The SIMCLAS model: Simultaneous analysis of 
coupled binary data matrices with noise and heterogeneity between and within data blocks. 
Psychometrika. 2012; 77:724–740.

Williams GW, Barton GM, White AA, Hosik W. Cluster analysis applied to symptom ratings of 
psychiatric patients: An evaluation of its predictive ability. British Journal of Psychiatry. 1976; 
129:178–185. [PubMed: 9175] 

Brusco et al. Page 27

Psychol Methods. Author manuscript; available in PMC 2018 September 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Brusco et al. Page 28

Table 1

Patterns for combinations of K and V. The pattern for K = 6 and V = 12 is from Dimitriadou et al., 2002, p. 

138) and served as the foundation for construction of the other patterns.

V = 6 V = 9 V = 12

K = 2 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 0 0 0

0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1

K = 3 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1

0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0

K = 4 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1

0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0

1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1

K = 5 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1

0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0

1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1

0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1

K = 6 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 0 0 0

0 0 0 0 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1

0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0

1 1 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1

0 0 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 0 1 1 1 0 0 0 1 1 1

1 1 0 0 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 0 0 1 1 1 0 0 0
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Table 3

Summary of results for Simulation I: The table reports the average of the ARI values for the LCM, K-means, 

and K-median methods for each category level of each design feature.

Design feature Level LCM K-means K-median

Sample size N = 100 .8133 .8071 .8309

N = 200 .8339 .8193 .8366

N = 400 .8480 .8255 .8426

Number of clusters K = 2 .9290 .8830 .9109

K = 3 .8758 .8668 .8740

K = 4 .8390 .8252 .8419

K = 5 .7775 .7710 .7937

K = 6 .7373 .7406 .7631

Number of variables V = 6 .7146 .6778 .6989

V = 9 .8559 .8566 .8807

V = 12 .9247 .9176 .9305

Cluster sizes Equal .8319 .8435 .8441

60% .8332 .8003 .8381

10% .8300 .8081 .8280

Error level 5% .9347 .9364 .9416

10% .8485 .8336 .8512

15% .7119 .6820 .7173

Overall .8317 .8173 .8367
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Table 9

Properties of the 12 variables for the transitive reasoning data from Verweij et al. (1996).

Variable Variable labels Stimulus items Measures Nature of relationship

1 T01L 3 sticks length (in cm.): 12, 11.5, 11 A > B > C

2 T02L 4 tubes length (in cm.): 12, 12, 12, 12 A = B = C = D

3 T03W 3 tubes weight (in grams): 45, 25, 18 A > B > C

4 T04W 4 cubes weight (in grams): 65, 65, 65, 65 A = B = C = D

5 T05W 3 balls weight (in grams): 40, 50, 70 A < B < C

6 T06A 3 discs area (diameter in cm.): 7.5, 7, 6.5 A > B > C

7 T07L 3 sticks length (in cm.): 28.5, 27.5, 27.5 A > B = C

8 T08W 3 balls weight (in grams): 65, 40, 40 A > B = C

9 T09L 4 sticks length (in cm.): 12.5, 12.5, 13, 13 A = B < C = D

10 T10W 4 balls weight (in grams): 60, 60, 100, 100 A = B < C = D

11 T11P pseudo

12 T12P pseudo
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